• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020

菰米蛋白的提取工艺优化及其理化性质分析

袁梦 李春梅 苏嘉敏 周宇 陈岩松 章海风

袁梦,李春梅,苏嘉敏,等. 菰米蛋白的提取工艺优化及其理化性质分析[J]. 食品工业科技,2023,44(11):171−178. doi:  10.13386/j.issn1002-0306.2022060125
引用本文: 袁梦,李春梅,苏嘉敏,等. 菰米蛋白的提取工艺优化及其理化性质分析[J]. 食品工业科技,2023,44(11):171−178. doi:  10.13386/j.issn1002-0306.2022060125
YUAN Meng, LI Chunmei, SU Jiamin, et al. Optimization of Extraction Process and Analysis of Physicochemical Properties of Wild Rice Protein[J]. Science and Technology of Food Industry, 2023, 44(11): 171−178. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022060125
Citation: YUAN Meng, LI Chunmei, SU Jiamin, et al. Optimization of Extraction Process and Analysis of Physicochemical Properties of Wild Rice Protein[J]. Science and Technology of Food Industry, 2023, 44(11): 171−178. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022060125

菰米蛋白的提取工艺优化及其理化性质分析

doi: 10.13386/j.issn1002-0306.2022060125
基金项目: 扬州市-扬州大学市校合作共建创新科技平台项目(YZ2020267);江苏省文化和旅游重点实验室研究项目(203560133);中餐非遗技艺传承文化与旅游部重点实验室2022年度开放课题(WLB2206);国家自然科学基金青年基金(31800284)
详细信息
    作者简介:

    袁梦(1997−),女,硕士研究生,研究方向:营养与食品卫生,E-mail:yuanmengzy1234@163.com

    通讯作者:

    章海风(1977−),男,博士,副教授,研究方向:膳食营养,E-mail:zhanghf@yzu.edu.cn

  • 中图分类号: TS202.1

Optimization of Extraction Process and Analysis of Physicochemical Properties of Wild Rice Protein

  • 摘要: 以菰米为原料,采用碱提酸沉法提取蛋白质。在单因素实验基础上,以菰米蛋白质提取率为指标,结合响应面法优化,获得菰米蛋白的最佳提取工艺。并通过等电点沉淀后冻干获得菰米蛋白粉,以相同条件下提取获得的淮稻蛋白为对照,对菰米蛋白的分子组成、热稳定性及消化特性进行比较分析。结果表明:不同提取条件对碱提酸沉法提取菰米蛋白的影响为:料液比>温度>提取时间;最佳提取条件为:提取温度为58 ℃、料液比1:25 g/mL、提取时间为3.5 h,此提取条件下菰米蛋白提取率可达45.97%;菰米蛋白等电点pH为3.5;与淮稻蛋白相比,菰米蛋白变性峰值温度为108.4 ℃,ΔH=164.4 J/g,菰米高分子质量蛋白含量较少,消化特性基本相同,但游离氨基酸含量始终较高。综上表明菰米蛋白是人体补充蛋白质的优质来源。
  • 图  1  提取时间对菰米蛋白质提取率的影响

    Figure  1.  Effect of extraction time on protein extraction rate of wild rice

    图  2  温度对菰米蛋白质提取率的影响

    Figure  2.  Effect of temperature on protein extraction rate of wild rice

    图  3  料液比对菰米蛋白质提取率的影响

    Figure  3.  Effects of the ratio of material to liquid on protein extraction rate of wild rice

    图  4  各因素交互作用对菰米蛋白质提取率的影响

    Figure  4.  Effect of interaction of various factors on protein extraction rate of wild rice

    图  5  菰米蛋白质等电点

    Figure  5.  Isoelectric point of wild rice protein

    图  6  菰米和淮稻蛋白的SDS-PAGE凝胶电泳分析结果

    Figure  6.  Results of SDS-PAGE gel electrophoresis of wild rice and Huai rice protein

    图  7  菰米和淮稻蛋白DSC分析

    Figure  7.  DSC analysis of wild rice and Huai rice protein

    图  8  菰米和淮稻蛋白消化过程中氨基酸含量变化

    Figure  8.  Changes in amino acid content during wild rice and Huai rice protein digestion

    表  1  提取菰米蛋白质响应面试验因素与水平

    Table  1.   Factors and levels of response surface test of protein extraction from wild rice

