Optimization of Extraction Process and Analysis of Physicochemical Properties of Wild Rice Protein
-
摘要: 以菰米为原料,采用碱提酸沉法提取蛋白质。在单因素实验基础上,以菰米蛋白质提取率为指标,结合响应面法优化,获得菰米蛋白的最佳提取工艺。并通过等电点沉淀后冻干获得菰米蛋白粉,以相同条件下提取获得的淮稻蛋白为对照,对菰米蛋白的分子组成、热稳定性及消化特性进行比较分析。结果表明:不同提取条件对碱提酸沉法提取菰米蛋白的影响为:料液比>温度>提取时间;最佳提取条件为:提取温度为58 ℃、料液比1:25 g/mL、提取时间为3.5 h,此提取条件下菰米蛋白提取率可达45.97%;菰米蛋白等电点pH为3.5;与淮稻蛋白相比,菰米蛋白变性峰值温度为108.4 ℃,ΔH=164.4 J/g,菰米高分子质量蛋白含量较少,消化特性基本相同,但游离氨基酸含量始终较高。综上表明菰米蛋白是人体补充蛋白质的优质来源。Abstract: Wild rice was used as raw material to extract protein by alkali extraction and acid precipitation. Based on the single-factor test, the best extraction process of wild rice protein was obtained by using the index of extraction rate of rice protein and the optimization of the response surface method. The wild rice protein powder was obtained by isoelectric point precipitation and freeze-drying. Compared with the Huai rice protein extracted under the same conditions, wild rice protein's molecular composition, thermal stability, and digestion characteristics were compared and analyzed. The results showed that the effects of different extraction conditions on the extraction of wild rice protein by alkali extraction and acid precipitation were as follows: Ratio of material to liquid>temperature>time, and the optimum extraction conditions were as follows: Extraction temperature 58 ℃, the ratio of material to liquid 1:25 g/mL, extraction time 3.5 h. Under these conditions, the wild rice protein extraction rate was 45.97%, and the isoelectric point (pH) of wild rice protein was 3.5. Compared with Huai rice protein, the denaturation peak temperature of wild rice protein was 108.4 ℃, ΔH=164.4 J/g, the high molecular weight protein content was less, and the digestibility was the same, however, the content of free amino acids was always higher, which was more beneficial to human digestion and absorption. In conclusion, wild rice protein is a high quality source of supplemental protein for human body.
-
Key words:
- wild rice protein /
- extraction process /
- response surface /
- physicochemical properties /
- digestion
-
表 1 提取菰米蛋白质响应面试验因素与水平
Table 1. Factors and levels of response surface test of protein extraction from wild rice
水平 因素 A 提取时间(h) B 温度(℃) C 料液比(g/mL) −1 2.5 50 1:15 0 3.0 55 1:20 1 3.5 60 1:25 表 2 Box-Behnken设计方案及试验结果
Table 2. Box-Behnken design and test results
序号 A 提取时间 B 温度 C 料液比 Y 蛋白质提取率(%) 1 1 0 −1 39.2 2 −1 0 1 44.3 3 0 0 0 48.0 4 −1 0 −1 38.0 5 1 −1 0 44.1 6 0 0 0 45.8 7 0 1 1 45.5 8 1 1 0 42.2 9 0 0 0 46.7 10 0 1 −1 46.2 11 −1 1 0 45.4 12 0 0 0 47.2 13 0 0 0 46.3 14 0 −1 1 44.2 15 0 −1 −1 37.6 16 1 0 1 46.4 17 −1 −1 0 37.2 表 3 回归方差分析
Table 3. Regression analysis of variance
