• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020 食品青年科学家峰会

肠道菌群成为帕金森病治疗的新靶点

于洁 李琪 赵飞燕

于洁,李琪,赵飞燕. 肠道菌群成为帕金森病治疗的新靶点[J]. 食品工业科技,2022,43(21):1−8. doi:  10.13386/j.issn1002-0306.2022050347
引用本文: 于洁,李琪,赵飞燕. 肠道菌群成为帕金森病治疗的新靶点[J]. 食品工业科技,2022,43(21):1−8. doi:  10.13386/j.issn1002-0306.2022050347
YU Jie, LI Qi, ZHAO Feiyan. Intestinal Flora: A New Target for the Treatment of Parkinson's Disease[J]. Science and Technology of Food Industry, 2022, 43(21): 1−8. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022050347
Citation: YU Jie, LI Qi, ZHAO Feiyan. Intestinal Flora: A New Target for the Treatment of Parkinson's Disease[J]. Science and Technology of Food Industry, 2022, 43(21): 1−8. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022050347

肠道菌群成为帕金森病治疗的新靶点

doi: 10.13386/j.issn1002-0306.2022050347
基金项目: 国家自然基金面上项目(No.31972054);内蒙古自治区高等学校青年科技英才支持计划(NJYT22036)。
详细信息
    作者简介:

    于洁(1983−),女,博士,讲师,研究方向:乳酸菌资源开发与利用,E-mail:yujie8301@sina.com

  • 中图分类号: R742.5

Intestinal Flora: A New Target for the Treatment of Parkinson's Disease

  • 摘要: 帕金森病是一种受遗传和环境因素影响的神经退行性疾病,其发病机制尚不清晰。与健康人相比,帕金森患者的肠道菌群发生紊乱,具体表现为肠道微生物丰度的提高以及特定菌属的增加。益生菌可以通过调节肠道菌群有效改善帕金森患者的机体炎症、便秘和腹痛等症状,提高患者的生活质量。基于这些特性,益生菌有望成为帕金森病治疗的一种辅助手段应用到实际生活中。本文从帕金森患者的肠道菌群、病程和治疗方法等方面出发,根据近几年的研究报告进行综述,总结了帕金森患者的肠道菌群特点及二者间的联系,并对益生菌干预的新型治疗方法进行讨论,为帕金森病的治疗提供新的参考。
  • 图  1  帕金森微生物-肠-脑轴机理图[1,21,46]

    Figure  1.  Mechanism diagram of Parkinson's disease microbe-gut-brain axis[1,21,46]

    表  1  帕金森病与肠道菌群的关系

    Table  1.   Relationship between Parkinson's disease and intestinal flora

    物种英文名称物种中文名称肠道菌群与帕金森病的关系参考文献
    Actinobacteria
    Bifidobacteriales
    Bifidobacteriaceae
    Bifidobacterium
    Firmicutes
    Lactobacillaceae
    Lactobacillus
    变形菌门
    双歧杆菌目
    双歧杆菌科
    双歧杆菌属
    厚壁菌门
    乳杆菌科
    乳杆菌属
    放线菌门和厚壁菌门中的一些特定菌与帕金森病患者的异常炎症指标(中性粒细胞百分比,单核细胞计数/百分比,白细胞计数)具有正相关性[15]
    Proteus
    Akkermansia
    变形杆菌属
    嗜粘蛋白阿克曼菌
    变形杆菌属的增加和嗜粘蛋白阿克曼菌的减少与帕金森病小鼠炎症水平下降,肠道屏障完整性提升相关[16]
    Enterococcus肠球菌属肠球菌含有酪氨酸羟化酶和多巴脱羧酶,可以通过增加小鼠脑多巴胺改善其帕金森病症状[18]
    Clostridium coccoides
    Clostridium leptum
    拟球梭菌
    柔嫩梭菌
    帕金森病患者肠道中丁酸盐水平的降低与产丁酸菌(梭状芽孢杆菌与麻风梭菌)丰度的减少相关[19]
    下载: 导出CSV

    表  2  益生菌辅助治疗帕金森病研究进展

    Table  2.   Research progress of probiotics in adjuvant treatment of Parkinson's disease

