• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020 食品青年科学家峰会

乳酸菌发酵杂粮面包品质改善和降糖机理研究进展

安江 刘敬科 生庆海 赵巍 李朋亮 贾艳菊 张爱霞 刘晶

安江,刘敬科,生庆海,等. 乳酸菌发酵杂粮面包品质改善和降糖机理研究进展[J]. 食品工业科技,2022,43(24):1−10. doi:  10.13386/j.issn1002-0306.2022050176
引用本文: 安江,刘敬科,生庆海,等. 乳酸菌发酵杂粮面包品质改善和降糖机理研究进展[J]. 食品工业科技,2022,43(24):1−10. doi:  10.13386/j.issn1002-0306.2022050176
AN Jiang, LIU Jingke, SHENG Qinghai, et al. Research Progress on the Quality Improvement and Hypoglycemic Mechanism of Multi-grain Bread Fermented by Lactic Acid Bacteria[J]. Science and Technology of Food Industry, 2022, 43(24): 1−10. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022050176
Citation: AN Jiang, LIU Jingke, SHENG Qinghai, et al. Research Progress on the Quality Improvement and Hypoglycemic Mechanism of Multi-grain Bread Fermented by Lactic Acid Bacteria[J]. Science and Technology of Food Industry, 2022, 43(24): 1−10. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022050176

乳酸菌发酵杂粮面包品质改善和降糖机理研究进展

doi: 10.13386/j.issn1002-0306.2022050176
基金项目: 河北省农林科学院科技创新专项课题资助(2022KJCXZX-SSS-1);现代农业产业技术体系建设专项资金资助(CARS-06-14.5-A29);2021年度引进留学人员资助项目(C20210360);河北省重点研发计划项目(21327112D)。
详细信息
    作者简介:

    安江(1998−),女,硕士研究生,研究方向:健康食品的研究与开发,E-mail:2108919621@qq.com

    通讯作者:

    张爱霞(1977−),女,博士,副研究员,研究方向:食品营养和食品加工,E-mail:zhangaixia1977@126.com

    刘晶(1974−),女,博士,教授,研究方向:健康食品的研究与开发,E-mail:595857708@qq.com

  • 中图分类号: TS213.2

Research Progress on the Quality Improvement and Hypoglycemic Mechanism of Multi-grain Bread Fermented by Lactic Acid Bacteria

  • 摘要: 杂粮面包因其营养丰富,血糖生成指数较低受到人们的欢迎。由于杂粮的添加降低了面包的品质,通过乳酸菌发酵不仅使杂粮面包的品质得到提高,而且增强了杂粮面包的血糖调节功效。本文在阐述乳酸菌和酵母菌共生关系基础上,综述了乳酸菌发酵对杂粮面包的比容、感官品质、营养、风味和贮藏稳定性等品质的改善效果,通过分析乳酸菌代谢与杂粮中活性成分的互作关系,探讨乳酸菌发酵杂粮面包的降糖机理,包括调节肠道菌群,增强机体免疫;提高抗氧化能力,促进胰岛素分泌;抑制消化酶活性,影响糖代谢通路三方面。本研究的目的是为杂粮面包产业的快速发展和糖尿病患者食品的研发提供参考。
  • 表  1  乳酸菌发酵酸面团制备技术

    Table  1.   Preparation technology of lactic acid bacteria fermented sourdough

    接种方式发酵方式菌株类型发酵条件面团状态使用方式优点缺点参考文献
    自然接种自然、连续传代
    发酵
    菌株类型不确定,来源于环境室温发酵,温度20~
    30 ℃,时间6~24 h;
    固态直接使用发酵时间短,面团制备方便菌株不确定,存在安全隐患;产品品质不稳定[2223]
    人工接种非连续液态发酵接种目标乳酸菌适宜温度发酵,高于30 ℃;时间2~5 d半流体直接使用,额外添加酵母菌菌株代谢产物清晰;生产效率高发酵时间长[2324]
    人工接种非连续液态发酵接种目标乳酸菌适宜温度发酵固态、粉状直接使用,额外添加酵母菌菌株代谢产物清晰;贮存、运输方便发酵时间长,能源消耗大;干燥处理设备
    成本高
    [2325]
    人工和自然接种混菌、连续传代
    发酵
    菌株类型不确定适宜温度发酵固态直接使用面团的糅韧性增强;风味物质增多优势菌株代谢产物不清晰;发酵时间长[2627]
    下载: 导出CSV