    水平因素
    A 提取时间(h)B 温度(℃)C 料液比(g/mL)
    −12.5501:15
    03.0551:20
    13.5601:25
    下载: 导出CSV

    表  2  Box-Behnken设计方案及试验结果

    Table  2.   Box-Behnken design and test results

    序号A 提取时间B 温度C 料液比Y 蛋白质提取率(%)
    110−139.2
    2−10144.3
    300048.0
    4−10−138.0
    51−1044.1
    600045.8
    701145.5
    811042.2
    900046.7
    1001−146.2
    11−11045.4
    1200047.2
    1300046.3
    140−1144.2
    150−1−137.6
    1610146.4
    17−1−1037.2
    下载: 导出CSV

    表  3  回归方差分析

    Table  3.   Regression analysis of variance

    来源总和自由度均方FP显著性
    模型193.96921.5512.870.0014**
    A6.1316.133.660.0974
    B32.81132.8119.590.0031**
    C51.01147.0428.100.0011**
    AB25.50125.5015.230.0059**
    AC0.2010.200.120.7382
    BC13.32113.327.960.0257*
    A237.58137.5822.450.0021**
    B210.61110.616.340.0400*
    C214.22114.228.490.0225*
    残差11.7271.67
    失拟项8.8632.954.130.1021不显著
    纯误差040
    总和202.8216
    R20.9563
    R2adj0.9002
    注:* 为差异显著(P<0.05);** 为差异极显著(P<0.01)。
    下载: 导出CSV
  • [1] 邢花. 我国菰米中膳食纤维、类黄酮的分析及其对非酒精性肝脂肪变性HepG2细胞作用的研究[D]. 扬州: 扬州大学, 2012: 10.

    XING Hua. Analysis of dietary fiber and flavonoids in Chinese millet and their effects on HepG2 cells of non-alcoholic hepatic steatosis[D]. Yangzhou: Yangzhou University, 2012: 10.
    [2] ZHAI C K, LU C M, ZHANG X Q, et al. Comparative study on nutritional value of chinese and north American wild rice[J]. Journal of Food Composition and Analysis,2001,14(4):371−382. doi:  10.1006/jfca.2000.0979
    [3] 张红, 曹佩, 翟成凯, 等. 我国菰米对高脂膳食大鼠血脂及炎性因子的影响[J]. 营养学报,2009,31(3):222−225. [ZHANG Hong, CAO Pei, ZHAI Chengkai, et al. Effects of Chinese wild rice on blood lipids and inflammatory factors in rats with high-fat diet[J]. Journal of Nutrition,2009,31(3):222−225. doi:  10.13325/j.cnki.acta.nutr.sin.2009.03.013
    [4] 张红, 刘洋, 赵军红, 等. 菰米血糖生成指数的测定及其改善大鼠胰岛素抵抗的作用[J]. 卫生研究,2015,44(2):173−178,184. [ZHANG Hong, LIU Yang, ZHAO Junhong, et al. Determination of glycemic index of wild rice and its effect on insulin resistance in rats[J]. Health Research,2015,44(2):173−178,184.
    [5] 翟成凯, 殷泰安, 姚修仁, 等. 菰米的营养成分分析[J]. 营养学报,1992(2):210−214. [ZHAI Chengkai, YIN Taian, YAO Xiuren, et al. Analysis of nutritional components of wild rice[J]. Journal of Nutrition,1992(2):210−214. doi:  10.3321/j.issn:0512-7955.1992.02.001
    [6] 孙长颢. 营养与食品卫生学[M]. 北京: 人民卫生出版社, 2007: 131.