    时间(年)菌株干预时间受试者分布(人)实验类型实验效果参考文献
    2011发酵乳饮料(Lactobacillus casei Shirota;6.5×109 CFU/d)5周实验组:40改善Bristol评分,降低腹痛和腹胀的次数[39]
    2016发酵乳(Enterococcus faecium,Lactobacillus rhamnosus GG, Bifidobacterium animalis subsp lactis等;2.5×109 CFU/d)4周益生菌发酵乳组:40;
    益生菌益生元发酵乳组:40;
    安慰剂组:40
    随机、双盲、
    安慰剂对照试验
    增加自发排便次数[40]
    2018益生菌胶囊(Lactobacillus acidophilusBifidobacterium bifidumLactobacillus reuteriLactobacillus fermentum; each 2×109 CFU/g)12周益生菌组:30;
    安慰剂组:30
    随机、双盲、
    安慰剂对照试验
    降低MDS-UPDRS评分,降低机体炎症,提高抗氧化水平,对少数代谢谱有有益影响[41]
    2020多菌株益生菌胶囊(Lactobacillus reuteri,Enterococcus faecalisBifidobacterium longum等;
    1010 CFU/d)
    4周益生菌组:34;
    安慰剂组:38
    随机、双盲、
    安慰剂对照试验
    增加自发排便次数,改善Bristol评分和便秘相关生活质量[42]
    2016片剂(Lactobacillus acidophilusBifidobacterium infantis
    120 mg/d,活菌数不明)
    3个月益生菌组:20;
    曲美布汀组:20
    随机、双盲、
    安慰剂对照试验
    改善腹胀、腹痛[43]
    下载: 导出CSV
  • [1] 沈馨, 孙志宏. 微生物-肠-脑轴与神经系统疾病的研究进展[J]. 生物工程学报,2021,37(11):3781−3788. [SHEN X, SUN Z H. Microbe-gut-brain axis and neurological disorders: A review[J]. Journal of Biological Engineering,2021,37(11):3781−3788. doi:  10.13345/j.cjb.200773
    [2] 王晓丹, 纪勇. 帕金森病200年史话[J]. 中国现代神经疾病杂志,2017,17(1):5−8. [WANG X D, JI Y. A 200-year history of Parkinson's disease[J]. Chinese Journal of Contemporary Neurology and Neurosurgery,2017,17(1):5−8.
    [3] 代成波, 周秀珍. 帕金森病早期治疗的理论与实践[J]. 中国临床医生,2006(5):48−49. [DAI C B, ZHOU X Z. Theory and practice of early treatment of Parkinson's disease[J]. Chinese Journal for Clinicians,2006(5):48−49.
    [4] KALIA L V, LANG A E. Parkinson's disease[J]. Lancet,2015,386(9996):896−912. doi:  10.1016/S0140-6736(14)61393-3
    [5] 汪锡金, 张煜, 陈生弟. 帕金森病发病机制与治疗研究十年进展[J]. 中国现代神经疾病杂志,2010,10(1):36−42. [WANG X J, ZHANG Y, CHEN S D. Progress of research on pathogenesis and treatment of Parkinson's disease for ten years[J]. Chinese Journal of Contemporary Neurology and Neurosurgery,2010,10(1):36−42. doi:  10.3969/j.issn.1672-6731.2010.01.004
    [6] WANG C Y, LAU C V, MA F Q, et al. Genome-wide screen identifies curli amyloid fibril as a bacterial component promoting host neurodegeneration[J]. Proceedings of the National Academy of Sciences of the United States of America,2021,118(34):e2106504118. doi:  10.1073/pnas.2106504118
    [7] WALLEN Z D, STONE W J, FACTOR S A, et al. Exploring human-genome gut-microbiome interaction in Parkinson's disease[J]. Npj Parkinsons Disease,2021,7(1):74. doi:  10.1038/s41531-021-00218-2
    [8] HORSAGER J, ANDERSEN K B, KNUDSEN K, et al. Brain-first versus body-first Parkinson's disease: A multimodal imaging case-control study[J]. Brain,2020,143:3077−3088. doi:  10.1093/brain/awaa238
    [9] BRAAK H, DEVOSR A I, BOHI J, et al. Gastric alpha-synuclein immunoreactive inclusions in Meissner's and Auerbach's plexuses in cases staged for Parkinson's disease-related brain pathology[J]. Neuroscience Letters,2006,396(1):67−72. doi:  10.1016/j.neulet.2005.11.012
    [10] HOLMQVIST S, CHUTNA O, BOUSSET L, et al. Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats[J]. Acta Neuropathologica,2014,128(6):805−820. doi:  10.1007/s00401-014-1343-6
