Optimization of Enzymatic Oxidation Process and Quality Analysis of High-theaflavins Instant Black Tea
-
摘要: 为实现夏秋绿茶的高值化利用,本研究以夏秋绿茶为原料,开发一款高茶黄素速溶红茶。在单因素实验的基础上,通过响应面法优化酶促氧化工艺条件,最后对产品的感官评价、理化指标及香气组分进行了分析。结果表明,最优工艺为:酶添加量1/1000 (mL/mL),pH4.90,反应温度50 ℃,反应时间44 min。在该工艺条件下,产品清香可口,汤色橙红透亮,茶黄素含量高达2.11%±0.04%,理化指标均达到相关标准要求。采用顶空固相微萃取(headspace solid-phase microextraction,HS-SPME)结合气质联用(gas chromatography-mass spectrometry,GC-MS)法,共检测出70种香气组分,包括醇类16种,酮类15种,醛类6种,酯类9种,酸类5种,酚类4种,碳氢类5种,其他10种。其中醇类相对含量占比最高,高达32.34%±0.14%,整体香气轮廓主要呈现青草香与花香。该研究结果为我国茶叶深加工的发展提供了一定的理论依据。Abstract: In order to realize the high-value utilization of summer-autumn green tea, this study used summer-autumn green tea as the raw material to develop a high-theaflavins instant black tea. Based on single-factor experiments, the enzymatic oxidation process conditions were optimized by response surface methodology. Finally the sensory evaluation, physicochemical index and aroma component of the product were analyzed. The results showed that the optimal process was as follows: Enzyme addition amount of 1/1000 (mL/mL), pH of 4.90, reacted at 50 ℃ for 44 min. Under this process condition, the product obtained, which possessed a sweet fragrance and a bright orange-red liquor color, had theaflavin content as high as 2.11%±0.04%, and physicochemical indicators all met the relevant standard requirements. A total of 70 aroma components, including 16 alcohols, 15 ketones, 6 aldehydes, 9 esters, 5 acids, 4 phenols, 5 hydrocarbons and 10 others were detected by HS-SPME combined with GC-MS. The highest relative content of alcohols was 32.34%±0.14%, and the overall aroma profile was mainly grassy and floral. The results of this study have provided a theoretical basis for the development of deep processing of tea in China.
-
Key words:
- instant black tea /
- theaflavins /
- response surface methodology /
- enzymatic oxidation /
- aroma components
-
表 1 Box-Behnken试验设计因素与水平
Table 1. Factors and levels of Box-Behnken experiments design
水平 A 反应温度
(℃)B 反应时间
(min)C pH D 酶添加量
(mL/mL)−1 40 20 4.5 1:5000 0 50 40 5.0 1:1000 1 60 60 5.5 1:500 表 2 速溶红茶感官评价标准表
Table 2. Sensory evaluation standard of instant black tea
项目 权重 感官评分(分) 评价标准 80~100 红棕色,色泽均匀明亮,颗粒分明不结块 外形 25% 50~79 红棕色,色泽均匀较明亮,颗粒分明,无明显结块 0~49 红棕色,色泽不均暗淡,颗粒结块明显 80~100 滋味浓厚,鲜爽可口 滋味 25% 50~79 滋味适中,尚可口 0~49 滋味平淡,口感差 80~100 具有红茶原有茶香,茶香浓厚 香气 10% 50~79 具有红茶原有茶香,茶香较淡 0~49 无红茶原有茶香 80~100 红中透亮,色泽均匀 汤色 20% 50~79 汤色适中,色泽均匀 0~49 汤色暗淡无光泽,色泽不均 80~100 溶解均匀,无明显杂质及沉淀 组织状态 20% 50~79 溶解均匀,少量杂质及沉淀 0~49 溶解不均,具有明显杂质及沉淀 表 3 响应面试验设计及结果
Table 3. Response surface experiment design and results
