Protective Effect of Total Glucosides of Peony on Treatment of Hyperuricemia and Associated Hepatic Injury
-
摘要: 目的:探讨白芍总苷(total glucosides of paeony,TGP)对大鼠高尿酸血症并发肝脏损伤的保护作用。方法:将50只雄性Sprague-Dawley大鼠随机分为5组:正常组、模型组、TGP低剂量组(100 mg/kg)、TGP高剂量组(300 mg/kg)和别嘌醇组(27.0 mg/kg),每组10只。模型组、TGP低、高剂量组和别嘌醇组大鼠分别按照1.5 mL/100 g的体积灌胃腺嘌呤6.66 mg/mL+氧嗪酸钾100 mg/mL的混合液制造高尿酸血症大鼠模型,每日7:00和20:00各1次,持续3周。每日12:00按剂量分别灌胃给药TGP和别嘌醇,持续5周。5周后,处死大鼠,检测各组大鼠的肝脏脏器指数,血清中总胆固醇(total cholesterol,TC)、甘油三酯(triglyceride,TG)、丙二醛(malondialdehyde,MDA)、超氧化物歧化酶(superoxide dismutase,SOD)、谷草转氨酶(aspartate aminotransferase,AST)、谷丙转氨酶(alanine aminotransferase,ALT)、尿酸和黄嘌呤氧化酶(xanthine oxidase,XOD)等生化指标,同时对肝脏进行病理切片观察。结果:高、低剂量TGP均能极显著增加高尿酸血症大鼠的肝脏脏器指数(P<0.01)。低剂量TGP显著降低了高尿酸血症大鼠血清中的MDA水平(P<0.05)和尿酸水平(P<0.01),升高了SOD(P<0.01)水平。高剂量TGP显著降低了高尿酸血症大鼠血清中的ALT(P<0.05)、尿酸(P<0.01)和XOD水平(P<0.05),升高了SOD水平(P<0.01);病理观察发现,高剂量TGP能缓解高尿酸血症大鼠肝细胞脂肪变性、肝细胞周围纤维化和尿酸盐结晶沉积。结论:TGP能显著改善高尿酸血症大鼠肝细胞的氧化损伤和肝脏病理损伤,从而对高尿酸血症并发肝脏损伤有一定的保护作用。Abstract: Objects: To investigate the protective effect of total glucosides of peony (TGP) on rats with hyperuricemia and liver damage. Methods: Fifty male Sprague-Dawley rats were randomLy divided into 5 groups: The normal group, the model group, the TGP low dose group (100 mg/kg), the TGP high dose group (300 mg/kg) and the allopurinol group (27.0 mg/kg), with 10 rats in each group. The hyperuricemia rat model was established by gavage of adenine 6.66 mg/mL+oteracil potassium 100 mg/mL suspension (1.5 mL/100 g) in the model group, TGP low dose group, TGP high dose group and allopurinol group respectively, once respectively of 7:00 and 20:00, continues for 3 weeks. TGP and allopurinol were intragastrically administered at 12:00 every day, and continues for 5 weeks. After 5 weeks, the rats were sacrificed. The liver organ index was measured, the content of serum total cholesterol (TC), triglyceride (TG), malondialdehyde (MDA), superoxide dismutase (SOD), uric acid and xanthine oxidase (XOD) were measured, and the activity of aspartate aminotransferase (AST), alanine aminotransferase (ALT) in serum were measured. At the same time, pathological changes of the liver were observed. Results: Both the high and low doses of TGP significantly increased the liver organ index of hyperuricemia rats (P<0.01). Low dose TGP decreased the level of MDA (P<0.05) and significantly decreased the level of uric acid (P<0.01), significantly increased the levels of SOD (P<0.01) in serum of hyperuricemia model rats. High dose TGP decreased the levels of ALT (P<0.05) and XOD (P<0.05), significantly decreased the level of uric acid (P<0.01), significantly increased the level of SOD (P<0.01) in serum of hyperuricemia model rats. Pathological observation showed that high dose TGP alleviated hepatocyte steatosis, perihepatocyte fibrosis and urate crystal deposition in hyperuricemia rats. Conclusion: TGP would have a good hepatic protective effect during hyperuricemia through significantly improveing the oxidative damage and liver pathological damage of hepatocytes in hyperuricemia rats.