    SUN Changhao. Nutrition and food hygiene[M]. Beijing: People's Medical Publishing House, 2007: 131.
    [7] 刘传光, 周新桥, 陈达刚, 等. 功能性水稻研究进展及前景展望[J]. 广东农业科学,2021,48(10):87−99. [LIU Chuanguang, ZHOU Xinqiao, CHEN Dagang, et al. Research progress and prospect of functional rice[J]. Guangdong Agricultural Sciences,2021,48(10):87−99. doi:  10.16768/j.issn.1004-874X.2021.10.010
    [8] 翟成凯, 张小强, 孙桂菊, 等. 中国菰米的营养成分及其蛋白质特性的研究[J]. 卫生研究,2000(6):375−378. [ZHAI Chengkai, ZHANG Xiaoqiang, SUN Guiju, et al. Studies on the nutritional components and protein characteristics of Chinese wild rice[J]. Health Research,2000(6):375−378. doi:  10.3969/j.issn.1000-8020.2000.06.020
    [9] 张永青, 孙慧丽, 何春玲, 等. 野生菰米的蛋白质营养价值评价[J]. 预防医学文献信息,2001(6):618−619. [ZHANG Yongqing, SUN Huili, HE Chunling, et al. Evaluation of protein nutritional value of wild rice[J]. Preventive Medicine Literature and Information,2001(6):618−619. doi:  10.3969/j.issn.1672-9153.2001.06.003
    [10] 马洪鑫, 袁治浩, 刘洪海, 等. 比较不同方法提取藜麦蛋白[J]. 食品安全质量检测学报,2021,12(5):1890−1898. [MA Hongxin, YUAN Zhihao, LIU Honghai, et al. Compare different methods of extracting quinoa protein[J]. Journal of Food Safety and Quality Inspection,2021,12(5):1890−1898. doi:  10.19812/j.cnki.jfsq11-5956/ts.2021.05.044
    [11] 高柳. 黑米蛋白的提取及谷蛋白功能性质和改性研究[D]. 成都: 西华大学, 2019: 9.

    GAI Liu. Extraction of black rice protein and study on functional properties and modification of glutenin [D]. Chengdu: Xihua University, 2019: 9.
    [12] 张兆云. “陇藜1号”藜麦清蛋白分离提取及性质研究[D]. 兰州: 甘肃农业大学, 2021: 25.

    ZHANG Zhaoyun. Study on isolation, extraction and properties of Chenopodium albumin from "Longli No. 1"[D]. Lanzhou: Gansu Agricultural University, 2021, 25.
    [13] 郭莲东, 徐丽, 欧才智, 等. 小米蛋白的分子组成及结构特性[J]. 食品科学,2019,40(24):201−206. [GUO Liandong, XU Li, OU Caizhi, et al. Molecular composition and structural properties of millet protein[J]. Food Science,2019,40(24):201−206. doi:  10.7506/spkx1002-6630-20181225-293
    [14] 彭菁. 沙米蛋白和淀粉的理化性质研究及应用[D]. 南京: 南京农业大学, 2017: 20.

    PENG Jing. Study on physical and chemical properties and application of sand rice protein and starch [D]. Nanjing: Nanjing Agricultural University, 2017: 20.
    [15] 王丽丽, 曹珍珍, 李楠楠, 等. 烹制强度对米饭热力学及消化特性的影响[J]. 中国粮油学报,2020,35(8):8−14. [WANG Lili, CAO Zhenzhen, LI Nannan, et al. Effect of cooking intensity on thermodynamics and digestibility of rice[J]. Chinese Journal of Cereals and Oils,2020,35(8):8−14. doi:  10.3969/j.issn.1003-0174.2020.08.003
    [16] 朱亚飞. 粘性液体互扩散的可视化分析及应用[D]. 唐山: 华北理工大学, 2021: 18.