试验号 A 反应温度 B 反应时间 C pH D 酶添加量 Y 茶黄素含量(%) 1 1 1 0 0 1.7 2 0 0 0 0 1.96 3 0 0 −1 1 1.75 4 0 −1 0 −1 1.4 5 −1 0 0 1 1.1 6 0 −1 0 1 1.2 7 1 −1 0 0 1.23 8 −1 0 1 0 1.45 9 0 1 0 1 1.42 10 0 1 1 0 1.52 11 0 0 0 0 2.01 12 0 0 1 1 1.28 13 0 0 0 0 2.05 14 −1 0 0 −1 1.52 15 −1 1 0 0 1.52 16 1 0 0 1 1.28 17 0 0 0 0 1.93 18 0 −1 1 0 1.37 19 0 0 −1 −1 1.53 20 −1 0 −1 0 1.58 21 0 1 0 −1 1.57 22 1 0 −1 0 1.37 23 0 0 1 −1 1.48 24 0 1 −1 0 1.64 25 −1 −1 0 0 1.60 26 1 0 0 −1 1.46 27 1 0 1 0 1.47 28 0 −1 −1 0 1.47 29 0 0 0 0 1.96 表 4 回归模型方差分析
Table 4. Variance analysis of regression model
方差来源 平方和 自由度 均方 F值 P值 显著性 模型 1.59 14 0.11 11.01 < 0.0001 ** A 5.633E-003 1 5.633E-003 0.55 0.4719 B 0.10 1 0.10 9.79 0.0074 ** C 0.049 1 0.049 4.80 0.0460 * D 0.072 1 0.072 7.00 0.0192 * AB 0.076 1 0.076 7.34 0.0169 * AC 0.013 1 0.013 1.28 0.2763 AD 0.014 1 0.014 1.40 0.2568 BC 1.000E-004 1 1.000E-004 9.706E-003 0.9229 BD 6.250E-004 1 6.250E-004 0.061 0.8090 CD 0.044 1 0.044 4.28 0.0575 A2 0.53 1 0.53 51.35 < 0.0001 ** B2 0.38 1 0.38 36.44 < 0.0001 ** C2 0.28 1 0.28 26.93 0.0001 ** D2 0.67 1 0.67 65.21 < 0.0001 ** 残差 0.14 14 0.010 失拟项 0.14 10 0.014 5.95 0.0501 不显著 纯误差 9.080E-003 4 2.270E-003 总和 1.73 28 R2=0.9167 R²adj=0.8335 注:“*”表示对结果影响差异显著(P<0.05);“**”表示对结果影响差异极显著(P<0.01)。 表 5 感官评审结果
Table 5. Sensory evaluation results
外形 滋味 香气 汤色 组织状态 加权后总分 1 96 68 75 98 96 87.30 2 92 75 80 95 93 87.35 3 96 83 71 93 98 90.05 4 93 78 64 95 96 87.35 5 95 71 83 94 97 88.00 6 95 76 69 97 94 87.85 7 95 69 72 91 98 86.00 8 93 68 74 92 96 85.25 9 93 77 60 94 95 86.30 10 90 85 72 96 97 89.55 平均分 93.8 75.0 72.0 94.5 96.0 87.50 表 6 速溶红茶理化指标
Table 6. Physicochemical indexes of instant black tea
指标 检测结果 标准要求 评价 参考标准 茶多酚(g/100 g) 27.40±0.66 ≥6.0 合格 QB/T 4067-2010 咖啡因(g/100 g) 4.53±0.04 ≥1.0 合格 水分(%) 2.78±0.35 ≤6.0 合格 铅(mg/kg) 0.038±0.00 <5.0 合格 总砷(mg/kg) 0.044±0.00 <2.0 合格 表 7 速溶红茶香气组分分析
Table 7. Analysis of aroma components of instant black tea
类别 序号 挥发性成分 保留时间(min) CAS编号 相对含量(%) 醇类 1 桉叶油醇 10.5097 470-82-6 5.88±0.04 2 顺-2-戊烯醇 13.7399 1576-95-0 0.49±0.00 3 反-Α,Α-5-三甲基-5-乙烯基四氢化-2-呋喃甲醇 16.9436 34995-77-2 1.29±0.04 4 芳樟醇 19.6177 78-70-6 10.30±0.08 5 辛醇 19.7819 111-87-5 1.02±0.00 6 4-松油醇 20.7986 562-74-3 2.03±0.02 7 二氢芳樟醇 21.0845 29957-43-5 2.35±0.04 8 2-甲基-2,4-戊二醇 21.3387 107-41-5 0.38±0.01 9 二甲基硅烷二醇 22.0377 1066-42-8 0.61±0.00 10 糠醇 22.2389 98-00-0 0.40±0.00 11 α-松油醇 22.9644 10482-56-1 1.50±0.03 12 2-苯基-2-丙醇 24.3836 617-94-7 0.21±0.00 13 橙花醇 25.2891 106-25-2 0.15±0.00 14 苯甲醇 26.7983 100-51-6 3.25±0.06 15 苯乙醇 27.4972 60-12-8 2.23±0.02 16 反式-橙花叔醇 30.2297 40716-66-3 0.25±0.00 小计 16 32.34±0.14 酮