    [11] AHN E H, KANG S S, LIU X, et al. Initiation of Parkinson's disease from gut to brain by delta-secretase[J]. Cell Research,2020,30(1):70−87. doi:  10.1038/s41422-019-0241-9
    [12] BOEHME M, GUZZETTA K E, BASTIAANSSEN T F S, et al. Microbiota from young mice counteracts selective age-associated behavioral deficits[J]. Nature Aging,2021,1(8):666−676. doi:  10.1038/s43587-021-00093-9
    [13] CHALLIS C, HORI A, SAMPSON T R, et al. Gut-seeded alpha-synuclein fibrils promote gut dysfunction and brain pathology specifically in aged mice[J]. Nature Neuroscience,2020,23(3):327−336. doi:  10.1038/s41593-020-0589-7
    [14] SERRA D, ALMEIDA L M, DINIS T C P. Dietary polyphenols: A novel strategy to modulate microbiota-gut-brain axis[J]. Trends in Food Science & Technology,2018,78:224−233.
    [15] LI Z, LU G, LI Z, et al. Altered Actinobacteria and Firmicutes phylum associated epitopes in patients with Parkinson's disease[J]. Frontiers in Immunology,2021:12.
    [16] ZHOU X, LU J, WEI K, et al. Neuroprotective effect of ceftriaxone on MPTP-induced Parkinson's disease mouse model by regulating inflammation and intestinal microbiota[J]. Oxidative Medicine and Cellular Iongevity,2021,2021:9424582.
    [17] AHO V T E, HOUSER M C, PEREIRA P A B, et al. Relationships of gut microbiota, short-chain fatty acids, inflammation, and the gut barrier in Parkinson's disease[J]. Molecular Neurodegeneration,2021,16(1):1−14. doi:  10.1186/s13024-020-00420-5
    [18] WANG Y, TONG Q, MA S R, et al. Oral berberine improves brain dopa/dopamine levels to ameliorate Parkinson's disease by regulating gut microbiota[J]. Signal Transduction and Targeted Therapy,2021,6(1):1−20. doi:  10.1038/s41392-020-00451-w
    [19] BAERT F, MATTHYS C, MASELYNE J, et al. Parkinson's disease patients' short chain fatty acids production capacity after in vitro fecal fiber fermentation[J]. Npj Parkinsons Disease,2021,7(1):72. doi:  10.1038/s41531-021-00215-5
    [20] TAN A H, CHONG C W, LIM S Y, et al. Gut microbial ecosystem in Parkinson disease: New clinicobiological insights from multi-omics[J]. Annals of Neurology,2021,89(3):546−559. doi:  10.1002/ana.25982
    [21] OMENETTI S, BUSSI C, METIDJI A, et al. The intestine harbors functionally distinct homeostatic tissue-resident and inflammatory Th17 cells[J]. Immunity,2019,51(1):77−89. doi:  10.1016/j.immuni.2019.05.004
    [22] WALLEN Z D, APPAH M, DEAN M N, et al. Characterizing dysbiosis of gut microbiome in PD: Evidence for overabundance of opportunistic pathogens[J]. Npj Parkinsons Disease,2020,6(1):1−12. doi:  10.1038/s41531-019-0104-6
    [23] CIRSTEA M S, YU A C, GOLZ E, et al. Microbiota composition and metabolism are associated with gut function in Parkinson's disease[J]. Movement Disorders,2020,35(7):1208−1217. doi:  10.1002/mds.28052
    [24] LI W, WU X L, HU X, et al. Structural changes of gut microbiota in Parkinson's disease and its correlation with clinical features[J]. Science China-Life Sciences,2017,60(11):1223−1233. doi:  10.1007/s11427-016-9001-4
    [25] ROMANO S, SAVVA G M, BEDARF J R, et al. Meta-analysis of the Parkinson's disease gut microbiome suggests alterations linked to intestinal inflammation[J]. Npj Parkinsons Disease,2021,7(1):27. doi:  10.1038/s41531-021-00156-z
