• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020

微粉化胡萝卜渣的乳化性研究

董蕾 张萌萌 杨靖 张亮亮 徐建国

董蕾,张萌萌,杨靖,等. 微粉化胡萝卜渣的乳化性研究[J]. 食品工业科技,2023,44(11):65−73. doi:  10.13386/j.issn1002-0306.2022060127
引用本文: 董蕾,张萌萌,杨靖,等. 微粉化胡萝卜渣的乳化性研究[J]. 食品工业科技,2023,44(11):65−73. doi:  10.13386/j.issn1002-0306.2022060127
DONG Lei, ZHANG Mengmeng, YANG Jing, et al. Study on Emulsification of Micronized Carrot Residue[J]. Science and Technology of Food Industry, 2023, 44(11): 65−73. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022060127
Citation: DONG Lei, ZHANG Mengmeng, YANG Jing, et al. Study on Emulsification of Micronized Carrot Residue[J]. Science and Technology of Food Industry, 2023, 44(11): 65−73. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022060127

微粉化胡萝卜渣的乳化性研究

doi: 10.13386/j.issn1002-0306.2022060127
基金项目: 山西省自然科学基金(201601D011070);山西省自然科学基金(20210302123256);山西省研究生教育创新项目(2022Y496)。
详细信息
    作者简介:

    董蕾(1996−),女,硕士研究生,研究方向:农副产品深加工,E-mail:DLL0103@163.com

    通讯作者:

    张亮亮(1987−),男,博士,讲师,研究方向:天然产物研究与开发,E-mail:771677097@qq.com

    徐建国(1971−),男,博士,教授,研究方向:植物资源与食品功能性成分研究,E-mail:xjg71@163.com

  • 中图分类号: TS255.2

Study on Emulsification of Micronized Carrot Residue

  • 摘要: 为探讨微粉化技术对胡萝卜渣的乳化效果,充分开发胡萝卜渣的利用价值,本研究以胡萝卜渣为试验材料,通过不同研磨时间得到不同研磨程度的胡萝卜渣粉,比较胡萝卜渣添加量及油水比对添加胡萝卜渣粉乳液的稳定性和乳化性影响,得出最佳稳定胡萝卜膳食纤维乳液的条件,并在此条件下制备乳液,研究pH、NaCl浓度、温度对乳液的乳化性、稳定性及乳析指数的影响。实验结果表明:研磨改变了胡萝卜渣的形貌结构,研磨30 min后颗粒尺寸没有进一步降低,且其乳化能力及稳定性均随着研磨时间的延长而呈现先上升后下降的趋势,当研磨时间为30 min时,乳液的乳化性及稳定性最好。同时,在最佳乳化剂、最佳油水比(2:8)及胡萝卜渣浓度(3%)下,其EAI和ESI达到60.05 m2/g和60.64 min,并且乳液乳化性会随着pH升高而增强,稳定性随着pH升高而先增强,在pH为6时略微降低再增强;随NaCl浓度的升高而降低;乳化性随温度的升高先升高后降低,稳定性随温度的升高而降低。微粉化后的胡萝卜渣有良好稳定乳液的能力,具有作为食品级乳液稳定剂的应用潜力。
  • 图  1  胡萝卜渣扫描电镜图

    Figure  1.  Scanning electron microscopy of carrot residue

    图  2  不同油水比对样品乳化性(EAI)及稳定性(ESI)的影响

    Figure  2.  Effects of different oil/water ratios on sample emulsification and stability

    注:CK为空白对照组,A1、A2、A3、A4组研磨时间分别为10、20、30、40 min;A、B、C、D分别代表油水比为5:5、4:6、3:7、2:8。采用Duncan差异分析,显著性差异标准设定为P<0.05。

    图  3  不同油水比乳析指数

    Figure  3.  Emulsion index of different oil/water ratios

    图  4  不同胡萝卜渣添加量对乳液的乳化性及稳定性的影响

    Figure  4.  Effects of different addition amounts of carrot residue on the emulsification and stability of emulsion

