• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020

豌豆蛋白的改性及其在食品中应用的研究进展

周航 肖彤 解铁民

周航,肖彤,解铁民. 豌豆蛋白的改性及其在食品中应用的研究进展[J]. 食品工业科技,2023,44(6):485−493. doi:  10.13386/j.issn1002-0306.2022050359
引用本文: 周航,肖彤,解铁民. 豌豆蛋白的改性及其在食品中应用的研究进展[J]. 食品工业科技,2023,44(6):485−493. doi:  10.13386/j.issn1002-0306.2022050359
ZHOU Hang, XIAO Tong, XIE Tiemin. Research Progress on Modification and Application of Pea Protein in Food Field[J]. Science and Technology of Food Industry, 2023, 44(6): 485−493. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022050359
Citation: ZHOU Hang, XIAO Tong, XIE Tiemin. Research Progress on Modification and Application of Pea Protein in Food Field[J]. Science and Technology of Food Industry, 2023, 44(6): 485−493. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022050359

豌豆蛋白的改性及其在食品中应用的研究进展

doi: 10.13386/j.issn1002-0306.2022050359
基金项目: 辽宁省科学技术计划项目(2019JH1/10200002)。
详细信息
    作者简介:

    周航(1997−),男,硕士研究生,研究方向:粮食、油脂及植物蛋白工程,E-mail:zh18343810987@163.com

    通讯作者:

    解铁民(1978−),男,博士,副教授,研究方向:粮食、油脂及植物蛋白工程,E-mail:tieminxie@163.com

  • 中图分类号: TS201.2

Research Progress on Modification and Application of Pea Protein in Food Field

  • 摘要: 豌豆是人类饮食中高品质植物蛋白的重要来源,其蛋白质成分是低致敏性的,一些学者对豌豆蛋白功能性进行了部分研究,但依然缺乏改性方法对豌豆蛋白结构和特性影响的系统报道。为了扩展豌豆蛋白在食品工业领域的应用,本文介绍了物理改性、化学改性、酶法改性和复合改性方法对豌豆蛋白结构和功能性质的影响,同时介绍了豌豆蛋白在活性成分的封装、乳液、其他蛋白的替代以及食品的优化这些方面的研究进展,并对豌豆蛋白在食品工业的应用前景上进行了展望。
  • 图  1  挤压机结构示意图

    Figure  1.  Schematic diagram of extruder structure

    图  2  探针式、波浴式结构示意图

    Figure  2.  Schematic diagram of probe type and wave bath type

    图  3  微流化处理结构示意图

    Figure  3.  Schematic diagram of microfluidization treatment structure

    表  1  豌豆蛋白的组成及其分子特性

    Table  1.   Composition and molecular characteristics of pea protein

    种类含量溶解性蛋白质斯韦德贝里
    单位
    分子量
    (kDa)
    球蛋白55%~65%盐溶豆球蛋白
    豌豆球蛋白
    豌豆伴球蛋白
    11S
    7S
    8S
    320~410
    150
    180~210
    白蛋白18%~25%水溶白蛋白2S68.5
    醇溶谷蛋白4%~5%醇溶醇溶谷蛋白//
    谷蛋白3%~4%不溶谷蛋白//
    注:表中数据来源为Lu等[16]
    下载: 导出CSV