类17 异丙叉丙酮 8.5769 141-79-7 0.86±0.03 18 甲基庚烯酮 14.227 110-93-0 2.30±0.08 19 5-乙基-6-甲基庚-3-烯-2-酮 17.4678 57283-79-1 0.20±0.00 20 (3E,5E)-辛-3,5-二烯-2-酮 20.0149 38284-27-4 0.40±0.01 21 6-甲基-3,5-庚二烯-2-酮 20.5126 1604-28-0 0.58±0.03 22 苯乙酮 21.8683 98-86-2 0.33±0.01 23 茶香酮 22.9009 1125-21-9 0.06±0.00 24 大马士酮 25.6915 23726-93-4 0.14±0.00 25 香叶基丙酮 26.4699 689-67-8 0.69±0.05 26 β-紫罗兰酮 28.0638 14901-07-6 0.90±0.03 27 4-[2,2,6-三甲基-7-氧杂二环[4.1.0]庚-1-基]-3-丁烯-2-酮 29.1335 23267-57-4 0.78±0.01 28 3,4-脱氢-β-紫罗兰酮 29.303 1203-08-3 0.14±0.00 29 4'-羟基-2'-甲基苯乙酮 32.978 875-59-2 0.21±0.00 30 3-乙基-4-甲基-吡咯-2,5-二酮 34.3495 20189-42-8 0.84±0.01 31 D-樟脑 18.6381 464-49-3 1.05±0.06 小计 15 9.48±0.20 醛
类32 壬醛 15.715 124-19-6 0.87±0.03 33 苯甲醛 18.8817 100-52-7 2.21±0.07 34 β-环柠檬醛 21.1957 432-25-7 0.93±0.02 35 藏红花醛 21.7676 116-26-7 3.48±0.12 36 桃醛 29.8113 104-67-6 0.06±0.00 37 2,5-二甲基对苯二甲醛 40.3121 7044-92-0 0.32±0.00 小计 6 7.87±0.12 酯
类38 乙酸芳樟酯 19.8984 115-95-7 0.43±0.03 39 水杨酸甲酯 24.7595 119-36-8 0.36±0.01 40 乙酸苯乙酯 25.6333 103-45-7 0.31±0.00 41 2,2,4-三甲基-1,3-戊二醇二异丁酸酯 27.0207 6846-50-0 0.57±0.01 42 三乙酸甘油酯 31.0134 102-76-1 0.22±0.00 43 邻苯二甲酸二甲酯 34.8366 131-11-3 1.25±0.04 44 二氢猕猴桃内酯 35.3238 17092-92-1 3.78±0.17 45 邻苯二甲酸二异丁酯 38.2733 84-69-5 0.09±0.00 46 邻苯二甲酸二丁酯 38.2733 84-74-2 0.13±0.00 小计 9 7.14±0.15 酸
类47 2-甲基己酸 22.4825 4536-23-6 2.36±0.06 48 己酸 26.2899 142-62-1 6.62±0.14 49 反式-3-己烯酸 27.8256 1577-18-0 0.62±0.02 50 庚酸 28.5087 111-14-8 0.78±0.00 51 辛酸 30.6003 124-07-2 0.37±0.00 小计 5 10.75±0.21 酚
类52 4-乙基苯酚 11.0445 123-07-9 0.10±0.00 53 3,5-二甲基苯酚 11.8123 108-68-9 1.44±0.08 54 苯酚 29.4089 108-95-2 0.25±0.00 55 2,4-二叔丁基苯酚 35.2073 96-76-4 5.28±0.03 小计 4 7.07±0.05
碳
氢
类56 十三烷 13.1891 629-50-5 0.11±0.00 57 十二甲基环六硅氧烷 14.5077 540-97-6 3.46±0.12 58 3-甲基十三烷 14.9843 6418-41-3 0.14±0.00 59 正十五烷 18.3945 629-62-9 0.41±0.02 60 对伞花烃 12.3207 99-87-6 0.05±0.00 小计 5 4.17±0.13 其
他61 2-甲基-1-乙烯基咪唑 13.5545 2851-95-8 0.31±0.05 62 2,6-二乙基吡嗪 16.8324 13067-27-1 0.17±0.00 63 邻二氯苯 17.9762 95-50-1 12.08±0.23 64 茶吡咯 20.9204 2167-14-8 0.57±0.02 65 N-乙基琥珀酰亚胺 26.8883 2314-78-5 0.53±0.00 66 2-乙酰基吡咯 28.6887 1072-83-9 1.82±0.03 67 2,3-二氢苯并呋喃 36.2505 496-16-2 2.73±0.03 68 吲哚 36.923 120-72-9 0.41±0.01 69 N-(2-丙炔基)苯胺 37.532 14465-74-8 0.02±0.00 70 咖啡因 38.4587 58-08-2 2.56±0.08 小计 10 21.20±0.41 -