    表  2  乳酸菌发酵杂粮面包的降糖机理

    Table  2.   Hypoglycemic mechanism of multi-grain bread bread fermented by lactic acid bacteria

    乳酸菌代谢产物乳酸菌作用杂粮活性成分杂粮作用降糖机理文献来源
    胞外多糖淋巴细胞↑;
    促炎因子↓
    大豆异黄酮肠道通透性↑;促炎因子↓肠道屏障功能和机体免疫↑[5658,6265]
    肽聚糖短链脂肪酸↑;有害菌↓燕麦β-葡聚糖、黄酮、
    膳食纤维
    丙酸、乙酸和抗菌素↑;
    总短链脂肪酸↑
    肠道菌群↑[5961,66]
    肽聚糖、蛋白酶自由基↓;抗氧化肽↑多酚自由基↓抗氧化能力↑[36,39,61,6769]
    有机酸杂粮活性成分↑;
    胰岛β细胞↑
    膳食纤维、皂苷类、
    燕麦肽
    胰岛β细胞↑;胰岛素敏感性↑胰岛素分泌↑[7074]
    胞外多糖、有机酸α-葡萄糖苷酶活性↓;
    抗性淀粉↑
    花青素、抗性淀粉α-葡萄糖苷酶和
    α-淀粉酶活性↓
    消化酶活性↓[7581]
    α-半乳糖苷酶D-手性肌醇↑D-手性肌醇、多酚糖异生途径↓;腺苷酸激活蛋白激酶和丝氨酸/苏氨酸激酶的磷酸化↑影响糖代谢通路[8,8284]
    下载: 导出CSV
  • [1] HONG J M, LIN B M, ZHANG S, et al. Analysis and evaluation of nutritional components in 6 kinds of minor cereals[J]. Journal of Food Safety & Quality,2019,10(18):6254−6260.
    [2] FU J, ZHANG Y, HU Y, et al. Concise review: Coarse cereals exert multiple beneficial effects on human health[J]. Food Chemistry,2020,325(4):126761.
    [3] HOU D, ZHAO Q, YOUSAF L, et al. In vitro starch digestibility and estimated glycemic index of mung bean as affected by endogenous proteins and lipids, and exogenous heat-processing methods[J]. Plant Foods for Human Nutrition,2020,75(4):1−6.
    [4] 戴媛, 冷进松, 傅婷婷. 豌豆蛋白面包的制作工艺优化及其品质[J]. 食品工业科技,2020,41(11):194−199. [DAI Y, LENG S, FU T T. Process optimization and quality of pea protein bread[J]. Science and Technology of Food Industry,2020,41(11):194−199.
    [5] 商亚芳, 蔡华珍, 操珍. 荞麦苗粉面包的配方和工艺优化[J]. 食品工业科技,2021,42(15):177−182. [SHANG Y F, CAI H Z, CAO Z. Formulation and process optimization of buckwheat flour bread[J]. Science and Technology of Food Industry,2021,42(15):177−182.
    [6] OH Y J, NAM K, Y KIM, et al. Effect of a nutritionally balanced diet comprising whole grains and vegetables alone or in combination with probiotic supplementation on the gut microbiota[J]. Preventive Nutrition and Food Science,2021,26(2):121−131. doi:  10.3746/pnf.2021.26.2.121
    [7] 陈佳芳, 汤晓娟, 蒋慧, 等. 不同高产胞外多糖乳酸菌发酵荞麦酸面团对面团面筋网络结构和面包烘焙特性的影响[J]. 食品科学,2018,39(6):1−6. [CHEN J F, TANG X J, JIANG H, et al. Effects of different exopolysaccharides lactic acid bacteria fermentation on gluten network structure and baking properties of buckwheat sour dough[J]. Food Science,2018,39(6):1−6.
    [8] 武盟, 曹伟超, 程新, 等. 高产α-半乳糖苷酶乳酸菌发酵对鹰嘴豆酸面团生化特性及其面包烘焙品质的影响[J]. 食品科学,2021,42(10):146−153. [WU M, CAO W C, CHENG X, et al. Effects of α-galactosidase lactobacillus fermentation on biochemical characteristics of chickpea sour dough and bread baking quality[J]. Food Science,2021,42(10):146−153.
    [9] 曹伟超, 张宾乐, Omedi Jacob OJOBI, 等. 功能性乳酸菌发酵黑豆麦麸酸面团面包的营养及烘焙特性[J]. 食品科学,2022,43(2):9. [CAO W C, ZHANG B L, OMEDI J O, et al. Nutritional and baking characteristics of black bean wheat gluten sour dough bread fermented by functional lactic acid bacteria[J]. Food Science,2022,43(2):9.
    [10] MAMHOUD A, NIONELLI L, BOUZAINE T, et al. Selection of lactic acid bacteria isolated from Tunisian cereals and exploitation of the use as starters for sourdough fermentation[J]. International Journal of Food Microbiology,2016,225:9−19. doi:  10.1016/j.ijfoodmicro.2016.03.004
    [11] NAMI Y, GHAREKHANI M, AALAMI M, et al. Lactobacillus-fermented sourdoughs improve the quality of gluten-free bread made from pearl millet flour[J]. Journal of Food Science and Technology,2019,56(10):4057−4067.
    [12] GALLI V, VENTURI M, PINI N, et al. Exploitation of sourdough lactic acid bacteria to reduce raffinose family oligosaccharides (RFOs) content in breads enriched with chickpea flour[J]. European Food Research and Technology,2019,245(11):2353−2363. doi:  10.1007/s00217-019-03353-6
    [13] PEI J, FENG Z, REN T, et al. Selectively screen the antibacterial peptide from the hydrolysates of highland barley[J]. Engineering in Life Sciences,2018,18(1):48−54. doi:  10.1002/elsc.201700118
    [14] VOGELMANN S A, SEITTER M, SINGER U, et al. Adaptability of lactic acid bacteria and yeasts to sourdoughs prepared from cereals, pseudocereals and cassava and use of competitive strains as starters[J]. International Journal of Food Microbiology,2009,130(3):205−212. doi:  10.1016/j.ijfoodmicro.2009.01.020
    [15] LHOMME E, ONNO B, CHUAT V, et al. Genotypic diversity of Lactobacillus sanfranciscensis strains isolated from French organic sourdoughs[J]. International Journal of Food Microbiology,2017,226:13−19.
    [16] VUYST L D, HARTH H, KERREBROECK S V, et al. Yeast diversity of sourdoughs and associated metabolic properties and functionalities[J]. International Journal of Food Microbiology,2016:26−34.
    [17] CONTARINO R, BRIGHINA S, FALLICO B, et al. Volatile organic compounds produced by Biocontrol yeasts[J]. Food Microbiol,2019,82:70−74. doi:  10.1016/j.fm.2019.01.008
    [18] LISZKOWSKA W, BERLOWSKA J. Yeast fermentation at low temperatures: Adaptation to changing environmental conditions and formation of volatile compounds[J]. Molecules,2021,26(4):1035. doi:  10.3390/molecules26041035
    [19] SIEUWERTS S, BRON P A, SMID E J. Mutually stimulating interactions between lactic acid bacteria and Saccharomyces cerevisiae in sourdough fermentation[J]. LWT,2018,90:201−206. doi:  10.1016/j.lwt.2017.12.022
    [20] 张成林, 钱怡霖, 刘尊英. 酵母菌代谢产物对植物乳杆菌AB-1生产苯乳酸的影响[J]. 食品研究与开发,2021,42(11):145−151. [ZHANG C L, QIAN Y L, LIU Z Y. Effects of yeast metabolites on production of phenyllactic acid by Lactobacillus plantarum AB-1[J]. Food Research and Development,2021,42(11):145−151. doi:  10.12161/j.issn.1005-6521.2021.11.024
    [21] 王丽群. 酿酒酵母与白面粉乳杆菌混合发酵对馒头品质的影响[J]. 黑龙江农业科学,2021,7:77−81. [WANG L Q. Effects of Saccharomyces cerevisiae and lactobacillus siliginis on steamed bread quality[J]. Heilongjiang Agricultural Sciences,2021,7:77−81.
    [22] 杨浣漪. 传统酸面团中酿酒酵母和旧金山乳杆菌的种内多样性及其互作研究[D]. 杭州: 浙江大学, 2018