来源 总和 自由度 均方 F P 显著性 模型 193.96 9 21.55 12.87 0.0014 ** A 6.13 1 6.13 3.66 0.0974 B 32.81 1 32.81 19.59 0.0031 ** C 51.01 1 47.04 28.10 0.0011 ** AB 25.50 1 25.50 15.23 0.0059 ** AC 0.20 1 0.20 0.12 0.7382 BC 13.32 1 13.32 7.96 0.0257 * A2 37.58 1 37.58 22.45 0.0021 ** B2 10.61 1 10.61 6.34 0.0400 * C2 14.22 1 14.22 8.49 0.0225 * 残差 11.72 7 1.67 失拟项 8.86 3 2.95 4.13 0.1021 不显著 纯误差 0 4 0 总和 202.82 16 R2 0.9563 R2adj 0.9002 注:* 为差异显著(P<0.05);** 为差异极显著(P<0.01)。 -
[1] 邢花. 我国菰米中膳食纤维、类黄酮的分析及其对非酒精性肝脂肪变性HepG2细胞作用的研究[D]. 扬州: 扬州大学, 2012: 10.XING Hua. Analysis of dietary fiber and flavonoids in Chinese millet and their effects on HepG2 cells of non-alcoholic hepatic steatosis[D]. Yangzhou: Yangzhou University, 2012: 10. [2] ZHAI C K, LU C M, ZHANG X Q, et al. Comparative study on nutritional value of chinese and north American wild rice[J]. Journal of Food Composition and Analysis,2001,14(4):371−382. doi: 10.1006/jfca.2000.0979 [3] 张红, 曹佩, 翟成凯, 等. 我国菰米对高脂膳食大鼠血脂及炎性因子的影响[J]. 营养学报,2009,31(3):222−225. [ZHANG Hong, CAO Pei, ZHAI Chengkai, et al. Effects of Chinese wild rice on blood lipids and inflammatory factors in rats with high-fat diet[J]. Journal of Nutrition,2009,31(3):222−225. doi: 10.13325/j.cnki.acta.nutr.sin.2009.03.013 [4] 张红, 刘洋, 赵军红, 等. 菰米血糖生成指数的测定及其改善大鼠胰岛素抵抗的作用[J]. 卫生研究,2015,44(2):173−178,184. [ZHANG Hong, LIU Yang, ZHAO Junhong, et al. Determination of glycemic index of wild rice and its effect on insulin resistance in rats[J]. Health Research,2015,44(2):173−178,184. [5] 翟成凯, 殷泰安, 姚修仁, 等. 菰米的营养成分分析[J]. 营养学报,1992(2):210−214. [ZHAI Chengkai, YIN Taian, YAO Xiuren, et al. Analysis of nutritional components of wild rice[J]. Journal of Nutrition,1992(2):210−214. doi: 10.3321/j.issn:0512-7955.1992.02.001 [6] 孙长颢. 营养与食品卫生学[M]. 北京: 人民卫生出版社, 2007: 131.SUN Changhao. Nutrition and food hygiene[M]. Beijing: People's Medical Publishing House, 2007: 131. [7] 刘传光, 周新桥, 陈达刚, 等. 功能性水稻研究进展及前景展望[J]. 广东农业科学,2021,48(10):87−99. [LIU Chuanguang, ZHOU Xinqiao, CHEN Dagang, et al. Research progress and prospect of functional rice[J]. Guangdong Agricultural Sciences,2021,48(10):87−99. doi: 10.16768/j.issn.1004-874X.2021.10.010 [8] 翟成凯, 张小强, 孙桂菊, 等. 中国菰米的营养成分及其蛋白质特性的研究[J]. 卫生研究,2000(6):375−378. [ZHAI Chengkai, ZHANG Xiaoqiang, SUN Guiju, et al. Studies on the nutritional components and protein characteristics of Chinese wild rice[J]. Health Research,2000(6):375−378. doi: 10.3969/j.issn.1000-8020.2000.06.020 [9] 张永青, 孙慧丽, 何春玲, 等. 野生菰米的蛋白质营养价值评价[J]. 预防医学文献信息,2001(6):618−619. [ZHANG Yongqing, SUN Huili, HE Chunling, et al. Evaluation of protein nutritional value of wild rice[J]. Preventive Medicine Literature and Information,2001(6):618−619. doi: 10.3969/j.issn.1672-9153.2001.06.003 [10] 马洪鑫, 袁治浩, 刘洪海, 等. 比较不同方法提取藜麦蛋白[J]. 