    ZHU Yafei. Visual analysis and application of viscous liquid interdiffusion[D]. Tangshan: North China University of Technology, 2021: 18.
    [17] 林莉, 董玮, 林彩霞, 等. 脱脂油茶饼中蛋白质提取工艺[J]. 中国食品添加剂,2021,32(11):59−66. [LIN Li, DONG Wei, LIN Caixia, et al. Protein extraction technology from defatted camellia cake[J]. China Food Additives,2021,32(11):59−66. doi:  10.19804/j.issn1006-2513.2021.11.009
    [18] LI G, WANG S, ZHU F J. Physicochemical properties of quinoa starch[J]. Carbohydrate Polymers,2016,137:328−338. doi:  10.1016/j.carbpol.2015.10.064
    [19] 周浩纯, 李赫, 赵迪, 等. 亚麻籽饼粕蛋白提取工艺优化及其水解物抑制α-淀粉酶活性研究[J]. 食品研究与开发,2020,4(21):61−68. [ZHOU Haochun, LI He, ZHAO Di, et al. Optimization of protein extraction from flaxseed meal and study on α-amylase inhibitory activity of hydrolysate[J]. Food Research and Development,2020,4(21):61−68. doi:  10.12161/j.issn.1005-6521.2020.21.011
    [20] 胡祥, 刘云, 徐涵, 等. ‘龙佳’核桃品质分析及蛋白质提取工艺优化[J]. 食品科技,2021,46(2):225−231. [HU Xiang, LIU Yun, XU Han, et al. Quality analysis and protein extraction process optimization of 'Longjia' walnut[J]. Food Science and Technology,2021,46(2):225−231.
    [21] FETZER A, HERFELLNER T, STABLER A, et al. Influence of process conditions during aqueous protein extraction upon yield from pre-pressed and cold-pressed rapeseed press cake[J]. Industrial Crops and Products,2018,112:236−246. doi:  10.1016/j.indcrop.2017.12.011
    [22] CUI H, PAN H W, WANG P H, et al. Essential oils from Carex meyeriana Kunth: Optimization of hydrodistillation extraction by response surface methodology and evaluation of its antioxidant and antimicrobial activities[J]. Industrial Crops and Product,2018,124:669−679. doi:  10.1016/j.indcrop.2018.08.041
    [23] 张颖, 赵姗, 王晨熙, 等. 盐地碱蓬粗蛋白的提取工艺优化及特性研究[J]. 食品研究与开发,2021,42(16):107−115. [ZHANG Ying, ZHAO Shan, WANG Chenxi, et al. Optimization of extraction process and characteristics of crude protein from Suaeda salsa[J]. Food Research and Development,2021,42(16):107−115. doi:  10.12161/j.issn.1005-6521.2021.16.016
    [24] DEBORA N L, ROMINA I, PABLO B, et al. “Structural characterization of protein isolates obtained from chia (Salvia hispanica L.) seeds”[J]. LWT-Food Science and Technology,2018,90:396−402. doi:  10.1016/j.lwt.2017.12.060
    [25] 安兆祥, 蔡志鹏, 黄占旺, 等. 黑木耳蛋白提取工艺优化及其功能特性研究[J]. 食品工业科技,2021,42(18):157−166. [AN Zhaoxiang, CAI Zhipeng, HUANG Zhanwang, et al. Optimization of extraction process and functional properties of Auricularia auricula protein[J]. Food Industry Science and Technology,2021,42(18):157−166. doi:  10.13386/j.issn1002-0306.2020120003
    [26] NIETO-NIETO T V, YI X W, OZIMEK L, et al. Effects of partial hydrolysis on structure and gelling properties of oat globular proteins[J]. Food Research International,2014,55(jan.):418−425.
    [27] 王美玉. 燕麦蛋白热聚集及对胃蛋白酶消化影响的研究[D]. 晋中: 山西农业大学, 2020: 19. .

    WANG Meiyu. Study on thermal aggregation of oat protein and its effect on pepsin digestion[D]. Jinzhong: Shanxi Agricultural University, 2020: 19.
    [28] DENG Y J, HUANG L X, ZHANG C H, et al. Physicochemical and functional properties of Chinese quince seed protein isolate[J]. Food Chemistry,2019,283:539−548. doi:  10.1016/j.foodchem.2019.01.083
    [29] ZHAO Q, XIONG H, SELOMULYA C, et al. Effects of spray drying and freeze drying on the properties of protein isolate from rice dreg protein[J]. Food and Bioprocess Technology,2013,6(7):1756−1769.
    [30] 王文高, 陈正行, 姚惠源. 不同干燥方法对大米蛋白质功能性质的影响[J]. 粮食与饲料工业,2002(5):44−45. [WANG Wengao, CHEN Zhengxing, YAO Huiyuan. Effects of different drying methods on functional properties of rice protein[J]. Grain and Feed Industry,2002(5):44−45.
    [31] 苏钰亭, 尹涛, 赵思明, 等. 蒸煮模式和大米品种对米饭蛋白质消化特性的影响[J]. 食品科学,2014,35(3):100−105. [SU Yuting, YIN Tao, ZHAO Siming, et al. Effects of cooking patterns and rice varieties on protein digestibility of rice[J]. Food Science,2014,35(3):100−105.
    [32] 赵城彬, 尹欢欢, 鄢健楠, 等. 不同热处理条件下大豆蛋白体外模拟消化产物结构和分子质量分布[J]. 中国食品学报,2020,20(5):59−65. [ZHAO Chengbin, YIN Huanhuan, YAN JIAN Nan, et al. The structure and molecular weight distribution of soybean protein digestedin vitro were simulated under different heat treatment conditions[J]. Chinese Journal of Food,2020,20(5):59−65.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  111
  • HTML全文浏览量:  42
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-15
  • 网络出版日期:  2023-04-20
  • 刊出日期:  2023-06-01

目录

    /

    返回文章
    返回