    YANG H Y. Study on the intraspecies diversity and interaction between Saccharomyces cerevisiae and Lactobacillus sanfrancisco in traditional sour dough [D]. Hangzhou: Zhejiang University, 2018.
    [23] DE V L, VAN K S, LEROY F. Microbial ecology and process technology of sourdough fermentation[J]. Advances in Applied Microbiology,2017,100:49−160.
    [24] CARNEVALI P, CIATI R, LEPORATI A, et al. Liquid sourdough fermentation: Industrial application perspectives[J]. Food Microbiology,2007,24:150−154. doi:  10.1016/j.fm.2006.07.009
    [25] BRANDT M J. Sourdough products for convenient use in baking[J]. Food Microbiol,2007,24(2):161−164.
    [26] SIRAGUSA S, DI C R, ERCOLINI D, et al. Taxonomic structure and monitoring of the dominant population oflactic acid bacteria during wheat flour sourdough type I propagation using Lactobacillus sanfranciscensis starters[J]. Applied and Environmental Microbiology,2009,75:1099−1109. doi:  10.1128/AEM.01524-08
    [27] VUYST L D, KERREBROECK S V, HARTH H, et al. Microbial ecology of sourdough fermentations: Diverse or uniform?[J]. Food Microbiology,2014,37:11−29. doi:  10.1016/j.fm.2013.06.002
    [28] INDRANI D, SOUMYA C, RAJIV J, et al. Multigrain bread - its dough rheology, microstructure, quality and nutritional characteristics[J]. Journal of Texture Studies,2010,41(3):302−319. doi:  10.1111/j.1745-4603.2010.00230.x
    [29] ZHANG D, TAN B, Effects of different solid-state fermentation ratios of S. cerevisiae and L. plantarum on physico-chemical properties of wheat bran and the quality of whole wheat bread [J]. Journal of the Science of Food and Agriculture, 2021, 101(11).
    [30] 王芳, 冯冲, 徐翔, 等. 混合发酵对紫薯面团的特性[J]. 食品工业,2021,42(5):4. [WANG F, FENG C, XU X, et al. Effects of mixed fermentation on the characteristics of purple potato dough[J]. Food industry,2021,42(5):4.
    [31] HU Y, ZHANG J, WANG S, et al. Lactic acid bacteria synergistic fermentation affects the flavor and texture of bread[J]. Journal of Food Science,2022,87(4):1823−1836. doi:  10.1111/1750-3841.16082
    [32] 孙银凤, 徐岩, 黄卫宁, 等. 不同发酵基质的酸面团对酵母面团体系面包烘焙及老化特性的影响[J]. 食品科学,2015,36(506):63−68. [SUN Y F, XU Y, HUANG W N, et al. Effect of sourdough with different fermentation substrates on baking and aging characteristics of yeast dough system bread[J]. Food Science,2015,36(506):63−68.
    [33] 邹奇波, 程新, 陈诚, 等. 混菌发酵酸面团对全麦面包风味与烘焙特性的影响[J]. 食品与机械,2020,36(4):8. [ZOU Q B, CHENG X, CHEN C, et al. Effects of fermented sour dough with mixed bacteria on flavor and baking characteristics of whole wheat bread[J]. Food and Machinery,2020,36(4):8.
    [34] 王立峰, 厉珺, 徐斐然, 等. 副干酪乳杆菌对小麦发酵面团流变特性与风味的影响[J]. 中国食品学报,2021,21(7):230−238. [WANG L F, LI J, XU F R, et al. Effects of Lactobacillus paracei on rheological properties and flavor of wheat fermented dough[J]. Chinese Journal of Food Science,2021,21(7):230−238.
    [35] CLARKE C I, SCHOBER T J, DOCKERY P, et al. Wheat sourdough fermentation: Effects of time and acidification on fundamental rheological properties[J]. Cereal Chemistry,2004,81:409−417. doi:  10.1094/CCHEM.2004.81.3.409
    [36] 张思佳, 张薇, 苏晓琴, 等. 乳杆菌发酵对荞麦面包抗氧化及烘焙特性影响[J]. 食品工业科技,2015,36(19):49−53. [ZHANG S J, ZHANG W, SU X Q, et al. Effects of lactobacillus fermentation on antioxidant and baking properties of buckwheat bread[J]. Science and Technology of Food Industry,2015,36(19):49−53.
    [37] COUCH, GRACE W. Effect of sourdough fermentation parameters on bread properties[J]. Food and Nutrition Sciences,2016,12:2581−2634.