    表  2  物理方法对豌豆蛋白改性后的主要变化

    Table  2.   Main changes of pea protein modified by physical method

    方法条件主要变化参考文献
    超高温制备成分散体后预热到80 ℃,最后一个
    加工温度下140 ℃持续6 s
    对豌豆蛋白饮料挥发性香气组成和感官结构影响显著[18]
    喷雾干燥入口温度:165、180和195 ℃;
    出口温度:80、87和97 ℃
    入口温度升高:
    PPI的表面疏水性增大;
    蛋白颗粒尺寸增大;
    乳液滴尺寸增大
    [20]
    双螺杆挤压螺杆转速:400~700 min−1
    含水量:26%~35%;
    末端桶的温度:130~170 ℃
    截面膨胀指数增大;
    溶解度下降;
    体积密度降低;
    β-折叠和α-螺旋结构减少;
    β-转角结构增加
    [21]
    螺杆转速为:150 min−1
    含水量:55%;
    末端桶的温度:100~160 ℃
    截面膨胀指数增大;
    溶解度下降;
    粘度随着温度高于100 ℃而下降
    [22]
    螺杆转速为:300 min−1
    含水量:40%~60%;
    末端桶的温度:175 ℃
    β-折叠和α-螺旋向β-转角和无规卷曲结构转变;
    持水性下降;
    乳化性和乳化稳定性提高
    [23]
    超声处理振幅:0、50%、100%;
    处理时间:0、1、3和5 min;
    强度:20~60 W·cm−2
    溶解度提高;
    表面疏水性提高;
    颗粒尺寸降低;
    乳化活性提高
    [26]
    功率:600 W;
    处理时间:0~60 min;
    频率:20 kHz
    30~40 min处理降低了α-螺旋,提高了β-折叠;
    颗粒尺寸降低;
    溶解度提高;
    乳化活性提高
    [27]
    振幅:0、30%、60%、90%;
    处理时间:30 min;
    强度:22~48 W·cm−2
    表面疏水性提高;
    颗粒尺寸降低;
    起泡能力增加
    [28]
    微流化压力30、60、90、120 MPa溶解度提高;
    颗粒尺寸降低;
    荧光强度增加
    [29]
    大气冷等离子体频率为3.0 kHz的8.8 kV正弦电压溶解度提高;
    持水性提高;
    持油性提高
    [33]
    施加交流电源产生20 kHz正弦高压,
    加入O3、NxOy、H2O2和OH等离子体
    O3和OH:
    表面疏水性提高;
    β-折叠含量显著增加;
    凝胶性增强;
    乳化性增强;
    H2O2
    蛋白的白度增加
    [34]
    频率为3.5 kHz,电压输出0~30 kVPPC可在变性温度下变性;
    凝胶性增强;
    持水性提高
    [35]
    下载: 导出CSV
  • [1] JARPA-PARRA M. Lentil protein: A review of functional properties and food application. An overview of lentil protein functionality[J]. International Journal of Food Science & Technology,2018,53(4):892−903.
    [2] JIANG R S, XIAO Z G, HUO J J, et al. Effects of rice bran content on plant-based simulated meat: From the aspects of apparent properties and structural characteristics[J]. Food Chemistry,2022,380:131842. doi:  10.1016/j.foodchem.2021.131842
    [3] ZHAO H F, SHEN C, WU Z J, et al. Comparison of wheat, soybean, rice, and pea protein properties for effective applications in food products[J]. Journal of Food Biochemistry,2020,44(4):e13157.
    [4] GORISSEN S H M, CROMBAG J J R, SENDEN J M G, et al. Protein content and amino acid composition of commercially available plant-based protein isolates[J]. Amino Acids,2018,50(12):1685−1695. doi:  10.1007/s00726-018-2640-5
    [5] 夏轩泽, 李言, 钱海峰, 等. 豌豆蛋白乳化性及其改善研究进展[J]. 食品与发酵工业,2021,47(2):279−284. [XIA X Z, LI Y, QIAN H F, et al. Research progress on improvement the emulsification property of pea protein[J]. Food and Fermentation Industries,2021,47(2):279−284. doi:  10.13995/j.cnki.11-1802/ts.024730
    [6] ARNTFIELD S D, MASKUS H D. Peas and other legume proteins[J]. Handbook of Food Proteins,2011:233−266.
    [7] KOWALCZYK D, GUSTAW W, ŚWIECA M, et al. A study on the mechanical properties of pea protein isolate films[J]. Journal of Food Processing and Preservation,2014,38(4):1726−1736. doi:  10.1111/jfpp.12135
    [8] GE J, SUN C X, CORKE H, et al. The health benefits, functional properties, modifications, and applications of pea (Pisum sativum L.) protein: Current status, challenges, and perspectives[J]. Comprehensive Reviews in Food Science and Food Safety,2020,19(4):1835−1876. doi:  10.1111/1541-4337.12573
