• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020

外源表没食子儿茶素没食子酸酯添加对荞麦粉理化特性和碗托食用品质的影响

吴迪 夏如卉 马红 汤晓智

吴迪,夏如卉,马红,等. 外源表没食子儿茶素没食子酸酯添加对荞麦粉理化特性和碗托食用品质的影响[J]. 食品工业科技,2023,44(1):38−47. doi:  10.13386/j.issn1002-0306.2022060284
引用本文: 吴迪,夏如卉,马红,等. 外源表没食子儿茶素没食子酸酯添加对荞麦粉理化特性和碗托食用品质的影响[J]. 食品工业科技,2023,44(1):38−47. doi:  10.13386/j.issn1002-0306.2022060284
WU Di, XIA Ruhui, MA Hong, et al. Influence of Exogenous Epigallocatechin Gallate Addition on Physicochemical Properties of Buckwheat Flour and Eating Quality of Buckwheat Wantuo[J]. Science and Technology of Food Industry, 2023, 44(1): 38−47. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022060284
Citation: WU Di, XIA Ruhui, MA Hong, et al. Influence of Exogenous Epigallocatechin Gallate Addition on Physicochemical Properties of Buckwheat Flour and Eating Quality of Buckwheat Wantuo[J]. Science and Technology of Food Industry, 2023, 44(1): 38−47. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022060284

外源表没食子儿茶素没食子酸酯添加对荞麦粉理化特性和碗托食用品质的影响

doi: 10.13386/j.issn1002-0306.2022060284
基金项目: 国家自然科学基金资助(31901646);江苏高校优势学科建设工程资助项目(苏政办发〔2018〕87号)。
详细信息
    作者简介:

    吴迪(1986−),男,博士,讲师,研究方向:粮油食品绿色化加工,E-mail:diwu@nufe.edu.cn

    通讯作者:

    汤晓智(1977−),男,博士,教授,研究方向:粮油食品绿色化加工,E-mail:warmtxz@nufe.edu.cn

  • 中图分类号: TS213.2

Influence of Exogenous Epigallocatechin Gallate Addition on Physicochemical Properties of Buckwheat Flour and Eating Quality of Buckwheat Wantuo

  • 摘要: 本文旨在利用外源多酚添加方法改善中华传统淀粉基凝胶食品—荞麦碗托的食用品质。通过向荞麦粉中加入不同比例的表没食子儿茶素没食子酸酯(Epigallocatechin gallate,EGCG)制备混合粉(Buckwheat polyphenol flour,BPF),利用多种表征手段分析多酚添加对混合粉色泽、水合、糊化和凝胶质构等特性及其碗托制品有序结构、质构、抗氧化和消化等特性和感官评定的影响。结果表明,EGCG添加量的增加使得混合粉颜色变红暗,水溶性指数增加,回生值降低,凝胶截面孔洞数目明显增多,尺寸变小;碗托制品有序结构减少,相对结晶度减少,粘聚性、回复性下降,总酚含量和抗氧化能力上升,淀粉消化速率显著降低,对感官评定分数中的质构和色泽影响不大而对食味有一定影响。其中,当EGCG添加量为1%时,混合粉的回生值降低16.30%;碗托样品的总酚含量增加至534.04 mg GAE/100 g,快消化淀粉降低了14.40%,pGI降低至61.72,此时感官评定分数最高为78.00分。上述结果表明EGCG的添加会影响混合粉加工特性,有效改善碗托制品的抗氧化和消化特性。
  • 图  1  甜荞粉与混合粉的糊化曲线

    Figure  1.  Pasting viscosity profiles of CB and BPF samples

    图  2  不同混合粉凝胶截面微观结构

    Figure  2.  Gel section microstructure of BPF samples

    图  3  碗托样品的XRD谱图

    Figure  3.  The XRD spectrum of Wantuo samples

    图  4  碗托制品及对照样品的FTIR谱图

    Figure  4.  The FTIR spectrum of Wantuo samples and control samples

    图  5  碗托样品的体外消化曲线

    Figure  5.  In vitro digestibility curves of Wantuo samples

    表  1  混合粉的色泽数据

    Table  1.   Color parameters of BPF samples

    样品L*a*b*
    CB93.47±0.12b0.20±0.01d5.81±0.07a
    EGCG-193.92±0.01a0.44±0.00c5.70±0.01b
    EGCG-393.30±0.10b0.78±0.00b5.66±0.01b
    EGCG-592.81±0.02c1.00±0.00a5.65±0.03b
    注:数值表示为平均值±标准差;表中同一指标中,不同小写字母表示差异性显著(P<0.05);表2~表8同。
    下载: 导出CSV