    [38] 张书静, 王展, 沈汪洋, 等. 膳食纤维对面团和面筋蛋白影响的研究进展[J]. 粮食与油脂,2020,33(296):12−14. [ZHANG S J, WANG Z, WANG H Y, et al. Research Progress on the effects of dietary fiber from lactic acid bacteria and yeast on dough and gluten protein[J]. Grain and Fat,2020,33(296):12−14.
    [39] 杨紫璇, 张宾乐, 蒋慧, 等. 茅台酒曲植物乳杆菌大豆酸面团发酵面包的营养与抗氧化特性[J]. 食品与发酵工业,2018,44(6):37−42. [YANG Z X, ZHANG B L, JIANG H, et al. Nutritional and antioxidant properties of Fermented bread with Lactobacillus plantarum soya acid dough from Maotai Liquor[J]. Food and fermentation industries,2018,44(6):37−42.
    [40] 曹伟超, 罗昆, 程新, 等. 高产植酸酶乳酸菌及其黑豆酸面团发酵低植酸营养面包研究[J]. 食品与机械,2021,37(2):186−193. [CAO W C, LUN K, CHENG X, et al. Study on high phytase lactic acid bacteria and black bean sour dough fermentation of low phytase nutritional bread[J]. Food & Machinery,2021,37(2):186−193.
    [41] LEENHARDT F, LEVRAT-VERNY M A, CHANLIAUD E, et al. Moderate decrease of pH by sourdough fermentation is sufficient to reduce phytate content of whole wheat flour through endogenous phytase activity[J]. Journal of Agricultural and Food Chemistry,2005,53(1):98−102. doi:  10.1021/jf049193q
    [42] NIELSEN M M, D AMSTRUP M L, THOMSEN A D, et al. Phytase activity and degradation of phytic acid during rye bread making[J]. European Food Research & Technology,2007,225(2):173−181.
    [43] 周一鸣, 欧阳博雅, 向茜, 等. 不同乳酸菌发酵酸面团对面包品质及风味的影响[J]. 食品科学,2022,43(2):176−183. [ZHOU Y M, OUYANG B Y, XIANG Q, et al. Effects of different lactic acid bacteria on the quality and flavor of bread fermented sour dough[J]. Food Science,2022,43(2):176−183.
    [44] 郭东旭, 张康逸, 高玲玲, 等. 乳酸菌发酵酸面团对青麦仁面包品质的影响[J]. 食品工业科技,2021,42(1):61−67,74. [GUO D X, ZHANG K Y, GAO L L, et al. Effect of lactic acid bacteria fermented sour dough on quality of green wheat kernel bread[J]. Science and Technology of Food Industry,2021,42(1):61−67,74.
    [45] FUJIMOTO A, ITO K, NARUSHIMA N, et al. Identification of lactic acid bacteria and yeasts, and characterization of food components of sourdoughs used in Japanese bakeries[J]. J Biosci Bioeng,2019,127(5):575−581. doi:  10.1016/j.jbiosc.2018.10.014
    [46] LINKO Y Y, JAVANAINEN P, LINKO S. Biotechnology of bread baking[J]. Trends in Food Science & Technology,1997,8(10):339−344.
    [47] ZHAO C J, GÄNZLE M G. Synthesis of taste-active γ-glutamyl dipeptides during sourdough fermentation by Lactobacillus reuteri[J]. Journal of Agricultural and Food Chemistry,2016,64(40):7561−7568. doi:  10.1021/acs.jafc.6b02298
    [48] BUKSA K, KOWALCZYK M, BORECZEK J. Extraction, purification and characterisation of exopolysaccharides produced by newly isolated lactic acid bacteria strains and the examination of their influence on resistant starch formation[J]. Food Chem,2021,15(362):130221.
    [49] Zhao X, Li M, Tang J, et a1. The role of lactic acid bacteria in anti-pathogenic microorganism infection[J]. Journal of Mirobiology,2018,38(6):107−113.
    [50] 史梦洁, 闫博文, SADIQ F A, 等. 乳酸菌协同小麦胚芽油发酵对黑曲霉生长活性的影响[J]. 食品工业科技,2020,41(19):144−148,156. [SHI M J, YAN B W, SADIQ F A, et al. Effects of lactobacillus and wheat germ oil fermentation on growth activity of aspergillus niger[J]. Science and Technology of Food Industry,2020,41(19):144−148,156. doi:  10.13386/j.issn1002-0306.2020.19.023
    [51] MOTA-GUTIERREZ J, FRANCIOSA I, RUGGIRELLO M, et al. Technological, functional and safety properties of lactobacilli isolates from soft wheat sourdough and their potential use as antimould cultures[J]. World J Microbiol Biotechnol,2021,37(9):146. doi:  10.1007/s11274-021-03114-2
    [52] 周雪. 乳酸菌发酵剂在汉堡面包防腐中的应用[D]. 黑龙江: 东北农业大学, 2020