[1] 韩篷慧, 李范洙, 张先, 等. 酶辅助提取法制备寒葱速溶茶的加工工艺[J]. 食品工业,2021,42(10):110−114. [HAN Penghui, LI Fanzhu, ZHANG Xian, et al. The processing technology of enzyme-assisted extraction method to prepare allium victorialis instant tea[J]. The Food Industry,2021,42(10):110−114. [2] SOMESWARARAO C, SRIVASTAV P P. A novel technology for production of instant tea powder from the existing black tea manufacturing process[J]. Innovative Food Science & Emerging Technologies,2012,16:143−147. [3] SINIJA V R, MISHRA H N, BAL S. Process technology for production of soluble tea powder[J]. Journal of Food Engineering,2007,82(3):276−283. doi: 10.1016/j.jfoodeng.2007.01.024 [4] 涂云飞, 杨秀芳, 孔俊豪, 等. 固态速溶茶贮藏过程中含水率、儿茶素及茶黄素含量变化的研究[J]. 中国茶叶加工,2020(4):76−80. [TU Yunfei, YANG Xiufang, KONG Junhao, et al. Effect on the change of moisture, catechins and theaflavins content of instant tea in solid during storage[J]. China Tea Processing,2020(4):76−80. doi: 10.15905/j.cnki.33-1157/ts.2020.04.013 [5] HUA J, WANG H, JIANG Y, et al. Influence of enzyme source and catechins on theaflavins formation duringin vitro liquid-state fermentation[J]. LWT-Food Science and Technology,2021,139:1−9. [6] NING Y R, WU Z, LI Z J, et al. Optimization of fermentation process enhancing quality of dandelion black tea on the functional components, activity and sensory quality[J]. Open Access Library Journal,2020,07(5):1−11. [7] KONG J H, YANG X F, ZUO X B, et al. High-quality instant black tea manufactured using fresh tea leaves by two-stage submerged enzymatic processing[J]. Food Science and Human Wellness,2022,11(3):676−685. doi: 10.1016/j.fshw.2021.12.025 [8] TANAKA T, MATSUO Y. Production mechanisms of black tea polyphenols[J]. Chemical & Pharmaceutical Bulletin,2020,68(12):1131−1142. [9] 曾俊. 几种植物多酚氧化酶氧化茶多酚生成茶黄素的研究[J]. 茶叶通讯,2020,47(3):443−449. [ZENG Jun. Study on the oxidation of tea polyphenols to theaflavins by several plant polyphenol oxidase[J]. Journal of Tea Communication,2020,47(3):443−449. doi: 10.3969/j.issn.1009-525X.2020.03.012 [10] 王雨鑫, 刘学声, 刘建军, 等. 添加外源儿茶素制备高茶黄素红茶的工艺优化[J]. 贵州农业科学,2020,48(12):114−118. [WANG Yuxin, LIU Xuesheng, LIU Jianjun, et al. Optimization of adding exogenous catechins prepared for high-theaflavins black tea[J]. Guizhou Agricultural Sciences,2020,48(12):114−118. doi: 10.3969/j.issn.1001-3601.2020.12.024 [11] 李东, 李洁媛, 雷雨, 等. 植物外源多酚氧化酶酶促合成茶黄素的研究进展[J]. 茶叶通讯,2021,48(3):399−404. [LI Dong, LI Jieyuan, LEI Yu, et al. Research progress on the enzymatic synthesis of theaflavins by exogenous polyphenol oxidase from plants[J]. Journal of Tea Communication,2021,48(3):399−404. doi: 10.3969/j.issn.1009-525X.2021.03.003 [12] 徐洪梅. 梨多酚氧化酶生物催化合成茶黄素及其在茶叶深加工中的应用研究[D]. 杭州: 浙江工业大学, 2013XU Hongmei. Study on the pear polyphenol oxidase biocatalytic synthesis of theaflavins and the application in the tea extraction[D]. Hangzhou: Zhejiang University of Technology, 2013. [13] 罗学平, 李丽霞, 成洲, 等. 茶多酚氧化产物制备方法研究进展[J]. 