    表  2  混合粉的水合特性

    Table  2.   Hydration properties of BPF samples

    样品WAI (g/g)WSI (g/100 g)SP (g/g)
    CB8.86±0.04a6.94±0.12c8.09±0.02a
    EGCG-18.85±0.17a7.53±0.12b8.14±0.15a
    EGCG-38.43±0.07ab7.94±0.18b7.79±0.05a
    EGCG-58.15±0.23b9.76±0.00a7.68±0.22a
    下载: 导出CSV

    表  3  混合粉的糊化特性

    Table  3.   Pasting properties of BPF samples

    样品峰值黏度(cP)峰谷黏度(cP)崩解值(cP)最终黏度(cP)回生值(cP)糊化时间(min)糊化温度(℃)
    CB2910.00±19.30b2724.00±68.13a186.00±84.29a5043.50±38.06a2318.50±103.46a6.13±0.05a71.83±0.02a
    EGCG-13071.00±2.00a2798.00±1.00a273.00±1.00a4738.50±85.50b1940.50±86.50b5.83±0.17a71.43±0.43a
    EGCG-32709.00±7.00c2539.50±7.50b169.50±0.50a4006.00±28.00c1466.50±20.50c6.00±0.07a70.53±0.43a
    EGCG-52643.50±48.50c2488.50±35.50b155.00±13.00a3582.50±30.50d1094.00±5.00d6.07±0.07a68.95±0.45b
    下载: 导出CSV

    表  4  碗托样品的相对结晶度、17°、20°峰面积及1022 cm−1/995 cm−1数值

    Table  4.   Relative crystallinity, characteristic peak areas and 1022 cm−1/995 cm−1 value of Wantuo samples

    样品相对结晶度
    (%)
    17°峰面积
    (%)
    20°峰面积
    (%)
    1022 cm−1/995 cm−1
    CBW32.6010.1039.901.63±0.04a
    BWT-131.068.1053.401.59±0.00a
    BWT-329.825.7055.601.58±0.00b
    BWT-530.245.1054.501.57±0.03ab
    下载: 导出CSV

    表  5  混合粉样品和碗托样品的凝胶质构特性

    Table  5.   Gel texture properties of BPF samples and Wantuo samples

    样品硬度(g)弹性(g)粘聚性咀嚼度回复性
    CB69.04±2.13a0.97±0.02a0.57±0.07a38.25±5.42a0.03±0.00c
    EGCG-171.45±2.21a0.96±0.00a0.48±0.01b34.69±1.91a0.05±0.00a
    EGCG-372.60±2.27a0.96±0.01a0.45±0.01c31.25±1.25a0.04±0.01b
    EGCG-563.50±2.28b0.96±0.01a0.46±0.02bc27.72±0.50b0.04±0.00b
    CBW395.19±31.72a0.96±0.00a0.84±0.01a318.32±23.85a0.48±0.01a
    BWT-1289.97±7.24b0.91±0.01b0.79±0.01b207.46±10.31b0.40±0.01b
    BWT-3295.41±9.11b0.88±0.03b0.73±0.03c190.64±12.87b0.34±0.01c
    BWT-5305.60±15.55b0.89±0.01b0.72±0.02c193.27±10.26b0.32±0.01c
    下载: 导出CSV

    表  6  碗托样品的总酚含量与抗氧化活性

    Table  6.   The total phenol content and antioxidant activity of Wantuo samples

    样品总酚含量(mg GAE/100 g)DPPH自由基清除能力(μmol TE/100 g)ABTS自由基清除能力(μmol TE/100 g)铁还原能力(μmol TE/100 g)
    CBW3.91±0.19d46.63±0.59d107.17±1.58d25.56±0.42d
    BWT-1534.04±5.02c647.93±0.56c191.67±8.45c107.64±0.24c
    BWT-31511.50±13.28b1060.58±0.43b747.50±8.90b481.53±0.83b
    BWT-52355.76±12.63a1388.16±0.43a1340.83±6.54a801.04±0.96a
    下载: 导出CSV

