Optimization of the Extraction Process of Peristrophe roxburghiana Polysaccharide and Analysis of Its Antioxidant Activity
-
摘要: 为探究红蓝草多糖的最佳提取工艺及其体外抗氧化活性。试验以红蓝草为原料,探究料液比、浸提温度、浸提时间、浸提次数对红蓝草多糖得率的影响,并结合响应面法优化红蓝草多糖提取工艺,通过测定红蓝草多糖对DPPH·、·OH、ABTS+·等自由基的清除能力探究其抗氧化活性。结果表明:在料液比1:31 g/mL、浸提温度85 ℃、浸提时间118 min、提取3次的条件下,红蓝草多糖得率最高,可达11.05%。在一定范围内,红蓝草多糖清除自由基能力与多糖的浓度呈量效关系,红蓝草多糖溶液清除DPPH · 、 · OH和ABTS + ·等自由基的IC50值分别为0.18、0.73、0.64 mg/mL,说明红蓝草粗多糖具有一定的抗氧化活性。通过探究红蓝草多糖提取的最佳工艺及抗氧化活性,为今后红蓝草多糖的进一步开发与应用提供理论基础和参考。Abstract: In order to explore the optimum extraction process of polysaccharide and antioxidant activity in vitro in Peristrophe roxburghiana. In this study, Peristrophe roxburghiana was used as raw material to explore the effects of solid-liquid ratio, extraction temperature, time and frequency on the yield of polysaccharide. The extraction process of polysaccharide in Peristrophe roxburghiana was optimized by response surface methodology and the antioxidant activity of the polysaccharide was investigated by measuring its scavenging ability on DPPH·, ·OH, ABTS+· and other free radicals. The results showed that we could get the most quantity of polysaccharide extracted from Peristrophe roxburghiana, which reaches up to 11.05%, in these conditions: The solid-liquid ratio was 1:31 g/mL, the extraction temperature was 85 ℃, the extraction time was 118 min and the extraction frequency was 3 times. The scavenging ability of the polysaccharide against free radical was quantitatively related to the concentration of polysaccharide within a certain range. The IC50 values of DPPH·, ·OH and ABTS+· radicals scavenged by the polysaccharide solution were 0.18, 0.73 and 0.64 mg/mL, respectively, indicating that the polysaccharide extracted from Peristrophe roxburghiana was with certain antioxidant activity. By exploring the optimal process and antioxidant activity of the polysaccharide extracted from Peristrophe roxburghiana, we provide a theoretical basis and reference for the further development and application of the polysaccharide in the future.
-
表 1 响应面试验设计因素与水平
Table 1. Response surface test design factors and levels
因素 水平 −1 0 1 A 料液比(g/mL) 1:25 1:30 1:35 B 浸提温度(℃) 80 85 90 C 浸提时间(min) 90 120 150 D 浸提次数 2 3 4 表 2 响应面试验设计及结果
Table 2. Response surface test design and results
试验号 A 料液比 B 浸提温度 C 浸提时间 D 浸提次数 得率(%) 1 −1 −1 0 0 8.95 2 1 −1 0 0 9.01 3 −1 1 0 0 7.93 4 1 1 0 0 9.46 5 0 0 −1 −1 9.01 6 0 0 1 −1 7.61 7 0 0 −1 1 8.38 8 0 0 1 1 8.33 9 −1 0 0 −1 7.56 10 1 0 0 −1 9.01 11 −1 0 0 1 8.25 12 1 0 0 1 8.08 13 0 −1 −1 0 9.48 14 0 1 −1 0 8.52 15 0 −1 1 0 8.88 16 0 1 1 0 8.97 17 −1 0 −1 0 8.70 18 1 0 −1 0 8.64 19 −1 0 1 0 7.37 20 1 0 1 0 9.16 21 0 −1 0 −1 9.09 22 0 1 0 −1 8.52 23 0 −1 0 1 9.57 24 0 1 0 1 9.78 25 0 0 0 0 11.02 26 0 0 0 0 11.03 27 0 0 0 0 11.03 28 0 0 0 0 10.54 29 0 0 0 0 10.98 表 3 二次回归模型的方差分析数据显著性检验
Table 3. The ANOVA data significance test for the secondary regression model