-
Key words:
- hyperuricemia /
- total glucosides of peony /
- liver /
- xanthine oxidase /
- pathology
-
表 1 各组大鼠体重及肝脏脏器指数变化情况
Table 1. Changes of body weight and liver index of rats in each group
表 2 各组大鼠血清中尿酸和XOD水平的变化情况
Table 2. Changes of serum uric acid and XOD levels in rats in each group
组别 尿酸(μmol/L) XOD(U/L) 正常组 74.54±27.07 25.33±2.65 模型组 166.67±36.18** 39.01±5.57** TGP低剂量组 132.84±34.31**## 35.02±6.45* TGP高剂量组 112.75±12.98**## 29.74±8.10# 别嘌醇组 113.29±8.69**## 25.81±4.06## 表 3 各组大鼠血清中AST和ALT水平的变化情况
Table 3. Changes of serum AST and ALT levels in rats in each group
组别 AST(U/L) ALT(U/L) 正常组 55.33±3.52 21.47±4.05 模型组 61.04±5.35** 30.87±6.17** TGP低剂量组 59.08±5.20* 29.08±6.17** TGP高剂量组 58.00±4.28 27.20±4.41**# 别嘌醇组 55.83±4.47## 28.33±4.03** 表 4 各组大鼠血清TC和TG水平的变化情况
Table 4. Changes of serum TC and TG levels of rats in each group
组别 TC(mmol/L) TG(mmol/L) 正常组 1.92±0.63 1.51±0.40 模型组 1.26±0.27** 0.58±0.15** TGP低剂量组 1.32±0.39** 0.71±0.29** TGP高剂量组 1.49±0.24** 0.75±0.09** 别嘌醇组 1.49±0.34** 0.82±0.32**# 表 5 各组大鼠血清MDA和SOD水平的变化情况
Table 5. Changes of serum MDA and SOD levels of rats in each group
组别 MDA(nmol/mL) SOD(U/mL) 正常组 3.81±0.57 88.63±9.04 模型组 6.83±1.25** 69.92±2.75** TGP低剂量组 5.21±0.91*# 88.78±10.59## TGP高剂量组 5.78±0.59** 89.90±8.10## 别嘌醇组 5.90±1.12** 90.28±11.05## -
[1] 徐思博, 刘晓静. 高尿酸血症与非酒精性脂肪肝的关系研究进展[J]. 济宁医学院学报,2020,43(1):59−62,67. [XU S B, LIU X J. Study progress on the relationship between hyperuricemia and nonalcoholic fatty liver disease[J]. Journal of Jining Medical University,2020,43(1):59−62,67. doi: 10.3969/j.issn.1000-9760.2020.01.014 [2] GONG S L, SONG J Q, WANG L, et al. Hyperuricemia and risk of nonalcoholic fatty liver disease: A systematic review and meta-analysis[J]. Eur J Gastroenterol Hepatol,2016,28(2):132−138. doi: 10.1097/MEG.0000000000000507 [3] SARI D C R, SOETOKO A S, ROMI M M, et al. Uric acid induces liver fibrosis through activation of inflammatory mediators and proliferating hepatic stellate cell in mice[J]. Med J Malaysia,2020,75(1):14−18. [4] ZHANG M Y, NIU J Q, WEN X Y, et al. Liver failure associated with benzbromarone: A case report and review of the literature[J]. World J Clin Cases,2019,7(13):1717−1725. doi: 10.12998/wjcc.v7.i13.1717 [5] ROBERT J F, LI Y J, ELIZABETH P, et al. Allopurinol hepatotoxicity is associated with human leukocyte antigen Class I alleles[J]. Liver Int,2021,41(8):1884−1893. doi: 10.1111/liv.14903 [6] 王琨, 吴珊珊, 黎攀, 等. 茯苓对高尿酸血症大鼠肾损伤及肠道菌群的影响[J]. 食品科学,2022,43(21):171−179. [WANG K, WU S S, LI P, et al. Effects of Poria cocos on renal injury and gut microbiota in hyperuricemia rats[J]. Food Science,2022,43(21):171−179. [7] YANAI H, ADACHI H, HAKOSHIMA M, et al. Molecular biological and clinical understanding of the pathophysiology and treatments of hyperuricemia and its association with metabolic syndrome, cardiovascular diseases and chronic kidney disease[J]. Int J Mol Sci,2021,22(17):9221. doi: 10.3390/ijms22179221 [8] 杨盼. 