    注:CK为空白对照组,A1、A2、A3、A4组研磨时间分别为10、20、30、40 min;从上到下分别代表胡萝卜渣添加量为0.5%、1%、2%、3%;A为外观图,B为添加量对EAI和ESI影响图,采用Duncan差异分析,显著性差异标准设定为P<0.05。

    图  5  不同胡萝卜渣添加量乳析指数

    Figure  5.  Emulsion index of different addition amounts of carrot residue

    图  6  不同pH对乳液EAI和ESI的影响

    Figure  6.  Effect of different pH on EAI and ESI of emulsion

    注:采用Duncan差异分析,显著性差异标准设定为P<0.05,图8图10同。

    图  7  不同pH下乳液外观及乳析指数

    Figure  7.  Emulsion appearance and emulsification index under different pH

    注:A为乳液外观图,B为pH对乳析指数的影响。

    图  8  NaCl浓度对乳液EAI和ESI的影响

    Figure  8.  Effects of NaCl concentration on EAI and ESI of emulsions

    图  9  不同NaCl浓度下乳液外观及乳析指数

    Figure  9.  Emulsion appearance and emulsification index under different NaCl concentrations

    注:A为乳液外观图,B为NaCl浓度对乳析指数的影响。

    图  10  温度对乳液EAI和ESI的影响

    Figure  10.  Effects of temperature on EAI and ESI of emulsions

    图  11  不同温度下乳液外观及乳析指数

    Figure  11.  Emulsion appearance and emulsification index under different temperatures

