Research and Application Progress of the Active Metabolites of Probiotics
-
摘要: 益生菌因对机体具有多种益生功效而逐渐成为研究热点。益生菌的多种益生特性与其代谢产生的活性产物密切相关。益生菌的活性代谢产物主要有胞外多糖、细菌素、维生素、有机酸和短链脂肪酸等,它们在抗炎症、抗氧化、调节免疫、预防或治疗代谢性疾病等方面发挥积极作用,很多已被用于医疗、食品防腐、畜牧养殖等多个行业中。尽管益生菌活性代谢产物有较好的益生功能和应用潜力,但在提高产量、降低生产纯化成本、探明作用机制等方面仍需进行深入探索。本文主要对益生菌活性代谢产物的种类、功能及其应用等方面进行综述,为其在食品、医疗、保健、畜牧等领域的研究应用提供更多参考。Abstract: Probiotics is an intriguing research focus due to its multiple beneficial effects on host, which is closely associated with its bioactive metabolites, including extracellular polysaccharides, bacteriocins, vitamins, organic acids and short-chain fatty acids. They are widely used in medical treatment, food antiseptic, animal husbandry and other industrial areas for their broad beneficial effects, such as anti-inflammation, anti-oxidation, immune regulation and preventive and therapeutic properties against metabolic diseases. Even though the functionalities and application potential of probiotics are extensively studied, further efforts are needed to focus on the increase of their productivity, reducing the cost of production and purification and exploring the cellular and molecular mechanisms. Here we review the category, functions and applications of probiotic metabolites, and would provide more insights for their utilizations in food, medicine, health care and animal husbandry.
-
Key words:
- probiotics /
- metabolites /
- extracellular polysaccharides /
- bacteriocins /
- short chain fatty acids /
- organic acids /
- function
-
表 1 益生菌产胞外多糖的菌株及功能
Table 1. Strains and functions of probiotics producing extracellular polysaccharides
功能 菌株 参考文献 抗氧化活性 Lactobacillus sp. Ca6 [11−13] Lactobacillus plantarum HY 抗肿瘤作用 Lactobacillus kefiri MSR101 [14−16] Lactobacillus delbureckii Lactobacillus plantarum 70810 免疫调节作用 Lactobacillus rhamnosus KF5 [17−19] Lactobacillus helveticus LZ-R-5 Lactobacillus planetarium JLAU103 抗炎作用 Lactobacillus planetarium [20−24] Lactobacillus reuteri Mh-001 Lactobacillus casei WXD030 Lactobacillus paraplantarum BGCG11 Bacillus licheniformis Leuconostoc mesenteroides 抗生物膜作用 Lactobacillus fermentum LB-69 [25−27] Lactobacillus fermentum S1 Lactobacillus plantarum(EPLB) -
[1] HOTEL A C P, CORDOBA A. Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria[J]. Prevention,2001,5(1):1−10. [2] DAHIYA D, NIGAM P S. The gut microbiota influenced by the intake of probiotics and functional foods with prebiotics can sustain wellness and alleviate certain ailments like gut-inflammation and colon-cancer[J]. Microorganisms,2022,10(3):665. doi: 10.3390/microorganisms10030665 [3] CHEN Y T, HSIEH P S, Ho H H, et al. Antibacterial activity of viable and heat-killed probiotic strains against oral pathogens[J]. Letters in Applied Microbiology,2020,70(4):310−317. doi: 10.1111/lam.13275 [4] ASHAOLU T J. Immune boosting functional foods and their mechanisms: A critical evaluation of probiotics and prebiotics[J]. Biomedicine & Pharmacotherapy,2020,130:110625. [5] 王俊永, 姚蒙蒙, 王晓冰等. 益生菌胞外多糖的生物活性研究进展[J]. 饲料工业,2020,41(22):9−11. [WANG Junyong, YAO Mengmeng, WANG Xiaobing, et al. Research progress on bioactivity of extracellular polysaccharides from probiotics[J]. Feed Industry,2020,41(22):9−11. [6] DOMINGOS-LOPES MF, NAGY A, STANTON C, et al. Immunomodulatory activity of exopolysaccharide producing Leuconostoc citreum strain isolated from Pico cheese[J]. Journal of Functional Foods,2017,33:235−243. doi: 10.1016/j.jff.2017.03.054 [7] CASANOVA, MARTA R. Colorectal cancer cells increase the production of short chain fatty acids by Propionibacterium freudenreichii impacting on cancer cells survival[J]. Frontiers in Nutrition,2018,5:44. doi: 10.3389/fnut.2018.00044 [8] ANGELIN J, KAVITHA M. Exopolysaccharides from probiotic bacteria and their health potential[J]. International Journal of Biological Macromolecules,2020,162:853−865. doi: 10.1016/j.ijbiomac.2020.06.190 [9] 赵丹, 曹慧莹, 孙梦等. 