    ZHOU X. Application of lactic acid bacteria starter in hamburger bread preservative [D]. Heilongjiang: Northeast Agricultural University, 2020.
    [53] AXEL C, ROECKER B, BROSNAN B, et al. Application of Lactobacillus amylovorus DSM19280 in gluten-free sourdough bread to improve the microbial shelf life[J]. Food Microbiol,2014,47:36−44.
    [54] MOORE M M, BELLO F D, ARENDT E K. Sourdough fermented by Lactobacillus plantarum FST1.7 improves the quality and shelf life of gluten-free bread[J]. European Food Research and Technology,2008,226(6):1309−1316. doi:  10.1007/s00217-007-0659-z
    [55] VED A, RAIS N, AHMAD R, et al. Prevalence of diabetes mellitus and socio-demographic survey in the community of western uttar pradesh, india in the year 2019-2020[J]. International Journal of Current Research,2021,13(1):10−15. doi:  10.31782/IJCRR.2021.13129
    [56] WANG G, SI Q, YANG S, et al. Lactic acid bacteria reduce diabetes symptoms in mice by alleviating gut microbiota dysbiosis and inflammation in different manners[J]. Food & Function,2020,11(7):5898−5914.
    [57] CHON H, CHOI B, JEONG G, et al. Suppression of pminflammatory cytokine production by specific metabolites of Lactobacillus plantarum 10hk2 via inhibiting NF-κB and p38 MAPK expressions[J]. Microbiology and Infectious Diseases,2010,33(6):41−49.
    [58] REN Q Q, TANG Y J, ZHANG L L, et al. Exopolysaccharide produced by Lactobacillus casei promotes the differentiation of CD4+T Cells into Th17 Cells in BALB/c mouse peyer's patches in vivo and in vitro[J]. Journal of Agricultural and Food Chemistry,2020,68(9):2664−2672. doi:  10.1021/acs.jafc.9b07987
    [59] UU J, XUE J Z, ZHU Z N, et al. Lactic acid inhibits NF-κB activation by lipopolysaccharide in rat intestinal mucosa mierovascular endothelial cells[J]. Agricultural Sciences in China,2011,10(6):954−959. doi:  10.1016/S1671-2927(11)60081-3
    [60] ZIMMER J, LANGE B, FRICK JS, et a1. A vegan or vegetarian diet substantially alters the human colonic faecal microbiota[J]. European Journal of Clinical Nutrition,2012,66(1):53−60. doi:  10.1038/ejcn.2011.141
    [61] 王凯旋. 乳酸菌肽聚糖的制备、结构及其生理功能研究[D]. 南京: 南京农业大学, 2017