食品安全质量检测学报,2021,12(5):1890−1898. [MA Hongxin, YUAN Zhihao, LIU Honghai, et al. Compare different methods of extracting quinoa protein[J]. Journal of Food Safety and Quality Inspection,2021,12(5):1890−1898. doi: 10.19812/j.cnki.jfsq11-5956/ts.2021.05.044 [11] 高柳. 黑米蛋白的提取及谷蛋白功能性质和改性研究[D]. 成都: 西华大学, 2019: 9.GAI Liu. Extraction of black rice protein and study on functional properties and modification of glutenin [D]. Chengdu: Xihua University, 2019: 9. [12] 张兆云. “陇藜1号”藜麦清蛋白分离提取及性质研究[D]. 兰州: 甘肃农业大学, 2021: 25.ZHANG Zhaoyun. Study on isolation, extraction and properties of Chenopodium albumin from "Longli No. 1"[D]. Lanzhou: Gansu Agricultural University, 2021, 25. [13] 郭莲东, 徐丽, 欧才智, 等. 小米蛋白的分子组成及结构特性[J]. 食品科学,2019,40(24):201−206. [GUO Liandong, XU Li, OU Caizhi, et al. Molecular composition and structural properties of millet protein[J]. Food Science,2019,40(24):201−206. doi: 10.7506/spkx1002-6630-20181225-293 [14] 彭菁. 沙米蛋白和淀粉的理化性质研究及应用[D]. 南京: 南京农业大学, 2017: 20.PENG Jing. Study on physical and chemical properties and application of sand rice protein and starch [D]. Nanjing: Nanjing Agricultural University, 2017: 20. [15] 王丽丽, 曹珍珍, 李楠楠, 等. 烹制强度对米饭热力学及消化特性的影响[J]. 中国粮油学报,2020,35(8):8−14. [WANG Lili, CAO Zhenzhen, LI Nannan, et al. Effect of cooking intensity on thermodynamics and digestibility of rice[J]. Chinese Journal of Cereals and Oils,2020,35(8):8−14. doi: 10.3969/j.issn.1003-0174.2020.08.003 [16] 朱亚飞. 粘性液体互扩散的可视化分析及应用[D]. 唐山: 华北理工大学, 2021: 18.ZHU Yafei. Visual analysis and application of viscous liquid interdiffusion[D]. Tangshan: North China University of Technology, 2021: 18. [17] 林莉, 董玮, 林彩霞, 等. 脱脂油茶饼中蛋白质提取工艺[J]. 中国食品添加剂,2021,32(11):59−66. [LIN Li, DONG Wei, LIN Caixia, et al. Protein extraction technology from defatted camellia cake[J]. China Food Additives,2021,32(11):59−66. doi: 10.19804/j.issn1006-2513.2021.11.009 [18] LI G, WANG S, ZHU F J. Physicochemical properties of quinoa starch[J]. Carbohydrate Polymers,2016,137:328−338. doi: 10.1016/j.carbpol.2015.10.064 [19] 周浩纯, 李赫, 赵迪, 等. 亚麻籽饼粕蛋白提取工艺优化及其水解物抑制α-淀粉酶活性研究[J]. 食品研究与开发,2020,4(21):61−68. [ZHOU Haochun, LI He, ZHAO Di, et al. Optimization of protein extraction from flaxseed meal and study on α-amylase inhibitory activity of hydrolysate[J]. Food Research and Development,2020,4(21):61−68. doi: 10.12161/j.issn.1005-6521.2020.21.011 [20] 胡祥, 刘云, 徐涵, 等. ‘龙佳’核桃品质分析及蛋白质提取工艺优化[J]. 食品科技,2021,46(2):225−231. [HU Xiang, LIU Yun, XU Han, et al. Quality analysis and protein extraction process optimization of 'Longjia' walnut[J]. Food Science and Technology,2021,46(2):225−231. [21] FETZER A, HERFELLNER T, STABLER A, et al. Influence of process conditions during aqueous protein extraction upon yield from pre-pressed and cold-pressed rapeseed press cake[J]. Industrial Crops and Products,2018,112:236−246. doi: 10.1016/j.indcrop.2017.12.011 [22] CUI H, PAN H W, WANG P H, et al. Essential oils from Carex meyeriana Kunth: Optimization of hydrodistillation extraction by response surface methodology and evaluation of its antioxidant and antimicrobial activities[J]. Industrial Crops and Product,2018,124:669−679. doi: 10.1016/j.indcrop.2018.08.041 [23] 张颖, 赵姗, 王晨熙, 等. 