    [9] SUN W Q, XIONG Y L. Stabilization of cooked cured beef color by radical-scavenging pea protein and its hydrolysate[J]. LWT-Food Science and Technology,2015,61(2):352−358. doi:  10.1016/j.lwt.2014.12.048
    [10] LIAO W, FAN H B, LIU P, et al. Identification of angiotensin converting enzyme 2 (ACE2) up-regulating peptides from pea protein hydrolysate[J]. Journal of Functional Foods,2019,60:103395. doi:  10.1016/j.jff.2019.05.051
    [11] ŚWIĄTECKA D, MARKIEWICZ L H, WRÓBLEWSKA B. Experimental immunology pea protein hydrolysate as a factor modulating the adhesion of bacteria to enterocytes, epithelial proliferation and cytokine secretion–an in vitro study[J]. Central European Journal of Immunology,2012,37(3):227−231.
    [12] SWIATECKA D, NARBAD A, RIDGWAY K P, et al. The study on the impact of glycated pea proteins on human intestinal bacteria[J]. International Journal of Food Microbiology,2011,145(1):267−272. doi:  10.1016/j.ijfoodmicro.2011.01.002
    [13] 朱艳, 魏颖, 严建刚, 等. 发酵豌豆蛋白肽对盐酸林可霉素诱导的小鼠肠道菌群紊乱的调节作用[J]. 中国食品学报,2021,21(12):106−116. [ZHU Y, WEI Y, YAN J G, et al. Regulatory effect of fermented pea peptide on intestinal flora disturbance induced by lincomycin hydrochloride in mice[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(12):106−116.
    [14] 李明亮, 严建刚, 朱艳, 等. 乳清蛋白和豌豆蛋白对抗生素致肠道菌群紊乱小鼠的调节作用[J]. 中国食品学报,2021,21(11):86−95. [LI M L, YAN J G, ZHU Y, et al. Regulatory effect of whey protein and pea protein on mice with intestinal flora disorder caused by antibiotics[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(11):86−95.
    [15] BOUKID F, ROSELL C M, CASTELLARI M. Pea protein ingredients: A mainstream ingredient to (re)formulate innovative foods and beverages[J]. Trends in Food Science & Technology,2021,110:729−742.
    [16] LU Z X, HE J F, ZHANG Y C, et al. Composition, physicochemical properties of pea protein and its application in functional foods[J]. Critical Reviews in Food Science and Nutrition,2020,60(15):2593−2605. doi:  10.1080/10408398.2019.1651248
    [17] PENG W W, KONG X Z, CHEN Y M, et al. Effects of heat treatment on the emulsifying properties of pea proteins[J]. Food Hydrocolloids,2016,52:301−310. doi:  10.1016/j.foodhyd.2015.06.025
    [18] TRIKUSUMA M, PARAVISINI L, PETERSON D G. Identification of aroma compounds in pea protein UHT beverages[J]. Food Chemistry,2020,312:126082. doi:  10.1016/j.foodchem.2019.126082
    [19] BALDELLI A, ETAYASH H, OGUZLU H, et al. Antimicrobial properties of spray-dried cellulose nanocrystals and metal oxide-based nanoparticles-in-microspheres[J]. Chemical Engineering Journal Advances,2022,10:100273. doi:  10.1016/j.ceja.2022.100273
    [20] BURGER T G, SINGH I, MAYFIELD C, et al. The impact of spray drying conditions on the physicochemical and emulsification properties of pea protein isolate[J]. LWT-Food Science and Technology,2022,153:112495. doi:  10.1016/j.lwt.2021.112495