南方农业,2017,11(22):96−99. [LUO Xueping, LI Lixia, CHENG Zhou, et al. Research progress on preparation methods of oxidation products of tea polyphenols[J]. South China Agriculture,2017,11(22):96−99. doi: 10.19415/j.cnki.1673-890x.2017.22.030 [14] 张颖. 酶促氧化制备茶黄素及其性质研究[D]. 天津: 天津科技大学, 2010ZHANG Ying. Studies on prodution theaflavins by using enzymes and it’s characterization[D]. Tianjin: Tianjin University of Science and Technology, 2010. [15] 高学玲, 张晶晶, 王玉婉, 等. 高亮度速溶红茶工艺优化[J]. 中国食品学报,2016,16(2):106−114. [GAO Xueling, ZHANG Jingjing, WANG Yuwan, et al. Process optimization of high-polished instant black tea[J]. Journal of Chinese Institute of Food Science and Technology,2016,16(2):106−114. doi: 10.16429/j.1009-7848.2016.02.016 [16] 萧伟祥, 宛晓春, 胡耀武, 等. 茶儿茶素体外氧化产物分析[J]. 茶叶科学,1999,1999(2):145−149. [XIAO Weixiang, WAN Xiaochun, HU Yaowu, et al. Study on the in vitro oxidation product of tea catechines[J]. Journal of Tea Science,1999,1999(2):145−149. doi: 10.3969/j.issn.1000-369X.1999.02.015 [17] 夏涛, 童启庆, 萧伟祥. 茶鲜叶匀浆悬浮发酵工艺学研究[J]. 浙江大学学报(农业与生命科学版),2000(4):22−25. [XIA Tao, TONG Qiqing, XIAO Weixiang. Studies on the technology of suspension fermentation of tea leaf homogenates[J]. Journal of Zhejiang University (Agriculture and Life Sciences),2000(4):22−25. doi: 10.3321/j.issn:1008-9209.2000.04.007 [18] 张宏岐, 柳蔚, 王鑫, 等. 五峰夏秋茶主要呈味成分分析研究[J]. 华中师范大学学报(自然科学版),2017,51(3):335−338. [ZHANG Hongqi, LIU Wei, WANG Xing, et al. Study on the taste components of Wufeng summer-autumn tea[J]. Journal of Central China Normal University (Natural Sciences),2017,51(3):335−338. doi: 10.3969/j.issn.1000-1190.2017.03.012 [19] 徐悦, 张阳光, 董若霞, 等. 速溶茶加工中酶技术应用研究进展[J]. 中国茶叶加工,2019(4):50−53. [XU Yue, ZHANG Yangguang, DONG Ruoxia, et al. Research progress of enzyme technology in instant tea processing[J]. China Tea Processing,2019(4):50−53. doi: 10.15905/j.cnki.33-1157/ts.2019.04.012 [20] 刘政权. 多酚氧化酶体外氧化技术优化速溶红茶品质的工艺研究[D]. 北京: 中国农业科学院, 2012LIU Zhengquan. Studies on the technology to optimize the quality of instant black tea by in vitro oxidation with polyphenol oxidase[D]. Beijing: Chinese Academy of Agricultural Sciences, 2012. [21] 程启坤. 红茶色素的系统分析法[J]. 中国茶叶,1981(1):17. [CHENG Qikun. Systematic analysis of black tea pigment[J]. Chinese Teas,1981(1):17. [22] 张正竹. 茶叶生物化学实验教程[M]. 北京: 中国农业出版社, 2009: 52−54ZHANG Zhengzhu. Experimental course of tea biochemistry[M]. Beijing: China Agriculture Press, 2009: 52−54. [23] ROBERTS E A H, SMITH R F. Spectrophotometric measurements of theaflavins and thearubigins in black tea liquors in assessments of quality in teas[J]. Analyst,1961,86(1019):94−98. doi: 10.1039/an9618600094 [24] LIU P P, ZHENG P C, FENG L, et al. Dynamic changes in the aroma profile of Qingzhuan tea during its manufacture[J]. Food Chemistry,2022,375:131847. doi: 10.1016/j.foodchem.2021.131847 [25] 黄刚骅, 李沅达, 邓秀娟, 等. 