    WANG K X. Preparation, structure and physiological function of peptidoglycan from lactic acid bacteria [D]. Nanjing: Nanjing Agricultural University, 2017.
    [62] KATINA K, LAITILA A, JUVONEN R, et al. Bran fermentation as a means to enhance technological properties and bioactivity of rye[J]. Food Microbiology,2007,24(2):175−186. doi:  10.1016/j.fm.2006.07.012
    [63] ANDERSSON A M, RUEGG N, AMAN P. Molecular weight distribution and content of water-extractable 13-glucan in rye crisp bread[J]. Journal of Cereal Science,2008(47):399−406.
    [64] GONG L, CAO W, CHI H, et al. Whole cereal grains and potential health effects: Involvement of the gut microbiota[J]. Food Research International,2018,103(Jan.):84−102.
    [65] 吕振岳, 马达, 许洪高, 等. 燕麦β-葡聚糖对高脂饮食小鼠肥胖及肠道菌群影响[J]. 食品安全质量检测学报,2021,12(12):5024−5030. [LV Z Y, MA D, XU H G, et al. Effects of oat β-glucan on obesity and intestinal microflora in high-fat diet mice[J]. Journal of Food Safety and Quality,2021,12(12):5024−5030.
    [66] WANG J, XIE B, SUN Z. The improvement of carboxymethyl β-glucan on the antibacterial activity and intestinal flora regulation ability of lotus seedpod procyanidins[J]. LWT-Food Science and Technology,2020,137(3):110441.
    [67] 王勇, 宋歌, 庞邵杰, 等. 应用Illumina NovaSeq测序技术比较3种杂粮对大鼠肠道菌群的影响[J]. 食品科学,2021,42(9):100−106. [WANG Y, SONG G, PANG S J, et al. Illumina NovaSeq sequencing technology was used to compare the effects of three kinds of cereals on intestinal microflora in rats[J]. Food Science,2021,42(9):100−106.
    [68] LUO Q H, CHENG D J, HUANG C, et al. Improvement of colonic immune function with soy isoflavones in high-fat diet-induced obese rats[J]. Molecules,2019,24(6):1139. doi:  10.3390/molecules24061139
    [69] TIJANA M, SLAVICA S, SUZANA I. Effect of fermentation on antioxidant properties of some cereals and pseudo cereals[J]. Food Chemistry,2010,119(3):957−963. doi:  10.1016/j.foodchem.2009.07.049
    [70] 董英丽. 乳酸菌对红豆发酵特性的研究[D]. 呼和浩特: 内蒙古农业大学, 2013