    [21] BECK S M, KNOERZER K, ARCOT J. Effect of low moisture extrusion on a pea protein isolate's expansion, solubility, molecular weight distribution and secondary structure as determined by Fourier transform infrared spectroscopy (FTIR)[J]. Journal of Food Engineering,2017,214:166−174. doi:  10.1016/j.jfoodeng.2017.06.037
    [22] OSEN R, TOELSTEDE S, WILD F, et al. High moisture extrusion cooking of pea protein isolates: Raw material characteristics, extruder responses, and texture properties[J]. Journal of Food Engineering,2014,127:67−74. doi:  10.1016/j.jfoodeng.2013.11.023
    [23] 张百汝, 王斌, 王琨, 等. 挤压处理对豌豆蛋白功能特性及结构的影响[J]. 食品与机械,2022,38(1):32−37. [ZHANG B R, WANG B, WANG K, et al. Effect of extrusion treatment on the functional properties and structure of pea protein[J]. Food & Machinery,2022,38(1):32−37. doi:  10.13652/j.issn.1003-5788.2022.01.004
    [24] O'SULLIVAN J, MURRAY B, FLYNN C, et al. The effect of ultrasound treatment on the structural, physical and emulsifying properties of animal and vegetable proteins[J]. Food Hydrocolloids,2016,53:141−154. doi:  10.1016/j.foodhyd.2015.02.009
    [25] OJHA K S, TIWARI B K, O'DONNELL C P. Chapter six-Effect of ultrasound technology on food and nutritional quality[M]. Toldrá F, Editor, Advances in Food and Nutrition Research: Academic Press, 2018: 207−240.
    [26] SHA L, KOOSIS A O, WANG Q L, et al. Interfacial dilatational and emulsifying properties of ultrasound-treated pea protein[J]. Food Chemistry,2021,350:129271. doi:  10.1016/j.foodchem.2021.129271
    [27] 李朝蕊, 韩馨蕊, 范鑫, 等. 超声对豌豆分离蛋白结构及乳化性能的调控效应[J]. 中国农业科学,2021,54(22):4894−4905. [LI C R, HAN X R, FAN X, et al. Regulation effects of ultrasound on the structure and emulsification properties of pea protein isolate[J]. Scientia Agricultura Sinica,2021,54(22):4894−4905. doi:  10.3864/j.issn.0578-1752.2021.22.015
    [28] XIONG T, XIONG W W, GE M T, et al. Effect of high intensity ultrasound on structure and foaming properties of pea protein isolate[J]. Food Research International,2018,109:260−267. doi:  10.1016/j.foodres.2018.04.044
    [29] HE X H, CHEN J, HE X M, et al. Industry-scale microfluidization as a potential technique to improve solubility and modify structure of pea protein[J]. Innovative Food Science & Emerging Technologies,2021,67:102582.
    [30] MIAO W H, NYAISABA B, KODDY J, et al. Effect of cold atmospheric plasma on the physicochemical and functional properties of myofibrillar protein from Alaska pollock (Theragra chalcogramma)[J]. International Journal of Food Science & Technology,2020,55(2):517−525.
    [31] MANDAL R, SINGH A, PRATAP SINGH A. Recent developments in cold plasma decontamination technology in the food industry[J]. Trends in Food Science & Technology,2018,80:93−103.
    [32] 刘培玲, 张晴晴, 高增丽, 等. 乳清蛋白改性研究进展[J]. 食品科学,2021,42(23):333−348. [LIU P L, ZHANG Q Q, GAO Z L, et al. Advances in modification of whey proteins[J]. Food Science,2021,42(23):333−348. doi:  10.7506/spkx1002-6630-20201023-232