假肠膜明串珠菌HDL-3胞外多糖的分离纯化及结构性质分析[J]. 食品工业科技,2022,7(16):1−10. [ZHAO Dan, CAO Huiying, SUN Meng, et al. Isolation, purification and structural property analysis of exopolysaccharide from Leuconostoc pseudoenterica hdl-3[J]. Food Industry Technology,2022,7(16):1−10. [10] ADESULU-DAHUNSI A T, JEYARAM K, SANNI A I, et al. Production of exopolysaccharide by strains of Lactobacillus plantarum YO175 and OF101 isolated from traditional fermented cereal beverage[J]. PeerJ,2018,6:e5326. doi: 10.7717/peerj.5326 [11] BENATTOUCHE Z, BOUHADI D, RAHO G B. Antioxidant and antibacterial activities of exopolysaccharides produced by lactic acid bacteria isolated from yogurt[J]. International Journal of Food Studies,2018,7:2. [12] IMEN T, NAOUREZ K, SIRINE B S, et al. Evaluation of dermal wound healing activity and in vitro antibacterial and antioxidant activities of a new exopolysaccharide produced by Lactobacillus sp. Ca6[J]. International Journal of Biological Macromolecules,2017,103:194−201. doi: 10.1016/j.ijbiomac.2017.05.017 [13] LIU T, ZHOU K, YIN S, et al. Purification and characterization of an exopolysaccharide produced by Lactobacillus plantarum HY isolated from home-made Sichuan Pickle[J]. International Journal of Biological Macromolecules,2019,134:516−526. doi: 10.1016/j.ijbiomac.2019.05.010 [14] MUHAMMAD S R R, HAFIZA M M, HUIYAN F, et al. Characterization and anti-tumor activity of exopolysaccharide produced by Lactobacillus kefiri isolated from Chinese kefir grains[J]. Journal of Functional Foods,2019,63:103588. doi: 10.1016/j.jff.2019.103588 [15] BUKOLA A-T, RACHEAL F. In vitro antioxidant, antibacterial, in vivo immunomodulatory, antitumor and hematological potential of exopolysaccharide produced by wild type and mutant Lactobacillus delbureckii subsp. bulgaricus[J]. Heliyon,2020,6(2):e03268. doi: 10.1016/j.heliyon.2020.e03268 [16] WANG K, LI W, RUI X, et al. Characterization of a novel exopolysaccharide with antitumor activity from Lactobacillus plantarum 70810[J]. International Journal of Biological Macromolecules,2014,63:133−139. doi: 10.1016/j.ijbiomac.2013.10.036 [17] SHAO L, WU Z J, ZHANG H, et al. Partial characterization and immunostimulatory activity of exopolysaccharides from Lactobacillus rhamnosus KF5[J]. Carbohydrate Polymers,2014,107:51−56. doi: 10.1016/j.carbpol.2014.02.037 [18] YOU X, LI Z, MA K, et al. Structural characterization and immunomodulatory activity of an exopolysaccharide produced by Lactobacillus helveticus LZ-R-5[J]. Carbohydrate Polymers,2019,235:115977. [19] WANG J, FANG X B, W T, et al. In vitro immunomodulatory effects of acidic exopolysaccharide produced by Lactobacillus planetarium JLAU103 on RAW264.7 macrophages[J]. International journal of biological macromolecules,2020,156:1308−1315. doi: 10.1016/j.ijbiomac.2019.11.169 [20] KIYOUNG K, GYEONGHWEON L, HIEN D T, et al. Exopolysaccharide from Lactobacillus plantarum LRCC5310 offers protection against rotavirus-induced diarrhea and regulates inflammatory response[J]. Journal of Dairy Science,2018,101(7):5702−5712. doi: 10.3168/jds.2017-14151 [21] YO-CHIA C, YU-JEN W, CHUN-YI H. Monosaccharide composition influence and immunomodulatory effects of probiotic exopolysaccharides[J]. International Journal of