    DONG Y L. Study on fermentation characteristics of red bean by lactic acid bacteria[D]. Hohhot: Inner Mongolia Agricultural University, 2013.
    [71] 李志芳, 张裕, 王颖, 等. 芸豆/大豆复合发酵液工艺优化及抗氧化活性研究[J]. 中国粮油学报,2022,37(1):164−169. [LI Z F, ZHANG Y, WANG Y, et al. Optimization and antioxidant activity of mixed fermented liquid of kidney bean and soybean[J]. Chinese Journal of Cereals and Oils,2022,37(1):164−169. doi:  10.3969/j.issn.1003-0174.2022.01.025
    [72] SINGH J, KAKKAR P. Modulation of liver function, antioxidant responses, insulin resistance and glucose transport by oroxylum indicum stem bark in STZ induced diabetic rats[J]. Food & Chemical Toxicology,2013,62(6):722−731.
    [73] 葛丽霞, 陈静. 大豆异黄酮对糖尿病大鼠抗氧化能力的影响[J]. 食品科学,2007,28(3):327−329. [GE L X, CHEN J. Effects of soybean isoflavone on antioxidant capacity of diabetic rats[J]. Food Science,2007,28(3):327−329.
    [74] ZAFAR T A, KABIR Y. Chickpeas suppress postprandial blood glucose concentration, and appetite and reduce energy intake at the next meal[J]. Journal of Food Science and Technology,2017,54(4):1−8.
    [75] 佐兆杭, 王颖, 刘淑婷, 等. 杂豆膳食纤维对糖尿病大鼠的降血糖作用[J]. 食品科学,2018,39(17):177−181. [ZUO Z H, WANG Y, LIU S T, et al. Effects of soybean dietary fiber on hypoglycemia in diabetic rats[J]. Food Science,2018,39(17):177−181. doi:  10.7506/spkx1002-6630-201817029
    [76] 张慧娟, 黄莲燕, 尹梦, 等. 燕麦多肽降血糖功能的研究[J]. 食品工业科技,2017,38(10):360−363, 384. [ZHANG H J, HUANG L Y, YIN M, et al. Study on hypoglycemic function of oat polypeptide[J]. Science and Technology of Food Industry,2017,38(10):360−363, 384.
    [77] 李向菲. 产胞外多糖乳酸菌对 2 型糖尿病的干预及其机制研究[D]. 无锡: 江南大学, 2016