    [26] HANNINEN A, TOIVONEN R, POYSTI S, et al. Akkermansia muciniphila induces gut microbiota remodelling and controls islet autoimmunity in NOD mice[J]. Gut,2018,67(8):1445−1453. doi:  10.1136/gutjnl-2017-314508
    [27] QU S W, FAN L N, QI Y D, et al. Akkermansia muciniphila alleviates dextran sulfate sodium (DSS)-induced acute colitis by NLRP3 activation[J]. Microbiology Spectrum,2021,9(2):e0073021.
    [28] DEPOMMIER C, EVERARD A, DRUART C, et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: A proof-of-concept exploratory study[J]. Nature Medicine,2019,25(7):1096−1103. doi:  10.1038/s41591-019-0495-2
    [29] QIAN Y W, YANG X D, XU S Q, et al. Alteration of the fecal microbiota in Chinese patients with Parkinson's disease[J]. Brain Behavior and Immunity,2018,70:194−202. doi:  10.1016/j.bbi.2018.02.016
    [30] WRIS S, MEISNER A, SCHWIERTZ A, et al. Association between Parkinson's disease and the faecal eukaryotic microbiota[J]. Npj Parkinsons Disease,2021,7(1):1. doi:  10.1038/s41531-021-00244-0
    [31] CIRSTEA M S, SUNDVICK K, GOLZ E, et al. The gut mycrobiome in Parkinson's disease[J]. Journal of Parkinsons Disease,2021,11(1):153−158. doi:  10.3233/JPD-202237
    [32] LIN C H, CHEN C C, CHIANG H L, et al. Altered gut microbiota and inflammatory cytokine responses in patients with Parkinson's disease[J]. Journal of Neuroinflammation,2019,16(1):1−9. doi:  10.1186/s12974-018-1391-2
    [33] CANNON T, GRUENHEID S. Microbes and Parkinson's disease: From associations to mechanisms[J]. Trends in Microbiology,2022,30(8):749−760. doi:  10.1016/j.tim.2022.01.004
    [34] VANDEPUTTE D, FALONY G, VIEIRA-SILVA S, et al. Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates[J]. Gut,2016,65(1):57−62. doi:  10.1136/gutjnl-2015-309618
    [35] JAYANTI S, MORETTI R, TIRIBELLI C, et al. Bilirubin: A promising therapy for Parkinson's disease[J]. International Journal of Molecular Sciences,2021,22(12):6223. doi:  10.3390/ijms22126223
    [36] REKDAL V M, BESS E N, BISANZ J E, et al. Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism[J]. Science,2019,364(6445):eaau6323. doi:  10.1126/science.aau6323
    [37] SHANG J M, MA S R, ZANG C X, et al. Gut microbiota mediates the absorption of FLZ, a new drug for Parkinson's disease treatment[J]. Acta Pharmaceutica Sinica B,2021,11(5):1213−1226. doi:  10.1016/j.apsb.2021.01.009
    [38] CHEN K K, JIN Z H, GAO L, et al. Efficacy of short-term multidisciplinary intensive rehabilitation in patients with different Parkinson's disease motor subtypes: A prospective pilot study with 3-month follow-up[J]. Neural Regeneration Research,2021,16(7):1336−1343. doi:  10.4103/1673-5374.301029
    [39] CASSANI E, PRIVITERA G, PEZZOLI G, et al. Use of probiotics for the treatment of constipation in Parkinson's disease patients[J]. Minerva Gastroenterologica e Dietologica,2011,57(2):117−121.
    [40] ARICHELLA M, PACCHETTI C, BOLLIRI C, et al. Probiotics and prebiotic fiber for constipation associated with Parkinson disease: An RCT[J]. Neurology,2016,87(12):1274−1280. doi:  10.1212/WNL.0000000000003127