    [33] BUßLER S, STEINS V, EHLBECK J, et al. Impact of thermal treatment versus cold atmospheric plasma processing on the techno-functional protein properties from Pisum sativum 'Salamanca'[J]. Journal of Food Engineering,2015,167:166−174. doi:  10.1016/j.jfoodeng.2015.05.036
    [34] BU F, NAYAK G, BRUGGEMAN P, et al. Impact of plasma reactive species on the structure and functionality of pea protein isolate[J]. Food Chemistry,2021,371:131135.
    [35] ZHANG S T, HUANG W J, FEIZOLLAHI E, et al. Improvement of pea protein gelation at reduced temperature by atmospheric cold plasma and the gelling mechanism study[J]. Innovative Food Science & Emerging Technologies,2021:67.
    [36] WANG Q L, XIONG Y L. Processing, nutrition, and functionality of hempseed protein: A review[J]. Comprehensive Reviews in Food Science and Food Safety,2019,18(4):936−952. doi:  10.1111/1541-4337.12450
    [37] JIANG J, ZHU B, LIU Y F, et al. Interfacial structural role of pH-shifting processed pea protein in the oxidative stability of oil/water emulsions[J]. Journal of Agricultural and Food Chemistry,2014,62(7):1683−1691. doi:  10.1021/jf405190h
    [38] ZHU P N, HUANG W J, GUO X J, et al. Strong and elastic pea protein hydrogels formed through pH-shifting method[J]. Food Hydrocolloids,2021,117:106705. doi:  10.1016/j.foodhyd.2021.106705
    [39] OLIVEIRA F, COIMBRA J, DE OLIVEIRA E B, et al. Food protein-polysaccharide conjugates obtained via the Maillard reaction: A review[J]. Critical Reviews in Food Science and Nutrition,2016,56(7):1108−1125. doi:  10.1080/10408398.2012.755669
    [40] ROMÁN J K, WILKER J J. Cooking chemistry transforms proteins into high-strength adhesives[J]. Journal of the American Chemical Society,2019,141(3):1359−1365. doi:  10.1021/jacs.8b12150
    [41] ZHA F C, YANG Z Y, RAO J J, et al. Gum arabic-mediated synthesis of glyco-pea protein hydrolysate via Maillard reaction improves solubility, flavor profile, and functionality of plant protein[J]. Journal of Agricultural and Food Chemistry,2019,67(36):10195−10206. doi:  10.1021/acs.jafc.9b04099
    [42] ZHA F C, DONG S Y, RAO J J, et al. The structural modification of pea protein concentrate with gum arabic by controlled Maillard reaction enhances its functional properties and flavor attributes[J]. Food Hydrocolloids,2019,92:30−40. doi:  10.1016/j.foodhyd.2019.01.046
    [43] ZHA F C, YANG Z Y, RAO J J, et al. Conjugation of pea protein isolate via Maillard-driven chemistry with saccharide of diverse molecular mass: Molecular interactions leading to aggregation or glycation[J]. Journal of Agricultural and Food Chemistry,2020,68(37):10157−10166. doi:  10.1021/acs.jafc.0c04281
    [44] PILLAI P K S, MORALES-CONTRERAS B E, WICKER L, et al. Effect of enzyme de-esterified pectin on the electrostatic complexation with pea protein isolate under different mixing conditions[J]. Food Chemistry,2020,305:125433. doi:  10.1016/j.foodchem.2019.125433
    [45] 沈可洁, 李兴飞, 华欲飞, 等. 豌豆分离蛋白/卡拉胶复合乳液的性质研究[J/OL]. 中国油脂: 1−8 [2022-12-23]. DOI: 10.19902/j.cnki.zgyz.1003-7969.220029.