    表  7  碗托样品体外消化性

    Table  7.   In vitro digestibility of Wantuo samples

    样品RDS(%)SDS(%)RS(%)C(%)k(s−1R2AUCHI(%)pGI
    CB41.14±0.4132.92±0.5425.94±0.30
    CBW21.74±0.44a23.30±0.44a54.96±0.71c40.62±1.03a0.02±0.0010a0.979054.86±0.60a45.01±0.55a64.42±0.30a
    BWT-118.61±0.28b22.10±0.30b59.29±0.12b38.35±0.39b0.02±0.0002a0.979448.88±0.28ab40.10±0.28ab61.72±0.15b
    BWT-316.53±0.06d21.13±0.44c62.35±0.50a37.79±0.42b0.02±0.0003a0.970344.86±0.06b36.80±0.09b59.91±0.05b
    BWT-517.04±0.25c21.44±0.46c61.52±1.23a38.34±0.20b0.01±0.0000b0.971744.50±0.06b36.54±0.10b59.77±0.05b
    下载: 导出CSV

    表  8  碗托样品的体感官评价分析

    Table  8.   Eating quality of Wantuo samples

    样品色泽(分)结构(分)口感(分)食味(分)总分(分)
    颜色光泽表面结构内部结构粘性弹性硬度
    CBW8.22±1.3a8.00±1.1a8.55±1.2a8.81±1.2a12.25±1.5a9.52±1.2a8.41±1.2a15.35±0.9a78.91±1.4a
    BWT-18.24±1.2a8.13±1.2a9.01±1.6a8.65±1.5a11.94±1.6a9.15±1.4a8.07±1.3a15.17±1.3a78.00±1.6a
    BWT-38.61±1.8a8.52±1.5a9.20±1.3a8.55±1.1a12.18±1.6a8.95±1.2a8.23±1.2a12.38±1.5b76.31±1.8b
    BWT-58.36±1.6a8.53±1.0a9.31±1.4a8.27±1.6a11.87±1.8a8.72±1.0a8.26±0.8a11.44±1.4b74.43±1.1b
    下载: 导出CSV
  • [1] 丘濂. 在陕北, 与杂粮相遇[J]. 科学之友,2021(11):72−75. [QIU L. In northern Shaanxi, meeting with grains[J]. Friend of Science Amateurs,2021(11):72−75. doi:  10.3969/j.issn.1000-8136.2021.11.027
    [2] SAKAČ M, TORBICA A, SEDEJ I, et al. Influence of breadmaking on antioxidant capacity of gluten free breads based on rice and buckwheat flours[J]. Food Research International,2011,44(9):2806−2813. doi:  10.1016/j.foodres.2011.06.026
    [3] DING Y, YANG L, XIA Y, et al. Effects of frying on starch structure and digestibility of glutinous rice cakes[J]. Journal of Cereal Science,2018,83:196−203. doi:  10.1016/j.jcs.2018.08.014
    [4] WU Y, CHEN Z, LI X, et al. Effect of tea polyphenols on the retrogradation of rice starch[J]. Food Research International,2009,42(2):221−225. doi:  10.1016/j.foodres.2008.11.001
    [5] LIU H, GUO X, LI W, et al. Changes in physicochemical properties and in vitro digestibility of common buckwheat starch by heat-moisture treatment and annealing[J]. Carbohydrate Polymers,2015,132:237−244. doi:  10.1016/j.carbpol.2015.06.071
    [6] HU J, LI X, CHENG Z, et al. Modified Tartary buckwheat (Fagopyrum tataricum Gaertn.) starch by gaseous ozone: Structural, physicochemical and in vitro digestible properties[J]. Food Hydrocolloids,2022,125:107365. doi:  10.1016/j.foodhyd.2021.107365
    [7] ZHANG Z, TIAN J, FANG H, et al. Physicochemical and digestion properties of potato starch were modified by complexing with grape seed proanthocyanidins[J]. Molecules,2020,25(5):1123. doi:  10.3390/molecules25051123
    [8] ALVAREZ-POBLANO L, ROMAN-GUERRERO A, VERNON-CARTER E, et al. Exogenous addition of muicle (Justicia spicigera Schechtendal) extract to white maize tortillas affects the antioxidant activity, texture, color, and in vitro starch digestibility[J]. LWT,2020,133:110120. doi:  10.1016/j.lwt.2020.110120
    [9] 谭沙, 朱仁威, 刘庆庆, 等. 外源添加物对淀粉理化性质和消化特性影响的研究进展[J/OL]. 中国粮油学报: 1−9 [2022-06-23]. http://kns.cnki.net/kcms/detail/11.2864.TS.20220325.1023.012.html