基于数据分析对脾虚证、血虚证药食同源中医饮食护理的探讨[D]. 哈尔滨: 黑龙江中医药大学, 2017YANG P. Based on data analysis, the discussion of spleen deficiency and blood deficiency syndrome medicine study on the diet nursing of traditional Chinese medicine[D]. Haerbin: Heilongjiang University of Chinese Medicine, 2017. [9] PENG L, MA Z, CHU W, et al. Identification and hepatoprotective activity of total glycosides of paeony with high content of paeoniflorin extracted from Paeonia lactiflora Pall[J]. Food Chem Toxicol,2023,173:113624. doi: 10.1016/j.fct.2023.113624 [10] ZHANG L L, WEI W. Anti-inflammatory and immunoregulatory effects of paeoniflorin and total glucosides of paeony[J]. Pharmacol Ther,2020,207:107452. doi: 10.1016/j.pharmthera.2019.107452 [11] SHEN M Y, MEN R T, FAN X L, et al. Total glucosides of paeony decreases apoptosis of hepatocytes and inhibits maturation of dendritic cells in autoimmune hepatitis[J]. Biomed Pharmacother,2020,124:109911. doi: 10.1016/j.biopha.2020.109911 [12] 高世乐, 胡宗涛, 董六一, 等. 白芍总苷防治放射性肝损伤形成的临床研究及其作用机制[J]. 中国中药杂志,2017,42(7):1390−1394. [GAO S L, HU Z T, DONG L Y, et al. Clinical efficacy and mechanism of total glucosides from white paeony for radioactive liver damage[J]. China Journal of Chinese Materia Medica,2017,42(7):1390−1394. doi: 10.19540/j.cnki.cjcmm.20170121.038 [13] 刘冬恋, 秦琴, 杨婷, 等. 白芍总苷对高尿酸血症大鼠肾脏的保护作用[J]. 食品工业科技,2021,42(22):344−349. [LIU D L, QIN Q, YANG T, et al. Protective effect of total glucosides of paeony on renal in rats with hyperuricemic nephropathy[J]. Science and Technology of Food Industry,2021,42(22):344−349. [14] 包瑾芳. 自噬在高尿酸血症中的作用及3-MA干预机制初步探讨[D]. 上海: 上海交通大学, 2019BAO J F. Pharmacological inhibition of autophagy by 3-MA attenuates hyperuricemic nephropathy[D]. Shanghai: Shanghai Jiaotong University, 2019. [15] 刘冬恋, 郭秋鸿, 夏阳淼, 等. 慢性高尿酸血症肾损害大鼠模型的建立[J]. 中国实验动物学报,2021,29(3):364−370. [LIU D L, GUO Q H, XIA Y M, et al. Establishment of a rat model of chronic hyperuricemia with renal damage[J]. Acta Laboratorium Animalis Scientia Sinica,2021,29(3):364−370. doi: 10.3969/j.issn.1005-4847.2021.03.011 [16] 冯学轩, 刘月姝, 饶子亮, 等. 急、慢性高尿酸血症模型的建立[J]. 中国比较医学杂志,2020,30(1):74−80. [FENG X X, LIU Y S, RAO Z L, et al. Establishment of mouse and rat models of acute and chronic experimental hyperuricemia[J]. Chin J Comp Med,2020,30(1):74−80. doi: 10.3969/j.issn.1671-7856.2020.01.012 [17] 党娅, 尤丽, 杨彬彦. 蓝莓花青素对2型糖尿病小鼠肝、肾损伤的改善作用[J]. 