    SHEN K J, LI X F, HUA Y F, et al. Study on the properties of emulsions stabilized by pea protein isolate/carrageenan complexes[J/OL]. China Oils and Fats: 1−8[2022-12-23]. DOI: 10.19902/j.cnki.zgyz.1003-7969.220029.
    [46] WEI Y, CAI Z X, WU M, et al. Comparative studies on the stabilization of pea protein dispersions by using various polysaccharides[J]. Food Hydrocolloids,2020,98:105233. doi:  10.1016/j.foodhyd.2019.105233
    [47] KUNARAYAKUL S, THAIPHANIT S, ANPRUNG P, et al. Optimization of coconut protein deamidation using protein-glutaminase and its effect on solubility, emulsification, and foaming properties of the proteins[J]. Food Hydrocolloids,2018,79:197−207. doi:  10.1016/j.foodhyd.2017.12.031
    [48] FANG L Y, XIANG H, SUN-WATERHOUSE D X, et al. Enhancing the usability of pea protein isolate in food applications through modifying its structural and sensory properties via deamidation by glutaminase[J]. Journal of Agricultural and Food Chemistry,2020,68(6):1691−1697. doi:  10.1021/acs.jafc.9b06046
    [49] LIU Y H, WANG D Z, WANG J H, et al. Functional properties and structural characteristics of phosphorylated pea protein isolate[J]. International Journal of Food Science & Technology,2019,55(5):2002−2010.
    [50] SHEN Y T, LI Y H. Acylation modification and/or guar gum conjugation enhanced functional properties of pea protein isolate[J]. Food Hydrocolloids,2021,117:106686. doi:  10.1016/j.foodhyd.2021.106686
    [51] SHAH N N, K V U, SINGHAL R S. Hydrophobically modified pea proteins: Synthesis, characterization and evaluation as emulsifiers in eggless cake[J]. Journal of Food Engineering,2019,255:15−23. doi:  10.1016/j.jfoodeng.2019.03.005
    [52] ISASCHAR-OVDAT S, FISHMAN A. Crosslinking of food proteins mediated by oxidative enzymes–a review[J]. Trends in Food Science & Technology,2018,72:134−143.
    [53] GLUSAC J, DAVIDESKO-VARDI I, ISASCHAR-OVDAT S, et al. Tyrosinase-crosslinked pea protein emulsions: Impact of zein incorporation[J]. Food Res Int,2019,116:370−378. doi:  10.1016/j.foodres.2018.08.050
    [54] SHEN Y T, HONG S, SINGH G, et al. Improving functional properties of pea protein through "green" modifications using enzymes and polysaccharides[J]. Food Chemistry,2022,385:132687. doi:  10.1016/j.foodchem.2022.132687
    [55] DJOULLAH A, DJEMAOUNE Y, HUSSON F, et al. Native-state pea albumin and globulin behavior upon transglutaminase treatment[J]. Process Biochemistry,2015,50(8):1284−1292. doi:  10.1016/j.procbio.2015.04.021
    [56] DJOULLAH A, HUSSON F, SAUREL R. Gelation behaviors of denaturated pea albumin and globulin fractions during transglutaminase treatment[J]. Food Hydrocolloids,2018,77:636−645. doi:  10.1016/j.foodhyd.2017.11.005
    [57] MEINLSCHMIDT P, SUSSMANN D, SCHWEIGGERT-WEISZ U, et al. Enzymatic treatment of soy protein isolates: Effects on the potential allergenicity, technofunctionality, and sensory properties[J]. Food Sci Nutr,2016,4(1):11−23. doi:  10.1002/fsn3.253
    [58] SCHLEGEL K, SONTHEIMER K, HICKISCH A, et al. Enzymatic hydrolysis of lupin protein isolates-changes in the molecular weight distribution, technofunctional characteristics, and sensory attributes[J]. Food Science and Nutrition,2019,7(8):2747−2759. doi:  10.1002/fsn3.1139
    [59] GARCÍA ARTEAGA V, APÉSTEGUI GUARDIA M, MURANYI I, et al. Effect of enzymatic hydrolysis on molecular weight distribution, techno-functional properties and sensory perception of pea protein isolates[J]. Innovative Food Science & Emerging Technologies,2020,65:102449.
    [60] BAJAJ P, BHUNIA K, KLEINER L, et al. Improving functional properties of pea protein isolate for microencapsulation of flaxseed oil[J]. Journal of Microencapsulation,2017,34:1−36. doi:  10.1080/02652048.2016.1267811
    [61] KLOST M, DRUSCH S. Functionalisation of pea protein by tryptic hydrolysis−Characterisation of interfacial and functional properties[J]. Food Hydrocolloids,2019,86:134−140. doi:  10.1016/j.foodhyd.2018.03.013
    [62] 胡婷婷. 酶改性豌豆蛋白功能特性研究[D]. 郑州: 河南工业大学, 2012