    TAN S, ZHU R W, LIU Q Q, et al. Research progress on the effects of exogenous additives on the physicochemical properties and digestibility of starch[J/OL]. Journal of the Chinese Cereals and Oils Association: 1−9 [2022-06-23]. http://kns.cnki.net/kcms/detail/11.2864.TS.20220325.1023.012.html
    [10] 王明福, 滕静. 多酚类化合物在食品热加工中的化学与生物活性变化及其对食品品质的影响[J]. 中国食品学报,2017,17(6):1−12. [WANG M F, TENG J. Changes in chemical and biological activities of polyphenolic compounds in food thermal processing and their effects on food quality[J]. Journal of Chinese Institute of Food Science and Technology,2017,17(6):1−12. doi:  10.16429/j.1009-7848.2017.06.001
    [11] SĘCZYK Ł, SUGIER D, ŚWIECA M, et al. The effect of in vitro digestion, food matrix, and hydrothermal treatment on the potential bioaccessibility of selected phenolic compounds[J]. Food Chemistry,2021,344:128581. doi:  10.1016/j.foodchem.2020.128581
    [12] WANG L, WANG L, WANG T, et al. Comparison of quercetin and rutin inhibitory influence on Tartary buckwheat starch digestion in vitro and their differences in binding sites with the digestive enzyme[J]. Food Chemistry,2022,367:130762. doi:  10.1016/j.foodchem.2021.130762
    [13] DU J, YAO F, ZHANG M, et al. Effect of persimmon tannin on the physicochemical properties of maize starch with different amylose/amylopectin ratios[J]. International Journal of Biological Macromolecules,2019,132:1193−1199. doi:  10.1016/j.ijbiomac.2019.04.046
    [14] PAN J, LI M, ZHANG S, et al. Effect of epigallocatechin gallate on the gelatinisation and retrogradation of wheat starch[J]. Food Chemistry,2019,294:209−215. doi:  10.1016/j.foodchem.2019.05.048
    [15] ZHU S, LIU B, WANG F, et al. Characterization and in vitro digestion properties of cassava starch and epigallocatechin-3-gallate (EGCG) blend[J]. LWT-Food Science and Technology,2020:110398.
    [16] WU Y, NIU M, XU H. Pasting behaviors, gel rheological properties, and freeze-thaw stability of rice flour and starch modified by green tea polyphenols[J]. LWT,2020,118:108796. doi:  10.1016/j.lwt.2019.108796
    [17] 刘丹. 山西碗托文化[J]. 青年文学家,2015(12):189. [LIU D. The culture of bowls in Shanxi[J]. The Young Literati,2015(12):189. doi:  10.3969/j.issn.1002-2139.2015.12.144
    [18] GAO L, WANG H, WAN C, et al. Structural, pasting and thermal properties of common buckwheat (Fagopyrum esculentum Moench) starches affected by molecular structure[J]. International Journal of Biological Macromolecules,2020,156:120−126. doi:  10.1016/j.ijbiomac.2020.04.064
    [19] 彭登峰, 柴春祥, 张坤生, 等. 超高压处理对荞面碗托品质的影响[J]. 浙江农业学报,2014,26(4):1055−1061. [PENG D F, CHAI C X, ZHANG K S, et al. Effect of ultra-high pressure treatment on quality of buckwheat wantuo[J]. Acta Agriculturae Zhejiangensis,2014,26(4):1055−1061.
    [20] SUN X, YU C, FU M, et al. Extruded whole buckwheat noodles: Effects of processing variables on the degree of starch gelatinization, changes of nutritional components, cooking characteristics and in vitro starch digestibility[J]. Food & Function,2019,10(10):6362−6373.
    [21] BAKAR M F A, MOHAMED M, RAHMAT A, et al. Phytochemicals and antioxidant activity of different parts of bambangan (Mangifera pajang) and tarap (Artocarpus odoratissimus)[J]. Food Chemistry,2009,113(2):479−483. doi:  10.1016/j.foodchem.2008.07.081