    注:A为乳液外观图,B为温度对乳析指数的影响。

    表  1  研磨对胡萝卜渣营养成分含量的影响

    Table  1.   Effect of grinding on nutrient content of carrot residue

    胡萝卜渣颗粒蛋白质(g/100 g)脂肪(mg/g)水分(g/100 g)IDF(g/100 g)SDF(g/100 g)
    CK5.41±0.05a16.36±1.39a5.60±0.03a35.13±1.45a9.81±0.78d
    A15.39±0.10a13.59±2.41a6.20±0.05a33.24±0.63a11.56±1.32d
    A25.39±0.05a16.56±1.94a5.40±0.04a31.02±0.31b13.23±0.75c
    A35.33±0.09a15.56±0.52a5.20±0.02a23.51±0.56d19.72±0.69a
    A45.45±0.05a15.92±0.53a5.80±0.07a27.28±1.47c16.06±1.33b
    注:表中数字后标字母表示统计分析结果,不同字母表示显著性差异(P<0.05)。
    下载: 导出CSV
  • [1] 余熠杨, 邓源喜, 徐情, 等. 胡萝卜的营养保健功能及其开发应用进展[J]. 安徽农学通报,2020,26(17):129−131. [YU Y, DENG Y X, XU Q, et al. Nutrient health care function of carrot and its development and application progress[J]. Anhui Agri, Sci, Bull,2020,26(17):129−131. doi:  10.3969/j.issn.1007-7731.2020.17.057
    [2] OLIVEIRA T D, R GUEGAN, THIEBAULT T, et al. Adsorption of diclofenac onto organoclays: Effects of surfactant and environmental (pH and temperature) conditions[J]. Journal of Hazardous Materials,2017,323:558−566. doi:  10.1016/j.jhazmat.2016.05.001
    [3] WANG J S, WANG A B, ZANG X P, et al. Physical and oxidative stability of functional avocado oil high internal phase emulsions collaborative formulated using citrus nanofibers and tannic acid[J]. Food Hydrocolloids,2018,23:231−238.
    [4] GOULD J, VIEIRA J, WOLF B. Cocoa particles for food emulsion stabilisation[J]. Food Function,2013,4(9):1369−1375. doi:  10.1039/c3fo30181h
    [5] LU X, XIAO J, HUANG Q. Pickering emulsions stabilized by media-milled starch particles[J]. Food Research International,2018,105:140−149. doi:  10.1016/j.foodres.2017.11.006
    [6] COSTA A, GOMES A, TIBOLLA H, et al. Cellulose nanofibers from banana peels as a Pickering emulsifier: High-energy emulsification processes[J]. Carbohydr Polym,2018,194:122−131. doi:  10.1016/j.carbpol.2018.04.001
    [7] 张爱琴, 孙乾, 李芳, 等. 超微粉碎对红花籽粕蛋白质形态和理化功能性的影响[J]. 食品与发酵工业,2019,45(1):115−120. [ZHANG A Q, SUN Q, LI F, et al. Effects of ultramicro pulverization on protein morphology and physicochemical properties of safflower seed meal[J]. Food and Fermentation Industries,2019,45(1):115−120. doi:  10.13995/j.cnki.11-1802/ts.016496
    [8] 杨春瑜, 柳双双, 梁佳钰, 等. 超微粉碎对食品理化性质影响的研究[J]. 食品研究与开发,2019,40(1):220−224. [YANG C Y, LIU S S, LIANG J Y, et al. Effects of superfinegrinding technology on physical and chemical properties of food[J]. Food Research and Development,2019,40(1):220−224. doi:  10.3969/j.issn.1005-6521.2019.01.036
    [9] 高国祥, 关二旗, 李萌萌, 等. 超微粉碎对大豆蛋白功能特性的影响研究[J]. 中国油脂,2018,43(3):30−34. [GAO G X, GUAN E Q, LI M M, et al. Effect of superfine comminution on functional property of soybean protein[J]. China Oils and Fats,2018,43(3):30−34. doi:  10.3969/j.issn.1003-7969.2018.03.008
    [10] ZHAO X, MENG A, ZHANG X, et al. Effects of ultrafine grinding on physicochemical, functional and surface properties of ginger stem powders[J]. Journal of the Science of Food and Agriculture,2020,100(15):5558−5568. doi:  10.1002/jsfa.10608
    [11] RAMACHANDRAIAH K, CHIN K B. Evaluation of ball-milling time on the physicochemical and antioxidant properties of persimmon by-products powder[J]. Innovative Food Science & Emerging Technologies,2016,37:115−124.
    [12] 程晨, 梁莉, 张柳茵, 等. 复合菌株发酵胡萝卜饮料的工艺研究[J]. 食品工业,2016,37(7):78−82. [CHENG C, LIANG L, ZHANG L Y, et al. Study on the processing technique of carrot drink fermented by compound strains[J]. Food Industrial,2016,37(7):78−82.
    [13] 宫元娟, 曾日新, 田素博, 等. 胡萝卜精细加工技术及其综合应用[J]. 农业工程学报,2006(4):199−203. [GONG W J, ZENG R X, TIAN S B, et al. Review of refining processing and comprehensive utilization of carrot[J]. Transactions of the Chinese Society of Agricultural Engineering,2006(4):199−203. doi:  10.3321/j.issn:1002-6819.2006.04.044
    [14] 袁驰, 赵婧, 周春丽, 等. 胡萝卜加工副产物综合利用研究进展[J]. 食品工业,2014,35(4):161−164. [YUAN C, ZHAO J, ZHOU C Y, et al. Progress in research on utilization of the by-products of carrot processing[J]. Food Industrial,2014,35(4):161−164.
    [15] 杨申明, 徐文博, 王振吉, 等. 超声波辅助提取野胡萝卜多糖工艺优化及其体外抗氧化性[J]. 食品科技,2016,41(12):142−148. [YANG S M, XU W B, WANG Z J, et al. Ultrasonic-assisted extraction and antioxidant activity in vitro of polysaccharides from Daucus carota Linn[J]. Food Science and Technology,2016,41(12):142−148. doi:  10.13684/j.cnki.spkj.2016.12.029
    [16] 刘帅. 基于微生物发酵研究胡萝卜膳食纤维与结合多酚之间酵解特性的相互影响[D]. 南昌: 南昌大学, 2020.