盐地碱蓬粗蛋白的提取工艺优化及特性研究[J]. 食品研究与开发,2021,42(16):107−115. [ZHANG Ying, ZHAO Shan, WANG Chenxi, et al. Optimization of extraction process and characteristics of crude protein from Suaeda salsa[J]. Food Research and Development,2021,42(16):107−115. doi: 10.12161/j.issn.1005-6521.2021.16.016 [24] DEBORA N L, ROMINA I, PABLO B, et al. “Structural characterization of protein isolates obtained from chia (Salvia hispanica L.) seeds”[J]. LWT-Food Science and Technology,2018,90:396−402. doi: 10.1016/j.lwt.2017.12.060 [25] 安兆祥, 蔡志鹏, 黄占旺, 等. 黑木耳蛋白提取工艺优化及其功能特性研究[J]. 食品工业科技,2021,42(18):157−166. [AN Zhaoxiang, CAI Zhipeng, HUANG Zhanwang, et al. Optimization of extraction process and functional properties of Auricularia auricula protein[J]. Food Industry Science and Technology,2021,42(18):157−166. doi: 10.13386/j.issn1002-0306.2020120003 [26] NIETO-NIETO T V, YI X W, OZIMEK L, et al. Effects of partial hydrolysis on structure and gelling properties of oat globular proteins[J]. Food Research International,2014,55(jan.):418−425. [27] 王美玉. 燕麦蛋白热聚集及对胃蛋白酶消化影响的研究[D]. 晋中: 山西农业大学, 2020: 19. .WANG Meiyu. Study on thermal aggregation of oat protein and its effect on pepsin digestion[D]. Jinzhong: Shanxi Agricultural University, 2020: 19. [28] DENG Y J, HUANG L X, ZHANG C H, et al. Physicochemical and functional properties of Chinese quince seed protein isolate[J]. Food Chemistry,2019,283:539−548. doi: 10.1016/j.foodchem.2019.01.083 [29] ZHAO Q, XIONG H, SELOMULYA C, et al. Effects of spray drying and freeze drying on the properties of protein isolate from rice dreg protein[J]. Food and Bioprocess Technology,2013,6(7):1756−1769. [30] 王文高, 陈正行, 姚惠源. 不同干燥方法对大米蛋白质功能性质的影响[J]. 粮食与饲料工业,2002(5):44−45. [WANG Wengao, CHEN Zhengxing, YAO Huiyuan. Effects of different drying methods on functional properties of rice protein[J]. Grain and Feed Industry,2002(5):44−45. [31] 苏钰亭, 尹涛, 赵思明, 等. 蒸煮模式和大米品种对米饭蛋白质消化特性的影响[J]. 食品科学,2014,35(3):100−105. [SU Yuting, YIN Tao, ZHAO Siming, et al. Effects of cooking patterns and rice varieties on protein digestibility of rice[J]. Food Science,2014,35(3):100−105. [32] 赵城彬, 尹欢欢, 鄢健楠, 等. 不同热处理条件下大豆蛋白体外模拟消化产物结构和分子质量分布[J]. 中国食品学报,2020,20(5):59−65. [ZHAO Chengbin, YIN Huanhuan, YAN JIAN Nan, et al. The structure and molecular weight distribution of soybean protein digestedin vitro were simulated under different heat treatment conditions[J]. Chinese Journal of Food,2020,20(5):59−65. -