    [22] RE R, PELLEGRINI N, PROTEGGENTE A, et al. Antioxidant activity applying an improved ABTS radical cation decolorization assay[J]. Free radical Biology and Medicine,1999,26(9−10):1231−1237. doi:  10.1016/S0891-5849(98)00315-3
    [23] BENZIE I F, STRAIN J J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay[J]. Analytical Biochemistry,1996,239(1):70−76. doi:  10.1006/abio.1996.0292
    [24] GOH R, GAO J, ANANINGSIH V K, et al. Green tea catechins reduced the glycaemic potential of bread: An in vitro digestibility study[J]. Food Chemistry,2015,180:203−210. doi:  10.1016/j.foodchem.2015.02.054
    [25] GOÑI I, GARCIA-ALONSO A, SAURA-CALIXTO F. A starch hydrolysis procedure to estimate glycemic index[J]. Nutrition Research, 1997, 17: 427−437.
    [26] 彭登峰, 柴春祥, 张坤生, 等. 不同解冻方式对冷冻荞面碗托品质的影响[J]. 浙江农业学报,2014,26(3):592−597. [PENG D F, CAI C X, ZHANG K S, et al. Effects of different thawing methods on quality of buckwheat wantuo[J]. Acta Agriculturae Zhejiangensis,2014,26(3):592−597. doi:  10.3969/j.issn.1004-1524.2014.03.10
    [27] NA L, TAYLOR L S, FERRUZZI M G, et al. Color and chemical stability of tea polyphenol (-)-epigallocatechin-3-gallate in solution and solid states[J]. Food Research International,2013,53(2):909−921. doi:  10.1016/j.foodres.2012.11.019
    [28] FAN W, CHEN Y, SUN J, et al. Effects of tea polyphenol on quality and shelf life of pork sausages[J]. Journal of Food science and Technology,2014,51(1):191−195. doi:  10.1007/s13197-013-1076-x
    [29] LI C, DHITAL S, GILBERT R G, et al. High-amylose wheat starch: Structural basis for water absorption and pasting properties[J]. Carbohydrate Polymers,2020,245:116557. doi:  10.1016/j.carbpol.2020.116557
    [30] 谢亚敏, 许飞, 陈洁, 等. 多酚与淀粉相互作用对板栗淀粉特性的影响[J]. 河南工业大学学报(自然科学版),2021,42(5):30−38. [XIE Y M, XU F, CHEN J, et al. Study on the interaction between polyphenols and starch and its effect on chesnut starch properties[J]. Journal of Henan University of Technology (Natural Science Edition),2021,42(5):30−38. doi:  10.16433/j.1673-2383.2021.05.004
    [31] HAN X, ZHANG M, ZHANG R, et al. Physicochemical interactions between rice starch and different polyphenols and structural characterization of their complexes[J]. LWT,2020,125:109227. doi:  10.1016/j.lwt.2020.109227
    [32] SEVENOU O, HILL S, FARHAT I, et al. Organisation of the external region of the starch granule as determined by infrared spectroscopy[J]. International Journal of Biological Macromolecules,2002,31(1-3):79−85. doi:  10.1016/S0141-8130(02)00067-3
    [33] ZHU F. Interactions between starch and phenolic compound[J]. Trends in Food Science & Technology,2015,43(2):129−143.
    [34] 张连水, 聂志矗, 赵晓辉, 等. 表儿茶素类单质红外光谱特性研究[J]. 茶叶,2009,35(3):152−156. [ZHANG L S, NIE Z C, ZHAO X H. Study on epicatechins by infrared spectroscope[J]. Journal of Tea,2009,35(3):152−156.
    [35] BOHN T. Dietary factors affecting polyphenol bioavailability[J]. Nutrition Reviews,2014,72(7):429−452. doi:  10.1111/nure.12114
    [36] GUO P, YU J, COPELAND L, et al. Mechanisms of starch gelatinization during heating of wheat flour and its effect on in vitro starch digestibility[J]. Food Hydrocolloids,2018,82:370−378. doi:  10.1016/j.foodhyd.2018.04.012