    [41] TAMTAJI O R, TAGHIZADEH M, KAKHAKI R D, et al. Clinical and metabolic response to probiotic administration in people with Parkinson's disease: A randomized, double-blind, placebo-controlled trial[J]. Clinical Nutrition,2019,38(3):1031−1035. doi:  10.1016/j.clnu.2018.05.018
    [42] TAN A H, LIM S Y, CHONG K K, et al. Probiotics for constipation in Parkinson disease: A randomized placebo-controlled study[J]. Neurology,2021,96(5):E772−E782.
    [43] GEORGESCU D, ANCUSA O E, GEORGESCU L A, et al. Nonmotor gastrointestinal disorders in older patients with Parkinson's disease: Is there hope[J]. Clinical Interventions in Aging,2016,11:1601−1608. doi:  10.2147/CIA.S106284
    [44] SEPPI K, RAY CHAUDHURI K, Coelho M, et al. Update on treatments for nonmotor symptoms of Parkinson's disease-an evidence-based medicine review[J]. Movement Disorders,2019,34(2):180−198. doi:  10.1002/mds.27602
    [45] KEUN J T B, ARNOLDUSSEN I A C, VRIEND C, et al. Dietary approaches to improve efficacy and control side effects of levodopa therapy in Parkinson's disease: A systematic review[J]. Advances in Nutrition,2021,12(6):2265−2287. doi:  10.1093/advances/nmab060
    [46] MAGISTRELLI L, AMORUSO A, MOGNA L, et al. Probiotics may have beneficial effects in Parkinson's disease: In vitro evidence[J]. Frontiers in Immunology,2019,10:969. doi:  10.3389/fimmu.2019.00969
    [47] LEES A J, FERREIRA J, RASCOL O, et al. Opicapone as adjunct to levodopa therapy in patients with Parkinson disease and motor fluctuations a randomized clinical trial[J]. Jama Neurology,2017,74(2):197−206. doi:  10.1001/jamaneurol.2016.4703
    [48] GOYA M E, XUE F, SAMPEDRO-TORRES-QUEVEDO C, et al. Probiotic Bacillus subtilis protects against α-synuclein aggregation in C. elegans[J]. Cell Reports,2020,30(2):367−380. doi:  10.1016/j.celrep.2019.12.078
    [49] BRON P A, KLEEREBEZEM M, BRUMMER R J, et al. Can probiotics modulate human disease by impacting intestinal barrier function?[J]. British Journal of Nutrition,2017,117(1):93−107. doi:  10.1017/S0007114516004037
    [50] SUN H, ZHAO F, LIU Y, et al. Probiotics synergized with conventional regimen in managing Parkinson’s disease[J]. npj Parkinson's Disease,2022,8(1):1−12. doi:  10.1038/s41531-021-00272-w
    [51] SRIVASTAV S, NEUPANE S, BHURTEL S, et al. Probiotics mixture increases butyrate, and subsequently rescues the nigral dopaminergic neurons from MPTP and rotenone-induced neurotoxicity[J]. The Journal of Nutritional Biochemistry,2019,69:73−86. doi:  10.1016/j.jnutbio.2019.03.021
    [52] LUDTMANN M H R, ANGELOVA P R, HORROCKS M H, et al. α-Synuclein oligomers interact with ATP synthase and open the permeability transition pore in Parkinson’s disease[J]. Nature Communications,2018,9(1):1−16. doi:  10.1038/s41467-017-02088-w
    [53] WICHMANN T. Changing views of the pathophysiology of Parkinsonism[J]. Mov Disord,2019,34(8):1130−1143. doi:  10.1002/mds.27741
  • 加载中
图(1) / 表(2)
计量
  • 文章访问数:  160
  • HTML全文浏览量:  35
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-30
  • 网络出版日期:  2022-09-14
  • 刊出日期:  2022-11-01

目录

    /

    返回文章
    返回