方差来源 平方和 自由度 均方和 F值 P值 显著性 模型 29.26 14 2.09 21.07 <0.0001 ** A 1.76 1 1.76 17.78 0.0009 ** B 0.2700 1 0.2700 2.72 0.1212 C 0.4840 1 0.4840 4.88 0.0443 * D 0.2107 1 0.2107 2.12 0.1671 AB 0.5402 1 0.5402 5.45 0.0350 * AC 0.8556 1 0.8556 8.63 0.0108 * AD 0.6561 1 0.6561 6.62 0.0222 * BC 0.2756 1 0.2756 2.78 0.1177 BD 0.1521 1 0.1521 1.53 0.2359 CD 0.4556 1 0.4556 4.59 0.0501 A2 12.22 1 12.22 123.20 <0.0001 ** B2 2.47 1 2.47 24.94 0.0002 ** C2 10.24 1 10.24 103.21 <0.0001 ** D2 9.95 1 9.95 100.36 <0.0001 ** 残差 1.39 14 0.0992 失拟项 1.21 10 0.1206 2.65 0.1803 不显著 纯误差 0.1822 4 0.0455 总和 30.65 28 R2=0.9547 R2adj=0.9094 注:*表示差异显著(P<0.05);**表示差异极显著(P<0.01)。 -
[1] 袁芳, 李丽, 李想, 等. 基于模糊数学感官评价法优化紫色糯米饭的工艺研究[J]. 粮食与油脂,2021,34(6):112−117, 123. [YUAN F, LI L, LI X, et al. Optimization of purple glutinous rice processing technology based on fuzzy mathematics sensory evaluation method[J]. Cereals & Oils,2021,34(6):112−117, 123. doi: 10.3969/j.issn.1008-9578.2021.06.027 [2] 祁百巍, 陈炼红. 响应面优化广西红蓝草红色素提取工艺及其特性研究[J]. 中国调味品,2021,46(5):151−160. [QI B W, CHEN L H. Study on the optimization of extraction process and characteristics of red pigment from eccoilopus cotulifer by response surface method[J]. China Condiment,2021,46(5):151−160. doi: 10.3969/j.issn.1000-9973.2021.05.032 [3] 韦正, 赖红芳, 彭丽娟, 等. 响应面优化红蓝草总酚酸的提取及其抗氧化活性研究[J]. 食品研究与开发,2020,41(18):84−90. [WEI Z, LAI H F, PENG L J, et al. Optimization of extraction process of total phenolic acids from the Peristrophe baphica (spreng.) bremek by response surface methodology and its antioxidation response surface methodology and its antioxidation[J]. Food Research and Development,2020,41(18):84−90. doi: 10.12161/j.issn.1005-6521.2020.18.015 [4] 韦正, 黄秀香, 赖红芳. 红蓝草的化学成分、药理活性及开发应用[J]. 天然产物研究与开发,2016,28(12):2035−2043. [WEI Z, HUANG X X, LAI H F. Review on chemical composition, pharmacological activity and application of Peristrophe baphica (spreng) bremek[J]. Natural Product Research and Development,2016,28(12):2035−2043. doi: 10.16333/j.1001-6880.2016.12.032 [5] CHEN W B, WANG W P, ZHAN H S, et al. Two novel polysaccharides from the torus of Saussurea laniceps protect against AAPH-induced oxidative damage in human erythrocytes[J]. Carbohydrate Polymers,2018,15:446−455. [6] 陈淑芳, 黎庆涛, 黄凯, 等. 篱栏网多糖的提取工艺优化及抗氧化活性[J]. 应用化工,2021,50(11):3031−3035. [CHEN S F, LI Q T, HUANG K, et al. Optimization of extraction process of polysaccharide from Merremia hederacea and its antioxidant activity[J]. Applied Chemical Industry,2021,50(11):3031−3035. doi: 10.3969/j.issn.1671-3206.2021.11.025 [7] ZENG K F, CHEN W B, PING H, et al. Structural characterization of polysaccharides with potential antioxidant and immunomodulatory activities from Chinese water chestnut peels[J]. Carbohydrate Polymers,2020,87:614−619. [8] 陈永, 吴晖. 多糖的结构表征与免疫活性研究实验技术[M]. 哈尔滨: 黑龙江大学出版社, 2022: 18-27CHEN Y, WU H. Experimental techniques for structural characterization and immune activity of polysaccharides[M]. Harbin: Heilongjiang University Press, 2022: 18-27. [9] 陈文博. 