Biological Macromolecules,2019,133:575−582. doi: 10.1016/j.ijbiomac.2019.04.109 [22] XIU L, ZHANG H C, HU Z P, et al. Immunostimulatory activity of exopolysaccharides from probiotic Lactobacillus casei WXD030 strain as a novel adjuvant in vitro and in vivo[J]. Food and Agricultural Immunology,2018,29(1):1086−1105. doi: 10.1080/09540105.2018.1513994 [23] DINIC M, PECIKOZA U, DJOKIC J, et al. Exopolysaccharide produced by probiotic strain Lactobacillus paraplantarum BGCG11 reduces inflammatory hyperalgesia in rats[J]. Frontiers in Pharmacology,2018,9:1. doi: 10.3389/fphar.2018.00001 [24] SUN-YOUNG K, YAELIM L, EUI-CHEON J, et al. Immunomodulatory effects of exopolysaccharides produced by Bacillus licheniformis and Leuconostoc mesenteroides isolated from Korean kimchi[J]. Journal of Functional Foods,2019,54:211−219. doi: 10.1016/j.jff.2019.01.003 [25] SARIKAYA H, ASLIM B, YUKSEKDAG Z. Assessment of anti-biofilm activity and bifidogenic growth stimulator (BGS) effect of lyophilized exopolysaccharides (l-EPSs) from Lactobacilli strains[J]. International Journal of Food Properties,2017,20(2):362−371. doi: 10.1080/10942912.2016.1160923 [26] WANG K, NIU M M, SONG D W, et al. Preparation, partial characterization and biological activity of exopolysaccharides produced from Lactobacillus fermentum S1[J]. Journal of Bioscience and Bioengineering,2019,129(2):206−214. [27] ABDELKARIM M, NADIA L, IBTISSEM C, et al. Extracellular polysaccharide derived from potential probiotic strain with antioxidant and antibacterial activities as a prebiotic agent to control pathogenic bacterial biofilm formation[J]. Microbial Pathogenesis,2017,109:214−220. doi: 10.1016/j.micpath.2017.05.046 [28] 胡姝敏, 刘宝华, 孙欣瑶等. 植物乳杆菌和干酪乳杆菌的抗氧化活性研究[J]. 中国乳品工业,2018,46(5):4−8. [HU Shumin, LIU Baohua, SUN Xinyao, et al. Study on antioxidant activity of Lactobacillus plantarum and Lactobacillus casei[J]. Chinese Dairy Industry,2018,46(5):4−8. doi: 10.3969/j.issn.1001-2230.2018.05.001 [29] HUANG M, WANG Y, AHMAD M, et al. Fabrication of pickering high internal phase emulsions stabilized by pecan protein/xanthan gum for enhanced stability and bioaccessibility of quercetin[J]. Food Chemistry,2021,357:129732. doi: 10.1016/j.foodchem.2021.129732 [30] CUI Y L, LUO L L, WANG X, et al. Mining, heterologous expression, purification, antibactericidal mechanism, and application of bacteriocins: A review[J]. Comprehensive Reviews in Food Science and Food Safety,2021,20(1):863−899. doi: 10.1111/1541-4337.12658 [31] ALWENDAWI, SHADAN A. In vitro assessment the potential antioxidant and antitumor activities of Bifidobacterium derived bacteriocins[J]. International Journal of Drug Delivery Technology,2019,9(2):207−216. [32] KIM, SAM W. Potential of cell-free supernatant from Lactobacillus plantarum Nibr97, including novel bacteriocins, as a natural alternative to chemical disinfectants[J]. Pharmaceuticals,2020,13(10):266. doi: 10.3390/ph13100266 [33] GHORANI, MOHAMMADREZA. Antiviral effects of probiotic metabolites[J]. Iranian Journal of Medical Microbiology,2022,16(2):83−97. doi: 10.30699/ijmm.16.2.83 [34] 陈坚. 乳酸菌科学与技术[M]. 