    LIU S. Interaction of the glycolytic properties between carrot dietary fiber and bound polyphenols based on microbial fermentation[D]. Nanchang: Nanchang University, 2020.
    [17] VANJA Š, GORDANA Ć, JASNA Č-B, et al. Encapsulation of carrot waste extract by freeze and spray drying techniques: An optimization study[J]. LWT,2021,138:110696. doi:  10.1016/j.lwt.2020.110696
    [18] YANG C, SISTA KAMESHWAR A K, ZHANG J, et al. Ultrafine grinding a promising method for improving the total dietary fiber content and physico-chemical properties of potato peel waste[J]. Waste and Biomass Valorization,2020,11(6):3057−3070. doi:  10.1007/s12649-019-00618-9
    [19] 贾映霞. 天然胡麻蛋白乳化剂的制备及其乳化特性研究[D]. 太原: 山西师范大学, 2019.

    JIA Y X. Studies on the preparation and emulsifying properties of natural flax protein emulsifier[D]. Taiyuan: Shanxi Normal University, 2019.
    [20] 何康慧. 竹笋水不溶性膳食纤维稳定Pickering乳液及其应用[D]. 武汉: 华中农业大学, 2020.

    HE K H. Water-insoluble dietary fiber of bamboo shoot stabilizing Pickering emulsion and its application[D]. Wuhan: Huazhong Agricultural University, 2020.
    [21] TIRGAR M, SILCOCK P, CARNE A, et al. Effect of extraction method on functional properties of flaxseed protein concentrates[J]. Food Chem,2017,215:417−424. doi:  10.1016/j.foodchem.2016.08.002
    [22] 李小敏. 淀粉基复合胶体颗粒皮克林乳液的构建与应用[D]. 合肥: 合肥工业大学, 2020.

    LI X M. Preparation and application of starch-based complex colloidal particles on Pickering emulsions[D]. Hefei: Hefei University of Technology, 2020.
    [23] KARNA R. Evaluation of ball-milling time on the physicochemical and antioxidant properties of persimmon by-products powder[J]. Innovative Food Science and Emerging Technologies,2016,37(3):886−892.
    [24] 郑红艳. 小米麸皮膳食纤维的提取及成分和功能性质研究[D]. 重庆: 西南大学, 2010.

    ZHENG H Y. Study on the extraction of millet bran dietary fiber and research on its ingredient functional properties[D]. Chongqing: Southwest University, 2010.
    [25] CHITRAKAR B, ZHANG M, ZHANG X, et al. Bioactive dietary fiber powder from asparagus leaf by-product: Effect of low-temperature ball milling on physico-chemical, functional and microstructural characteristics[J]. Powder Technology,2020,366:275−282. doi:  10.1016/j.powtec.2020.02.068
    [26] 瞿瑗. 青花椒籽仁谷蛋白的乳液稳定性及其影响研究[D]. 成都: 四川农业大学, 2019.

    QU Y. Emulsion’s stability and influence of glutelin from Zanthoxylum armatum DC seed[D]. Chengdu: Sichuan Agricultural University, 2019.
    [27] REN Z, CHEN Z, ZHANG Y, et al. Novel food-grade Pickering emulsions stabilized by tea water-insoluble protein nanoparticles from tea residues[J]. Food Hydrocolloids,2019,96:322−330. doi:  10.1016/j.foodhyd.2019.05.015
    [28] ZHU K X, HUANG S, PENG W, et al. Effect of ultrafine grinding on hydration and antioxidant properties of wheat bran dietary fiber[J]. Food Research International,2010,43(4):943−948. doi:  10.1016/j.foodres.2010.01.005
    [29] 许杨杨. 大豆皂苷-蛋白W/O/W型双重乳液的构建及其稳定性研究[D]. 锦州: 渤海大学, 2021.

    XU Y Y. Construction and stability with soyasaponin/soybean protein in W/O/W multiple emulsion[D]. Jinzhou: Bohai University, 2010.
    [30] 侯萍. 巧克力牛奶稳定性的研究[D]. 无锡: 江南大学, 2005.