食品工业科技,2022,43(20):387−394. [DANG Y, YOU L, YANG B Y. The improvement effect of blueberry anthocyanin on liver and kidney injury in type 2 diabetic mice[J]. Science and Technology of Food Industry,2022,43(20):387−394. doi: 10.13386/j.issn1002-0306.2022020171 [18] 孙宏莱, 刘悦, 刘德江, 等. 毛水苏多糖对糖尿病小鼠肾脏的保护作用[J]. 食品工业科技,2021,42(17):373−380. [SUN H L, LIU Y, LIU D J, et al. Protective effect of polysaccharides from stachys baicalensis on kidneys of diabetic disease mice[J]. Science and Technology of Food Industry,2021,42(17):373−380. doi: 10.13386/j.issn1002-0306.2021050278 [19] 石慧, 梁晓珊, 黄丽文, 等. 一种高尿酸血症大鼠模型诱导方法的改良和效果评价研究[J]. 中国应用生理学杂志,2020,36(3):223−227. [SHI H, LIANG X S, HUANG L W, et al. The optimization and assessment of the method for inducing hyperuricemia in rats[J]. Chinese Journal of Applied Physiology,2020,36(3):223−227. doi: 10.12047/j.cjap.5933.2020.049 [20] XU C F, WAN X Y, XU L, et al. Xanthine oxidase in non-alcoholic fatty liver disease and hyperuricemia: One stone hits two birds[J]. J Hepatol,2015,62(6):1412−1419. doi: 10.1016/j.jhep.2015.01.019 [21] 谢羡, 朱乐玫, 丁旭, 等. 番茄红素对反式脂肪酸致小鼠肝脏损伤的修复作用[J]. 中华全科医学,2018,16(10):1604−1607, 1744. [XIE X, ZHU L M, DING X, et al. Repair effect of Lycopene on liver injury induced by trans fatty acids in mice[J]. Chinese Journal of General Practice,2018,16(10):1604−1607, 1744. doi: 10.16766/j.cnki.issn.1674-4152.000436 [22] 王灿, 苗志敏, 李长贵, 等. 人体血尿酸水平对血清谷丙转氨酶和谷草转氨酶水平的影响[J]. 山东医药,2010,50(29):1−3. [WANG C, MIAO Z M, LI C G, et al. Impact of uric acid on alanine amiotransferase and aspartate aminotransferase[J]. Shandong Medical Journal,2010,50(29):1−3. doi: 10.3969/j.issn.1002-266X.2010.29.001 [23] CUI N, CUI J, SUN J, et al. Triglycerides and total cholesterol concentrations in association with hyperuricemia in Chinese adults in qingdao, China[J]. Risk Manag Healthc Policy,2020,13:165−173. doi: 10.2147/RMHP.S243381 [24] 吴晶魁, 杨乔. 中药水蛭对高脂血症大鼠脂质代谢及肝脏的影响[J]. 中国中药杂志,2018,43(4):794−799. [WU J K, YANG Q. Effect of leech on lipid metabolism and liver in hyperlipidemia rats[J]. China Journal of Chinese Materia Medica,2018,43(4):794−799. doi: 10.19540/j.cnki.cjcmm.20171123.001 [25] SAMARGHANDIA S, AZIMI-NEZHAD M, FARKHONDEH T, et al. Anti-oxidative effects of curcumin on immobilization-induced oxidative stress in rat brain, liver and kidney[J]. Biomed Pharmacother,2017,87:223−229. doi: 10.1016/j.biopha.2016.12.105 [26] 马玲, 周勇, 王莉, 等. α-硫辛酸减轻高尿酸血症大鼠氧化应激损伤[J]. 基础医学与临床,2015,35(8):1037−1041. [MA L, ZHOU Y, WANG L, et al. α-lipoic acid alleviates oxidative stress in hyperuricemia rats[J]. Basic and Clinical Medicine,2015,35(8):1037−1041. [27] 徐燕, 蔡吓强, 解千金, 等. 表没食子儿茶素没食子酸酯和维生素C联用对高尿酸血症小鼠血尿酸水平的影响[J]. 