北京: 中国科学技术出版社, 2018, 5.CHEN J. Science and technology of lactic acid bacteria [M]. Beijing: China Science and Technology Press, 2018, 5. [35] WANG, YAO. Purification and characterization of plantaricin LPL-1, a novel class IIa bacteriocin produced by Lactobacillus plantarum LPL-1 isolated from fermented fish[J]. Frontiers in Microbiology,2018,9:2276. doi: 10.3389/fmicb.2018.02276 [36] DU, RENPENG, WENXIANG P, et al. Purification, characterization and mechanism of action of enterocin HDX-2, a novel class IIa bacteriocin produced by Enterococcus faecium HDX-2[J]. LWT,2022,153:112451. doi: 10.1016/j.lwt.2021.112451 [37] ANGELESCU, IULIA-ROXANA. Isolation, characterization, and applicability of helveticin 34.9, a class III bacteriocin produced by Lactobacillus helveticus 34.9[J]. World Journal of Microbiology and Biotechnology, 2021, 8(23): 1−23. [38] HILAL S A, BUKET K. Antimicrobial activity of a bacteriocin produced by Enterococcus faecalis KT11 against some pathogens and antibiotic-resistant bacteria[J]. Food Science of Animal Resources,2018,38(5):1064. doi: 10.5851/kosfa.2018.e40 [39] SILVA C C G, SILVA S P M, RIBEIRO S C. Application of bacteriocins and protective cultures in dairy food preservation[J]. Frontiers in Microbiology,2018,9:594. doi: 10.3389/fmicb.2018.00594 [40] LUIS A. I, NANCY E-H, DARINE M, et al. Invited review: Advances in nisin use for preservation of dairy products[J]. Journal of Dairy Science,2020,103(3):2041−2052. doi: 10.3168/jds.2019-17498 [41] BARBOSA, ANA A T. Nisin resistance in Gram-positive bacteria and approaches to circumvent resistance for successful therapeutic use[J]. Critical Reviews in Microbiology,2021,47(3):376−385. doi: 10.1080/1040841X.2021.1893264 [42] VANDANA B, PARMJIT S. P, MANAB B. B. Trends in utilization of agro-industrial byproducts for production of bacteriocins and their biopreservative applications[J]. Critical Reviews in Biotechnology,2016,36(2):204−14. doi: 10.3109/07388551.2014.947916 [43] SHIVA A, MARZIEH G, HAMIDEH M H. The apoptotic impact of nisin as a potent bacteriocin on the colon cancer cells[J]. Microbial Pathogenesis,2017,111:193−197. doi: 10.1016/j.micpath.2017.08.037 [44] GASPAR C, DONDERS G G, PALMEIRA R, et al. Bacteriocin production of the probiotic Lactobacillus acidophilus KS400[J]. AMB Express,2018,8(1):1−8. doi: 10.1186/s13568-017-0531-x [45] SVETOSLAV D T, MONICA W, ELISABETTA T, et al. Characterisation of an antiviral pediocin-like bacteriocin produced by Enterococcus faecium[J]. Food Microbiology,2010,27(7):869−879. doi: 10.1016/j.fm.2010.05.001 [46] ZIMINA M, BABICH O, PROSEKOV A, et al. Overview of global trends in classification, methods of preparation and application of bacteriocins[J]. Antibiotics (Basel, Switzerland),2020,9(9):553. [47] HU J, MA L B, NIE Y F, et al. A microbiota-derived bacteriocin targets the host to confer diarrhea resistance in early-weaned piglets[J]. Cell Press,2018,24(6):817−832. [48] CEOTTO‐VIGODER H, MARQUES S L S, SANTOS I N S, et al. Nisin and lysostaphin activity against preformed biofilm of Staphylococcus aureus involved in bovine mastitis[J]. Journal of Applied Microbiology, 2016, 121(1):101-114. [49] KITCHING M, MATHUR H, FLYNN J, et al. A live bio-therapeutic for mastitis, containing Lactococcus lactis DPC3147 with comparable efficacy to antibiotic treatment[J]. Frontiers in Microbiology,2019:2220. [50] ÖZCELIK, SEZEN, ESMERAY K, et al. Formation of lactic, acetic, succinic, propionic, formic and butyric acid by lactic acid bacteria[J]. LWT,2016(73):536−542. [51] 鄢凌, 傅宏鑫, 王旭东等. 生物基有机酸提取分离技术研究进展[J]. 过程工程学报,2018,18(1):1−10. [YAN Ling, FU Hongxin, WANG Xudong, et al. Research progress on extraction and separation technology of bio based organic acids[J]. Journal of Process Engineering,2018,18(1):1−10. doi: 10.12034/j.issn.1009-606X.217166 [52] CHEN R, CHEN W, CHEN H, et al. Comparative evaluation of the antioxidant capacities, organic acids, and volatiles of papaya juices fermented by Lactobacillus acidophilus and Lactobacillus plantarum[J]. Journal of Food Quality,2018,1(3). [53] THOMAS, SMITHA, LIZZY M, et al. Isolation and molecular identification of phosphate solubilizing bacteria, Bacillus licheniformis UBPSB-07 capable of enhancing seed germination in Vigna radiata L[J]. Phytomorphology,2018,68(1/2):13−18. [54] 李书鸿, 柳陈坚, 任贝贝, 等. 