    HU T T. Functional porperties of pea proteins modified by enzyme[D]. Zhengzhou: Henan University of Technology, 2012.
    [63] 郭兴凤, 崔会娟, 胡婷婷, 等. Alcalase改性豌豆蛋白功能性研究[J]. 粮食与油脂,2014,27(2):42−44. [GUO X F, CUI H J, HU T T, et al. Research on functional properties of pea proteins modified by alcalase[J]. Cereals & Oils,2014,27(2):42−44. doi:  10.3969/j.issn.1008-9578.2014.02.011
    [64] 郭兴凤, 崔会娟, 胡婷婷, 等. 碱性蛋白酶改性对豌豆蛋白乳化性影响[J]. 粮食与油脂,2013,26(10):26−29. [GUO X F, CUI H J, HU T T, et al. Effect of alcalase modification of pea protein on emulsion properties of the products[J]. Cereals & Oils,2013,26(10):26−29. doi:  10.3969/j.issn.1008-9578.2013.10.007
    [65] JIANG S S, DING J Z, ANDRADE J, et al. Modifying the physicochemical properties of pea protein by pH-shifting and ultrasound combined treatments[J]. Ultrason Sonochem,2017,38:835−842. doi:  10.1016/j.ultsonch.2017.03.046
    [66] HALL A E, MORARU C I. Structure and function of pea, lentil and faba bean proteins treated by high pressure processing and heat treatment[J]. LWT-Food Science and Technology,2021,152:112349. doi:  10.1016/j.lwt.2021.112349
    [67] PATEL B B, PATEL J K, CHAKRABORTY S, et al. Revealing facts behind spray dried solid dispersion technology used for solubility enhancement[J]. Saudi Pharmaceutical Journal,2015,23(4):352−365. doi:  10.1016/j.jsps.2013.12.013
    [68] CUI L Q, KIMMEL J, ZHOU L, et al. Combining solid dispersion-based spray drying with cyclodextrin to improve the functionality and mitigate the beany odor of pea protein isolate[J]. Carbohydr Polym,2020,245:116546. doi:  10.1016/j.carbpol.2020.116546
    [69] CUI L Q, KIMMEL J, ZHOU L, et al. Improving the functionality of pea protein isolate through co-spray drying with emulsifying salt or disaccharide[J]. Food Hydrocolloids,2021,113:106534. doi:  10.1016/j.foodhyd.2020.106534
    [70] LAN Y, XU M W, OHM J B, et al. Solid dispersion-based spray-drying improves solubility and mitigates beany flavour of pea protein isolate[J]. Food Chemistry,2019,278:665−673. doi:  10.1016/j.foodchem.2018.11.074
    [71] DJEMAOUNE Y, CASES E, SAUREL R. The effect of high-pressure microfluidization treatment on the foaming properties of pea albumin aggregates[J]. Journal of Food Science,2019,84(8):2242−2249. doi:  10.1111/1750-3841.14734
    [72] OLIETE B, YASSINE S A, CASES E, et al. Drying method determines the structure and the solubility of microfluidized pea globulin aggregates[J]. Food Research International,2019,119:444−454. doi:  10.1016/j.foodres.2019.02.015
    [73] JANSEN-ALVES C, MAIA D S V, KRUMREICH F D, et al. Propolis microparticles produced with pea protein: Characterization and evaluation of antioxidant and antimicrobial activities[J]. Food Hydrocolloids,2019,87:703−711. doi:  10.1016/j.foodhyd.2018.09.004
    [74] GUO Q, SU J Q, XIE W F, et al. Curcumin-loaded pea protein isolate-high methoxyl pectin complexes induced by calcium ions: Characterization, stability and in vitro digestibility[J]. Food Hydrocolloids,2020,98:105284. doi:  10.1016/j.foodhyd.2019.105284
    [75] GUO Q, SU J Q, SHU X, et al. Production and characterization of pea protein isolate-pectin complexes for delivery of curcumin: Effect of esterified degree of pectin[J]. Food Hydrocolloids,2020,105:105777. doi:  10.1016/j.foodhyd.2020.105777
    [76] GUO Q, BAYRAM I, ZHANG W T, et al. Fabrication and characterization of curcumin-loaded pea protein isolate-surfactant complexes at neutral pH[J]. Food Hydrocolloids,2021,111:106214. doi:  10.1016/j.foodhyd.2020.106214
    [77] LAN Y, OHM J B, CHEN B, et al. Phase behavior and complex coacervation of concentrated pea protein isolate-beet pectin solution[J]. Food Chemistry,2020,307:125536. doi:  10.1016/j.foodchem.2019.125536
    [78] LAN Y, OHM J B, CHEN B, et al. Microencapsulation of hemp seed oil by pea protein isolate-sugar beet pectin complex coacervation: Influence of coacervation pH and wall/core ratio[J]. Food Hydrocolloids,2021,113:106423. doi:  10.1016/j.foodhyd.2020.106423