    [37] GARCIA-VALLE D E, BELLO-PÉREZ L A, AGAMA-ACEVEDO E, et al. Effects of mixing, sheeting, and cooking on the starch, protein, and water structures of durum wheat semolina and chickpea flour pasta[J]. Food Chemistry,2021,360:129993. doi:  10.1016/j.foodchem.2021.129993
    [38] VAN SOEST J J G, TOURNOIS H, DE WIT D, et al. Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance FTIR[J]. Carbohydrate Research,1995,279:201−214. doi:  10.1016/0008-6215(95)00270-7
    [39] YAN Z, ZHONG Y, DUAN Y, et al. Antioxidant mechanism of tea polyphenols and its impact on health benefits[J]. Animal Nutrition,2020,6(2):115−123. doi:  10.1016/j.aninu.2020.01.001
    [40] 缪铭, 张涛, 沐万孟, 等. 淀粉的支链精细结构与消化性能[J]. 食品科学,2010,31(9):12−15. [MIAO M, ZHANG T, MU W M, et al. Relationship between fine structure of amylopectin and digestibility from cereal starch[J]. Chinese Food Science,2010,31(9):12−15.
    [41] LI C, GONG B, HU Y, et al. Combined crystalline, lamellar and granular structural insights into in vitro digestion rate of native starches[J]. Food Hydrocolloids,2020,105:105823. doi:  10.1016/j.foodhyd.2020.105823
    [42] ZHU J, ZHANG B, TAN C P, et al. Effect of rosa Roxburghii juice on starch digestibility: A focus on the binding of polyphenols to amylose and porcine pancreatic α-amylase by molecular modeling[J]. Food Hydrocolloids,2022,123:106966. doi:  10.1016/j.foodhyd.2021.106966
    [43] QIN R, YU J, LI Y, et al. Structural changes of starch-lipid complexes during postprocessing and their effect on in vitro enzymatic digestibility[J]. Journal of Agricultural and Food Chemistry,2019,67:1530−1536. doi:  10.1021/acs.jafc.8b06371
    [44] CHI C, LI X, ZHANG Y, et al. Modulating the in vitro digestibility and predicted glycemic index of rice starch gels by complexation with gallic acid[J]. Food Hydrocolloids,2019,89:821−828. doi:  10.1016/j.foodhyd.2018.11.016
    [45] JIANG C, CHEN Y, YE X, et al. Three flavanols delay starch digestion by inhibiting α-amylase and binding with starch[J]. International Journal of Biological Macromolecules,2021,172:503−514. doi:  10.1016/j.ijbiomac.2021.01.070
    [46] MYA B, BO L, FANG Z, et al. Interactions between caffeic acid and corn starch with varying amylose content and their effects on starch digestion[J]. Food Hydrocolloids,2021,114:106544. doi:  10.1016/j.foodhyd.2020.106544
    [47] ZHU S, LIU B, WANG F, et al. Characterization and in vitro digestion properties of cassava starch and epigallocatechin-3-gallate (EGCG) blend[J]. LWT,2021,137:110398. doi:  10.1016/j.lwt.2020.110398
    [48] 刘盼盼, 邓余良, 尹军峰, 等. 绿茶滋味量化及其与化学组分的相关性研究[J]. 中国食品学报,2014(12):173−181. [LIU P P, DENG Y L, YIN J F, et al. Quantification of green tea taste and its correlation with chemical components[J]. Journal of Chinese Institute of Food Science and Technology,2014(12):173−181. doi:  10.16429/j.1009-7848.2014.12.029
  • 加载中
图(5) / 表(8)
计量
  • 文章访问数:  79
  • HTML全文浏览量:  25
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-29
  • 网络出版日期:  2022-11-17
  • 刊出日期:  2023-01-01

目录

    /

    返回文章
    返回

    重要通知

    《食品工业科技》特邀主编专栏征稿:枸杞、红枣、沙棘等食药同源健康食品研究与开发