茶叶科学,2020,40(3):407−414. [XU Y, CAI X Q, XIE Q J, et al. The intergative effects of epigallocatechin-3-gallate and vitamin C on serum uric acid levels in hyperuricemic mice[J]. Journal of Tea Science,2020,40(3):407−414. doi: 10.3969/j.issn.1000-369X.2020.03.011 [28] ZHOU T, LI X, LI G, et al. Injectable and thermosensitive TGF-β1-loaded PCEC hydrogel system for in vivo cartilage repair[J]. Sci Rep,2017,7(1):10553. doi: 10.1038/s41598-017-11322-w [29] ZHAO Y, TANG Y, LIU S, et al. Foodborne TiO2 nanoparticles induced more severe hepatotoxicity in fructose-induced metabolic syndrome mice via exacerbating oxidative stress-mediated intestinal barrier damage[J]. Foods,2021,10(5):986. doi: 10.3390/foods10050986 [30] 史民康, 雷宇平, 张仲萍. 浅析集约化鸡场鸡肾脏病变的病因及防治[J]. 中国动物检疫,2011,28(2):67−68. [SHI M K, LEI Y P, ZHANG Z P. Etiology and prevention of kidney disease in intensive chicken farms[J]. China Animal Health Inspection,2011,28(2):67−68. doi: 10.3969/j.issn.1005-944X.2011.02.033 [31] NASOORI A, PEDRAM B, KAMYABI-MOGHADDAM Z, et al. Clinicopathologic characterization of visceral gout of various internal organs-a study of 2 cases from a venom and toxin research center[J]. Diagn Pathol,2015,10:23. doi: 10.1186/s13000-015-0251-y [32] 任敏霞, 吴素香, 詹淑玉, 等. 白芍总苷及其所含主要成分芍药苷和芍药内酯苷对四氯化碳致小鼠急性肝损伤的保护作用[J]. 中华中医药学刊,2020,38(5):244−247, 283. [REN M X, WU S X, ZHAN S Y, et al. Protective effects of total glucosides of paeony and its main components paeoniflorin and albiflorin in carbon tetrachloride-induced acute liver injury[J]. Chinese Archives of Traditional Chinese Medicine,2020,38(5):244−247, 283. doi: 10.13193/j.issn.1673-7717.2020.05.058 [33] CHEN G, JIA P. Allopurinol decreases serum uric acid level and intestinal glucose transporter-5 expression in rats with fructose-induced hyperuricemia[J]. Pharmacol Rep,2016,68(4):782−786. doi: 10.1016/j.pharep.2016.04.014 [34] TOMOKI N, NAOTO N, TETSURO S, et al. Xanthine oxidase inhibition attenuates insulin resistance and diet-induced steatohepatitis in mice[J]. Sci Rep,2020,10(1):815. doi: 10.1038/s41598-020-57784-3 [35] SANDRA S, LESMANA C R A, PURNAMASARI D, et al. Hyperuricemia as an independent risk factor for non- alcoholic fatty liver disease (NAFLD) progression evaluated using controlled attenuation parameter-transient elastography: Lesson learnt from tertiary referral center[J]. Diab Metab Syndr: Clin Res Revi,2019,13(1):424−428. [36] LUKAS W U, BERNADETTE F, MORITZ M, et al. Hepatic steatosis in lean patients: Risk factors and impact on mortality[J]. Dig Dis Sci,2020,65(9):2712−2718. doi: 10.1007/s10620-019-06000-y [37] VALERIO N, ANTONELLA M, RITA D V, et al. Liver zonation in children with non-alcoholic fatty liver disease: Associations with dietary fructose and uric acid concentrations[J]. Liver Int,2018,38(6):1102−1109. doi: 10.1111/liv.13661 -