不同植物乳杆菌发酵液抑菌活性及其主要有机酸组成比较[J]. 食品科学,2019,40(5):8−16. [LI S H, LIU C J, REN B B, et al. Comparison of antibacterial activity and major organic acids infermentation broths of different Lactobacillus plantarum strains (English)[J]. Food Science,2019,40(5):8−16. doi: 10.7506/spkx1002-6630-20171028-338 [55] 李洁, 李晓然, 宫路路等. 乳酸片球菌发酵液中主要有机酸及其抑菌性研究[J]. 食品与发酵工业,2014,40(5):124−129. [LI Jie, LI Xiaoran, GONG Lulu, et al. Study on the main organic acids in the fermentation broth of Pediococcus lactis and their antimicrobial activity[J]. Food and Fermentation Industry,2014,40(5):124−129. [56] 黄存辉, 朴泓洁, 金清等. 肠膜明串珠菌发酵对四川泡菜中有机酸生成的影响[J]. 食品科技,2018,43(6):23−28. [HUANG Cunhui, PU Hongjie, JIN Qing, et al. Effect of Leuconostoc mesenteroides fermentation on the production of organic acids in Sichuan pickles[J]. Food Technology,2018,43(6):23−28. [57] DITTOE D K, RICKE S C, KIESS A S. Organic acids and potential for modifying the avian gastrointestinal tract and reducing pathogens and disease[J]. Frontiers in Veterinary Science,2018,5:216. doi: 10.3389/fvets.2018.00216 [58] KULEY E, ÖZYURT G, ÖZOGUL I, et al. The role of selected lactic acid bacteria on organic acid accumulation during wet and spray-dried fish-based silages. Contributions to the winning combination of microbial food safety and environmental sustainability[J]. Microorganisms,2020,8(2):172. doi: 10.3390/microorganisms8020172 [59] 李万军, 田玉民, 张志刚. 益生菌及有机酸复合制剂对大骨鸡生产性能、免疫及肉品质的影响[J]. 饲料研究,2019,42(7):43−46. [LI Wanjun, TIAN Yumin, ZHANG Zhigang. Effects of probiotics and organic acid compound preparation on performance, immunity and meat quality of Dagu chicken[J]. Feed Research,2019,42(7):43−46. [60] 奚雨萌, 吴凡, 杨榛, 等. 益生菌及有机酸复合制剂对青脚麻鸡生长性能、屠宰性能、肉品质及消化代谢的影响[J]. 中国家禽, 2014, 36(24): 30-37.XI Yumeng, WU Fan, YANG Zhen, et al. Effects of dietary compound preparation with probiotics and organic acids on growth performance, slaughter performance, meat quality and digestive metabolism in Cyan-shank partridge chicken[J]. China Poultry, 2014, 36(24): 30-37. [61] 郑文才, 徐静, 杨革玲. 益生菌和有机酸复合制剂对断奶仔猪生长性能、肠道形态及免疫指标的影响[J]. 广东饲料,2016,25(12):25−28. [ZHENG Wencai, XU Jing, YANG Geling. Effects of probiotics and organic acids on growth performance, intestinal morphology and immune indexes of weaned piglets[J]. Guangdong Feed,2016,25(12):25−28. [62] JIANG Fugui, CHENG Haijian, LIU Dong, et al. Treatment of whole-plant corn silage with lactic acid bacteria and organic acid enhances quality by elevating acid content, reducing pH, and inhibiting undesirable microorganisms[J]. Frontiers in Microbiology, 2020, 11: 3104. [63] RODJAN P. Effect of organic acids or probiotics alone or in combination on growth performance, nutrient digestibility, enzyme activities, intestinal morphology and gut microflora in broiler chickens[J]. Journal of Animal Physiology and Animal Nutrition,2018,102(2):e931−e940. doi: 10.1111/jpn.12858 [64] KRISTINA S. F, NICOLIEN C. D. C, BART J. F. K, et al. The intestinal microbiota, energy balance, and malnutrition: emphasis on the role of short-chain fatty acids[J]. Expert Review of Endocrinology & Metabolism,2017,12(3):215−226. [65] MARKOWIAK-KOPEC P, ŚLIZEWSKA K. The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome[J]. Nutrients,2020,12(4):1107. doi: 10.3390/nu12041107 [66] BHAWNA C, AFAF K-E. Bioactive compounds produced by probiotics in food products[J]. Current Opinion in Food Science, 2020, 32(1): 76–82. [67] LEBLANC J G, CHAIN F, MARTIN R, et al. Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic Bacteria[J]. Microbial Cell Factories,2017,16(1):1−10. doi: 10.1186/s12934-016-0616-2 [68] SIVIERI K, MORALES M L, ADORNOdorno M A, et al. Lactobacillus acidophilus CRL 1014 improved ''gut health'' in the SHIME reactor[J]. BMC Gastroenterol,2013,13(1):1−9. [69] PARADA V D, FUENTE M K, LANDSKRON G, et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases[J]. Frontiers in Immunology,2019:277. [70] OHARA, TADASHI, MORI T. Antiproliferative effects of short-chain fatty acids on human colorectal cancer cells via gene expression inhibition[J]. Anticancer Research,2019,39(9):4659−4666. doi: 10.21873/anticanres.13647 [71] CHENG Y, LIU J, LING Z. Short-chain fatty acids-producing probiotics: A novel source of psychobiotics[J]. Critical Reviews in Food Science and Nutrition,2021:1−31. [72] DAI-HUNG N, THANH S V. An updated review on pharmaceutical properties of gamma-aminobutyric acid[J]. Molecules,2019,24(15):2678. doi: 10.3390/molecules24152678 [73] DE V, FILIPEI. Microbiota- produced succinate improves glucose homeostasis via intestinal: Gluconeogenesis[J]. Cell Metab,2016,24(1):151−157. doi: 10.1016/j.cmet.2016.06.013 [74] FELIZARDO R J F, WATANABE I K M, DARDI P, et al. The interplay among gut microbiota, hypertension and kidney diseases: The role of short-chain fatty acids[J]. Pharmacological research,2019,141:366−377. doi: 10.1016/j.phrs.2019.01.019 [75] 常若毅, 吕嘉枥, 余芳. 乳酸菌发酵产维生素B1和B6的研究[J]. 中国调味品,2018,43(2):4−7. [CHANG Ruoyi, LÜ Jiali, YU Fang. Study on the production of vitamin B1 and B6 by lactic acid bacteria[J]. Chinese Condiments,2018,43(2):4−7. doi: 10.3969/j.issn.1000-9973.2018.02.002 [76] SUBROTA H, MAULIK P, BIRENDRA K M, et al. Short-chain fatty acid and vitamin production potentials of Lactobacillus isolated from fermented foods of Khasi Tribes, Meghalaya, India[J]. Annals of Microbiology,2019,69(11):1191−1199. doi: 10.1007/s13213-019-01500-8 [77] WALHE R A, DIWANAY S S, PATOLE M S, et al. Cholesterol reduction and vitamin B12 production study on Enterococcus faecium and Lactobacillus pentosus isolated from yoghurt [78] LI P, GU Q, YANG L, et al. Characterization of extracellular vitamin B12 producing Lactobacillus plantarum strains and assessment of the probiotic potentials[J]. Food Chemistry, 2017, 234: 494-501. [79] BHUSHAN B, TOMAR S K, CHAUHAN A. Techno-functional differentiation of two vitamin B12 producing Lactobacillus plantarum strains: An elucidation for diverse future use[J]. Applied Microbiology and Biotechnology,2017,101(2):697−709. [80] MOHAMMED Y, LEE B, KANG Z, et al. Capability of Lactobacillus reuteri to produce an active form of vitamin B12 under optimized fermentation conditions[J]. J Acad Indust Res,2014,2:617−21. [81] DU R, SONG G, ZHAO D, et al. Lactobacillus casei starter culture improves vitamin content, increases acidity and decreases nitrite concentration during sauerkraut fermentation[J]. International Journal of Food Science & Technology,2018,53(8):1925−1931. [82] CHUGH B, KAMAL-ELDIN A. Bioactive compounds produced by probiotics in food products[J]. Current Opinion in Food Science, 2020, 32: 76-82. [83] KEPERT I, FONSECA J, MVLLER C, et al. D-tryptophan from probiotic bacteria influences the gut microbiome and allergic airway disease[J]. Journal of Allergy and Clinical Immunology,2017,139(5):1525−1535. -