四种干燥方式云南白茶的香气组分分析[J]. 食品工业科技: 1−20 [2022-05-25]. DOI: 10.13386/j.issn1002-0306.2021120080.HUANG Ganghua, LI Yuanda, DENG Xiujuan, et al. Analysis of aroma compounds of yunnan white tea by four drying methods[J]. Science and Technology of Food Industry: 1−20 [2022-05-25]. DOI: 10.13386/j.issn1002-0306.2021120080. [26] 王镜岩. 生物化学[M]. 第三版. 上册. 北京: 高等教育出版社, 2002: 378−379WANG Jingyan. Biochemistry[M]. The Third Edition. The First Volume. Beijing: Higher Education Press, 2002: 378−379. [27] 陶琳琳, 张娅楠, 闫振, 等. 红茶加工过程中发酵技术研究进展[J]. 广东茶业,2020(1):2−6. [TAO Linlin, ZHANG Yanan, YAN Zhen, et al. Research progress of fermentation technology in black tea processing[J]. Guangdong Tea Industry,2020(1):2−6. doi: 10.3969/j.issn.1672-7398.2020.01.001 [28] 刘紫燕. 茶黄素在速溶红茶加工中的变化规律及其保护措施研究[D]. 合肥: 安徽农业大学, 2015LIU Ziyan. Variation of theaflavins in the processing of instant black tea and measures of its protective[D]. Hefei: Anhui Agricultural University, 2015. [29] 王领昌. 影响红茶茶红素含量的因素及其成因研究[D]. 长沙: 湖南农业大学, 2017WANG Lingchang. Study on the influence factors and causes on thearubigins quantity of black tea[D]. Changsha: Hunan Agricultural University, 2015. [30] 毛清黎, 朱旗, 刘仲华, 等. 红茶发酵中pH调控对多酚氧化酶活性及茶黄素形成的影响[J]. 湖南农业大学学报(自然科学版),2005(5):66−68. [MAO Qingli, ZHU Qi, LIU Zhonghua, et al. Effects of pH modification on activity of polyphenol oxidases and formatation of theaflavins[J]. Journal of Hunan Agricultural University (Natural Sciences),2005(5):66−68. [31] 李真. 速溶红茶加工过程中香气的变化及保香措施的研究[D]. 合肥: 安徽农业大学, 2015LI Zhen. Changes of aroma constituents of instant black tea during processing and the research of aroma retention measures[D]. Hefei: Anhui Agricultural University, 2015. [32] 徐玉雪, 李婷, 李利君, 等. SDE-GC-MS结合GC-O分析速溶滇红茶的挥发性风味物质[J]. 现代食品科技,2019,35(11):277−284. [XU Yuxue, LI Ting, LI Lijun, et al. Ananlysis of volatile components in the instant Dianhong tea by SDE-GC-MS and GC-O[J]. Modern Food Science and Technology,2019,35(11):277−284. doi: 10.13982/j.mfst.1673-9078.2019.11.038 [33] WU J X, WU X R, YUAN G A, et al. Comparative analysis of aroma substances of vanilla co-fermented black tea[J]. IOP Conference Series: Earth and Environmental Science,2021,651(4):42−47. [34] 李琛, 岳翠男, 杨普香, 等. 功夫红茶特征香气研究进展[J]. 食品安全质量检测学报,2021,12(22):8834−8842. [LI Chen, YUE Cuinan, YANG Puxiang, et al. Research progress on characteristic aroma of Congou black tea[J]. Journal of Food Safety and Quality,2021,12(22):8834−8842. -