    [79] SRIDHARAN S, MEINDERS M B J, BITTER J H, et al. Pea flour as stabilizer of oil-in-water emulsions: Protein purification unnecessary[J]. Food Hydrocolloids,2020,101:105533. doi:  10.1016/j.foodhyd.2019.105533
    [80] HINDERINK E B A, SCHRÖDER A, SAGIS L, et al. Physical and oxidative stability of food emulsions prepared with pea protein fractions[J]. LWT-Food Science and Technology,2021,146:111424. doi:  10.1016/j.lwt.2021.111424
    [81] AKKAM Y, RABABAH T, COSTA R, et al. Pea protein nanoemulsion effectively stabilizes vitamin D in food products: A potential supplementation during the COVID-19 pandemic[J]. Nanomaterials (Basel),2021,11(4):887. doi:  10.3390/nano11040887
    [82] DAI T T, LI T, LI R Y, et al. Utilization of plant-based protein-polyphenol complexes to form and stabilize emulsions: Pea proteins and grape seed proanthocyanidins[J]. Food Chemistry,2020,329:127219. doi:  10.1016/j.foodchem.2020.127219
    [83] YI J, GAN C, WEN Z, et al. Development of pea protein and high methoxyl pectin colloidal particles stabilized high internal phase pickering emulsions for β-carotene protection and delivery[J]. Food Hydrocolloids,2021,113:106497. doi:  10.1016/j.foodhyd.2020.106497
    [84] 丁玲, 张丽芬, 赖少娟, 等. 植物蛋白在肉制品中的应用研究[J]. 食品研究与开发,2021,42(4):193−197. [DING L, ZHANG L F, FAN S J, et al. Application of plant protein in meat products[J]. Food Research and Development,2021,42(4):193−197. doi:  10.12161/j.issn.1005-6521.2021.04.033
    [85] KORNET R, SHEK C, VENEMA P, et al. Substitution of whey protein by pea protein is facilitated by specific fractionation routes[J]. Food Hydrocolloids,2021,117:106691. doi:  10.1016/j.foodhyd.2021.106691
    [86] BORDERÍAS A J, TOVAR C A, DOMÍNGUEZ-TIMÓN F, et al. Characterization of healthier mixed surimi gels obtained through partial substitution of myofibrillar proteins by pea protein isolates[J]. Food Hydrocolloids,2020,107:105976. doi:  10.1016/j.foodhyd.2020.105976
    [87] ÖZTÜRK-KERIMOĞLU B. A promising strategy for designing reduced-fat model meat emulsions by utilization of pea protein-agar agar gel complex[J]. Food Structure,2021,29:100205. doi:  10.1016/j.foostr.2021.100205
    [88] SCHREUDERS F K G, DEKKERS B L, BODNÁR I, et al. Comparing structuring potential of pea and soy protein with gluten for meat analogue preparation[J]. Journal of Food Engineering,2019,261:32−39. doi:  10.1016/j.jfoodeng.2019.04.022
    [89] LÓPEZ-BARÓN N, SAGNELLI D, BLENNOW A, et al. Hydrolysed pea proteins mitigate in vitro wheat starch digestibility[J]. Food Hydrocolloids,2018,79:117−126. doi:  10.1016/j.foodhyd.2017.12.009
    [90] WEE M S M, LOUD D E, TAN V W K, et al. Physical and sensory characterisation of noodles with added native and denatured pea protein isolate[J]. Food Chemistry,2019,294:152−159. doi:  10.1016/j.foodchem.2019.05.042
    [91] BECK S M, KNOERZER K, FOERSTER M, et al. Low moisture extrusion of pea protein and pea fibre fortified rice starch blends[J]. Journal of Food Engineering,2018,231:61−71. doi:  10.1016/j.jfoodeng.2018.03.004
    [92] SHEN Y T, HONG S, DU Z J, et al. Effect of adding modified pea protein as functional extender on the physical and sensory properties of beef patties[J]. LWT-Food Science and Technology,2022,154:112774. doi:  10.1016/j.lwt.2021.112774
    [93] ASSAD BUSTILLOS M, JONCHÈRE C, GARNIER C, et al. Rheological and microstructural characterization of batters and sponge cakes fortified with pea proteins[J]. Food Hydrocolloids,2020,101:105553. doi:  10.1016/j.foodhyd.2019.105553
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  54
  • HTML全文浏览量:  17
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-31
  • 网络出版日期:  2023-02-03
  • 刊出日期:  2023-03-15

目录

    /

    返回文章
    返回

    重要通知

    喜报:《食品工业科技》入选《食品科学与工程领域高质量科技期刊分级目录》第一方阵T1区
          会议通知:第六届食品科技创新论坛4月与您相约上海