    LI X F. Intervention and mechanism of extracellular polysaccharide producing lactic acid bacteria in type 2 diabetes mellitus [D]. Wuxi: Jiangnan University, 2016.
    [78] NURHAYATI R, MIFTAKHUSSOLIKHAH, FREDIANSYAH A, et al. Lactic acid bacteria producing inhibitor of alpha glucosidase isolated from ganyong and kimpul[J]. Iop Conference,2017,101(1):12009.
    [79] 杨同香, 王芳, 李全阳. 温度对酸乳中乳酸菌胞外多糖作用机制的研究[J]. 食品工业科技,2012,33(9):58−61. [YANG T X, WANG F, LI Q Y. Effect of temperature on extracellular polysaccharide of lactic acid bacteria in yoghurt[J]. Science and Technology of Food Industry,2012,33(9):58−61.
    [80] 贾彦杰, 申飞, 钱志伟, 等. 添加杂粮粉改善面包品质及营养特性分析[J]. 现代食品科技,2020,36(12):9. [JIA Y J, SHEN F, QIAN Z W, et al. Analysis of improving bread quality and nutritional characteristics by adding coarse grain flour[J]. Modern Food Science and Technology,2020,36(12):9.
    [81] 程新, 黄璟, JACOB Ojobi Omedi, 等. 湿热处理和混菌发酵对白芸豆面包淀粉消化率的影响[J]. 食品与发酵工业,2021,47(13):7. [CHENG X, HUANG J, JACOB O O, et al. Effects of moist heat treatment and mixed fermentation on starch digestibility of white kidney bean bread[J]. Food and Fermentation Industry,2021,47(13):7.
    [82] MARITIM AC. Diabetes oxidative stress and anfiofidants[J]. Biochem Mol Toxicol,2003,17:24−37. doi:  10.1002/jbt.10058
    [83] BAO T, WANG Y, LI Y T, et al. Antioxidant and antidiabetic properties of tartary buckwheat rice flavonoids after in vitro digestion[J]. Journal of Zhejiang University-Science B,2016,17(12):941−951. doi:  10.1631/jzus.B1600243
    [84] 高秀娥, 梁雪晴, 刘薇, 等. 黑豆花青素精制及降血糖活性研究[J]. 食品研究与开发,2020,41(16):51−56. [GAO X E, LIANG X Q, LIU W, et al. Purification and hypoglycemic activity of anthocyanins from black bean[J]. Food Research and Development,2020,41(16):51−56. doi:  10.12161/j.issn.1005-6521.2020.16.008
    [85] 杨宁. 乳酸菌发酵樱桃汁工艺优化及樱桃果粉的制备[D]. 新乡: 河南科技大学, 2020

    YANG N. Optimization of lactic acid bacteria fermentation process of cherry juice and preparation of cherry fruit powder [D]. Xinxiang: Henan University of Science and Technology, 2020.
    [86] FEIER, CHENG, LIN, et al. D-chiro-inositol ameliorates high fat diet-induced hepatic steatosis and insulin resistance via PKCε-PI3K/AKT pathway[J]. Journal of Agricultural & Food Chemistry,2019,6(21):5957−5967.
    [87] 勾秋芬. 酿酒酵母发酵对苦荞中D-手性肌醇含量的影响[D]. 成都: 四川师范大学, 2009

    GOU Q F. Effect of Saccharomyces cerevisiae fermentation on d-chiral inositol content in Tartary buckwheat [D]. Chengdu: Sichuan Normal University, 2009.
    [88] SHIN, SATO, YUUKA, et al. Azuki bean (Vigna angularis) extract stimulates the phosphorylation of AMP-activated protein kinase in HepG2 cells and diabetic rat liver[J]. Journal of the Science of Food and Agriculture,2016,96(7):2312−2318. doi:  10.1002/jsfa.7346
  • 加载中
计量
  • 文章访问数:  140
  • HTML全文浏览量:  44
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-17
  • 网络出版日期:  2022-12-09
  • 刊出日期:  2022-12-15

目录

    /

    返回文章
    返回