    HOU P. The research on stability of chocolate milk[D]. Wuxi: Jiangnan University, 2005.
    [31] XIAO J, WANG X G, GONZALEZ A P, et al. Kafirin nanoparticles-stabilized Pickering emulsions: Microstructure and rheological behavior[J]. Food Hydrocolloids,2016,54:30−39. doi:  10.1016/j.foodhyd.2015.09.008
    [32] TAN Y, XU K, LIU C, et al. Fabrication of starch-based nanospheres to stabilize Pickering emulsion[J]. Carbohydrate Polymers,2012,88(4):1358−1363. doi:  10.1016/j.carbpol.2012.02.018
    [33] 佟臻, 韦阳, 高彦祥. 基于食品级胶体颗粒稳定Pickering乳液的研究进展[J]. 食品工业科技,2019,40(4):317−324. [TONG Z, WEI Y, GAO Y X. Research progress of stabilized Pickering emulsion based on food grade colloidal particles[J]. Science and Technology of Food Industry,2019,40(4):317−324. doi:  10.13386/j.issn1002-0306.2019.04.053
    [34] 戴媛, 冷进松, 陆红佳. 豌豆蛋白质提取工艺优化及其乳化性和起泡性研究[J]. 湖北农业科学,2021,60(8):134−140. [DAI Y, LENG J S, LU H J. Study on process optimization for the extraction of pea protein and its emulsification and foaming activity[J]. Hubei Agricultural Sciences,2021,60(8):134−140. doi:  10.14088/j.cnki.issn0439-8114.2021.08.028
    [35] 李星科, 姜启兴, 夏文水. pH值和离子强度对壳聚糖乳化性质的影响[J]. 食品与生物技术学报,2011,30(3):337−341. [LI X, JIANG Q X, XIA W S. Effects of pH and ionic strength on emulsifying properties of chitosan[J]. Journal of Food Science and Biotechnology,2011,30(3):337−341.
    [36] DAI L, YANG S, WEI Y, et al. Development of stable high internal phase emulsions by Pickering stabilization: Utilization of zein-propylene glycol alginate-rhamnolipid complex particles as colloidal emulsifiers[J]. Food Chem,2019,275:246−254. doi:  10.1016/j.foodchem.2018.09.122
    [37] BAI L, MCCLEMENTS D J. Formation and stabilization of nanoemulsions using biosurfactants: Rhamnolipids[J]. J Colloid Interface Sci,2016,479:71−79. doi:  10.1016/j.jcis.2016.06.047
    [38] SOUZA A G, FERREIRA R R, PAULA L C, et al. The effect of essential oil chemical structures on Pickering emulsion stabilized with cellulose nanofibrils[J]. Journal of Molecular Liquids,2020,320:114458. doi:  10.1016/j.molliq.2020.114458
    [39] CUNHA A G, MOUGEL J B, CATHALA B, et al. Preparation of double Pickering emulsions stabilized by chemically tailored nanocelluloses[J]. Langmuir,2014,30(31):9327−9335. doi:  10.1021/la5017577
    [40] 李艳, 李啸天, 郭文渊, 等. 椰麸组分蛋白的氨基酸组成、结构与乳化性分析[J]. 热带作物学报,2022,43(3):644−652. [LI Y, LI X T, GUO W Y, et al. Analysis of amino acid composition, structure and emulsion prop erties of coconut cake protein fractions[J]. Chinese Journal of Tropical Crops,2022,43(3):644−652. doi:  10.3969/j.issn.1000-2561.2022.03.024
    [41] SANTOS J, CALERO N, TRUJILLO-CAYADO L A, et al. The role of processing temperature in flocculated emulsions[J]. Industrial & Engineering Chemistry Research,2018,57(3):807−812.
    [42] ZHU Y, MCCLEMENTS D J, ZHOU W, et al. Influence of ionic strength and thermal pretreatment on the freeze-thaw stability of Pickering emulsion gels[J]. Food Chem,2020,303:125401. doi:  10.1016/j.foodchem.2019.125401
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  85
  • HTML全文浏览量:  24
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-15
  • 网络出版日期:  2023-04-20
  • 刊出日期:  2023-06-01

目录

    /

    返回文章
    返回