西藏绵头雪莲花多糖的结构鉴定及生物活性的研究[D]. 广州: 华南理工大学, 2020CHEN W B. Structural elucidation and the biological activity of polysaccharides from Saussurea laniceps[D]. Guangzhou: South China University of Technology, 2020. [10] ZHANG H, ZOU P, ZHAO H, et al. Isolation, purification, structure and antioxidant activity of polysaccharide from pinecones of Pinus koraiensis[J]. Carbohydrate Polymers,2021,251:117078. doi: 10.1016/j.carbpol.2020.117078 [11] 郭新颖, 李晨阳, 王梦晗, 等. 苜蓿总黄酮纯化及纯化前后对DPPH自由基清除能力比较[J]. 高师理科学刊,2021,41(3):48−51. [GUO X Y, LI C Y, WANG M H, et al. Purification of total flavonoids from alfalfa and comparison of DPPH radical scavenging ability before and after purification[J]. Journal of Science of Teachers' College and University,2021,41(3):48−51. doi: 10.3969/j.issn.1007-9831.2021.03.010 [12] 刘雅娜, 包晓玮, 王娟, 等. 沙棘多糖抗运动性疲劳及抗氧化作用的研究[J]. 食品工业科技,2021,42(10):321−326. [LIU Y N, BAO X W, WANG J, et al. Anti exercise fatigue and antioxidant of polysaccharide from Hippophae rhamnoides[J]. Science and Technology of Food Industry,2021,42(10):321−326. [13] BA G, ARIJI T. Dft based computational methodology of IC50 prediction[J]. Current Computer-aided Drug Design,2021,17(2):244−253. doi: 10.2174/1573409916666200219115112 [14] 王萍, 王宇鹤. 枇杷核不同极性萃取物总黄酮、总多酚含量与其抗氧化活性的相关性[J]. 化学试剂,2020,42(9):1067−1072. [WANG P, WANG Y H. Correlation between the content total flavonoids and total polyphenols in loquat nuclear with different extracts and their antioxidant activities[J]. Chemical Reagents,2020,42(9):1067−1072. doi: 10.13822/j.cnki.hxsj.2020007520 [15] MI Y K, CATHERINE W R, LEE S C. In vitro antioxidant and antimutagenic activities of oak mushroom (Lentinus edodes) and king oyster mushroom (Pleurotus eryngii) by products[J]. Food Science Biotechnology,2012,21(1):167−173. doi: 10.1007/s10068-012-0021-5 [16] 张倩. 黄茶多糖的分离纯化及其抗氧化活性研究[J]. 食品研究与开发,2021,42(14):49−55. [ZHANG Q. Extraction purification and antioxidative activity of polysaccharides from yellow tea[J]. Food Research and Development,2021,42(14):49−55. doi: 10.12161/j.issn.1005-6521.2021.14.009 [17] 张猛猛. 玛咖根部多糖的结构鉴定及免疫调节活性研究[D]. 广州: 华南理工大学, 2019ZHANG M M. Structural identification and the immunological activity of polysaccharides from maca root[D]. Guangzhou: South China University of Technology, 2019. [18] 朱和权, 冯进, 李春阳, 等. 响应面法优化白首乌多糖超声辅助提取工艺及其结构表征[J]. 食品工业科技,2021,42(10):153−159. [ZHU H Q, FENG J, LI C Y, et al. Optimization of ultrasonic-assisted extraction polysaccharide from Cynanchum auriculatum royle ex wight by response surface methodology and its characterization[J]. Science and Technology of Food Industry,2021,42(10):153−159. doi: 10.13386/j.issn1002-0306.2020070135 [19] 宁乐, 郑楠, 蔡建岩, 等. 蒲公英多糖的提取及其饮料的研制[J]. 粮食与油脂,2021,42(10):153−159. [NING L, ZHENG N, CAI J Y, et al. Study on extraction of polysaccharide from dandelion and development of its beverage[J]. Cereals & Oils,2021,42(10):153−159. doi: 10.3969/j.issn.1008-9578.2021.10.037 [20] 李慧, 熊忠飞, 李喜宏. 响应面法优化芦笋多糖提取工艺及抗氧化性研究[J]. 中国调味品,2020,45(5):1−12. [LI H, XIONG Z F, LI X H. Research on optimization of extraction process and antioxidant activity of Asparagus polysaccharides by response surface methodology[J]. China Condiment,2020,45(5):1−12. doi: 10.3969/j.issn.1000-9973.2020.05.001 [21] SHANG X L, LIU C Y, DONG H Y, et al. Extraction, purification, structural characterization, and antioxidant activity of polysaccharides from wheat bran[J]. Journal of Molecular Structure,2021,1233:130096. doi: 10.1016/j.molstruc.2021.130096 [22] ZHANG X, ZHANG X, GU S, et al. Structure analysis and antioxidant activity of polysaccharide-iron (III) from Cordyceps militaris mycelia[J]. International Journal of Biological Macromolecules,2021,178:170−179. doi: 10.1016/j.ijbiomac.2021.02.163 [23] YAN S, PAN C, YANG X, et al. Degradation of Codium cylindricum polysaccharides by H2O2-VC-ultrasonic and H2O2-Fe2+-ultrasonic treatment: Structural characterization and antioxidant activity[J]. International Journal of Biological Macromolecules,2021,182:129−135. doi: 10.1016/j.ijbiomac.2021.03.193 [24] TENG C, QIN P, SHI Z, et al. Structural characterization and antioxidant activity of alkali-extracted polysaccharides from quinoa[J]. Food Hydrocolloids,2021,113:106392. doi: 10.1016/j.foodhyd.2020.106392 [25] ZHOU H, WANG S, WANG Z, et al. Prepparation, characterization and antioxidant activity of polysaccharides selenides from Qingzhuan Dark tea[J]. Food Science and Technology,2022:42. [26] ARAB K, GHANBARZADEH B, AYASEH A, et al. Extraction, purification, physicochemical properties and antioxidant activity of a new polysaccharide from Ocimum album L. seed[J]. International Journal of Biological Macromolecules,2021,180:643−653. doi: 10.1016/j.ijbiomac.2021.03.088 [27] LIU Y, DUAN X, ZHANG M, et al. Extraction, structure characterization, carboxymethylation and antioxidant activity of acidic polysaccharides from Craterellus cornucopioides[J]. Industrial Crops and Products,2021,159:113079. doi: 10.1016/j.indcrop.2020.113079 [28] 孙宁云, 姚欣, 张英慧, 等. 鸡蛋花多糖提取工艺优化及生物活性研究[J]. 食品工业科技,2022,43(3):8. [SUN N Y, YAO X, ZHANG Y H, et al. Optimization of extraction process of polysaccharides from Plumeria rubra L. cv. Acutifolia and evaluation of biological activity[J]. Science and Technology of Food Industry,2022,43(3):8. [29] WANG K, GUO J, CHENG J, et al. Ultrasound-assisted extraction of polysaccharide from spent Lentinus edodes substrate: Process optimization, precipitation, structural characterization and antioxidant activity[J]. International Journal of Biological Macromolecules,2021,191:1038−1045. doi: 10.1016/j.ijbiomac.2021.09.174 [30] YU HAO D, CHUN C, QIANG H, et al. Study on a novel spherical polysaccharide from Fructus mori with good antioxidant activity[J]. Carbohydrate Polymers,2021,256:117516. doi: 10.1016/j.carbpol.2020.117516 -