Influence of Exogenous Epigallocatechin Gallate Addition on Physicochemical Properties of Buckwheat Flour and Eating Quality of Buckwheat Wantuo
-
摘要: 本文旨在利用外源多酚添加方法改善中华传统淀粉基凝胶食品—荞麦碗托的食用品质。通过向荞麦粉中加入不同比例的表没食子儿茶素没食子酸酯(Epigallocatechin gallate,EGCG)制备混合粉(Buckwheat polyphenol flour,BPF),利用多种表征手段分析多酚添加对混合粉色泽、水合、糊化和凝胶质构等特性及其碗托制品有序结构、质构、抗氧化和消化等特性和感官评定的影响。结果表明,EGCG添加量的增加使得混合粉颜色变红暗,水溶性指数增加,回生值降低,凝胶截面孔洞数目明显增多,尺寸变小;碗托制品有序结构减少,相对结晶度减少,粘聚性、回复性下降,总酚含量和抗氧化能力上升,淀粉消化速率显著降低,对感官评定分数中的质构和色泽影响不大而对食味有一定影响。其中,当EGCG添加量为1%时,混合粉的回生值降低16.30%;碗托样品的总酚含量增加至534.04 mg GAE/100 g,快消化淀粉降低了14.40%,pGI降低至61.72,此时感官评定分数最高为78.00分。上述结果表明EGCG的添加会影响混合粉加工特性,有效改善碗托制品的抗氧化和消化特性。
-
关键词:
- 荞麦碗托 /
- 表没食子儿茶素没食子酸酯(EGCG) /
- 理化特性 /
- 抗氧化性 /
- 消化特性
Abstract: This research aims to ameliorate the eating quality of Chinese traditional starch-based food: buckwheat Wantuo via the addition of exogenous polyphenol. The mixed flour (MF) was prepared by adding various amount of Epigallocatechin gallate (EGCG) to common buckwheat flour. The influence of addition amount on physicochemical properties (like color, hydration and pasting) of MF and eating quality (like total phenol content, antioxidant activity and digestibility) of buckwheat Wantuo (BWT) were investigated. The results clearly showed that the color of MF turned dark red while the water solubility index and setback value were increased and decreased with increasing EGCG concentration, respectively. Meanwhile, the number of pores in MF gel section was significantly increased, whereas the pore size was decreased. The ordered structure and relative crystallinity as well as the cohesiveness and resilience of BWT samples were decreased gradually, while the total phenols content and antioxidant activity of BWT samples were significantly increased. Remarkably, the starch digestibility was significantly decreased. Sensory attributes of texture and color were insignificant with the addition of EGCG, whereas the taste score was affected. When the addition amount of EGCG was 1%, setback value of MF was decreased about 16.30%; rapidly digestible starch of BWT was decreased about 14.4%, while total phenolic compound content and pGI value of BWT were increased and decreased to 534.04 mg GAE/100 g and 61.72, respectively. At this point, the sensory score was 78.00 which was the highest in BWT samples. The results above indicated that the addition of EGCG can significantly influence the physicochemical properties of MF and can help ameliorate the antioxidant activity and digestibility of BWT. -
表 1 混合粉的色泽数据
Table 1. Color parameters of BPF samples
表 2 混合粉的水合特性
Table 2. Hydration properties of BPF samples
样品 WAI (g/g) WSI (g/100 g) SP (g/g) CB 8.86±0.04a 6.94±0.12c 8.09±0.02a EGCG-1 8.85±0.17a 7.53±0.12b 8.14±0.15a EGCG-3 8.43±0.07ab 7.94±0.18b 7.79±0.05a EGCG-5 8.15±0.23b 9.76±0.00a 7.68±0.22a 表 3 混合粉的糊化特性
Table 3. Pasting properties of BPF samples
样品 峰值黏度(cP) 峰谷黏度(cP) 崩解值(cP) 最终黏度(cP) 回生值(cP) 糊化时间(min) 糊化温度(℃) CB 2910.00±19.30b 2724.00±68.13a 186.00±84.29a 5043.50±38.06a 2318.50±103.46a 6.13±0.05a 71.83±0.02a EGCG-1 3071.00±2.00a 2798.00±1.00a 273.00±1.00a 4738.50±85.50b 1940.50±86.50b 5.83±0.17a 71.43±0.43a EGCG-3 2709.00±7.00c 2539.50±7.50b 169.50±0.50a 4006.00±28.00c 1466.50±20.50c 6.00±0.07a 70.53±0.43a EGCG-5 2643.50±48.50c 2488.50±35.50b 155.00±13.00a 3582.50±30.50d 1094.00±5.00d 6.07±0.07a 68.95±0.45b 表 4 碗托样品的相对结晶度、17°、20°峰面积及1022 cm−1/995 cm−1数值
Table 4. Relative crystallinity, characteristic peak areas and 1022 cm−1/995 cm−1 value of Wantuo samples
样品 相对结晶度
(%)17°峰面积
(%)20°峰面积
(%)1022 cm−1/995 cm−1 CBW 32.60 10.10 39.90 1.63±0.04a BWT-1 31.06 8.10 53.40 1.59±0.00a BWT-3 29.82 5.70 55.60 1.58±0.00b BWT-5 30.24 5.10 54.50 1.57±0.03ab 表 5 混合粉样品和碗托样品的凝胶质构特性
Table 5. Gel texture properties of BPF samples and Wantuo samples
样品 硬度(g) 弹性(g) 粘聚性 咀嚼度 回复性 CB 69.04±2.13a 0.97±0.02a 0.57±0.07a 38.25±5.42a 0.03±0.00c EGCG-1 71.45±2.21a 0.96±0.00a 0.48±0.01b 34.69±1.91a 0.05±0.00a EGCG-3 72.60±2.27a 0.96±0.01a 0.45±0.01c 31.25±1.25a 0.04±0.01b EGCG-5 63.50±2.28b 0.96±0.01a 0.46±0.02bc 27.72±0.50b 0.04±0.00b CBW 395.19±31.72a 0.96±0.00a 0.84±0.01a 318.32±23.85a 0.48±0.01a BWT-1 289.97±7.24b 0.91±0.01b 0.79±0.01b 207.46±10.31b 0.40±0.01b BWT-3 295.41±9.11b 0.88±0.03b 0.73±0.03c 190.64±12.87b 0.34±0.01c BWT-5 305.60±15.55b 0.89±0.01b 0.72±0.02c 193.27±10.26b 0.32±0.01c 表 6 碗托样品的总酚含量与抗氧化活性
Table 6. The total phenol content and antioxidant activity of Wantuo samples
样品 总酚含量(mg GAE/100 g) DPPH自由基清除能力(μmol TE/100 g) ABTS自由基清除能力(μmol TE/100 g) 铁还原能力(μmol TE/100 g) CBW 3.91±0.19d 46.63±0.59d 107.17±1.58d 25.56±0.42d BWT-1 534.04±5.02c 647.93±0.56c 191.67±8.45c 107.64±0.24c BWT-3 1511.50±13.28b 1060.58±0.43b 747.50±8.90b 481.53±0.83b BWT-5 2355.76±12.63a 1388.16±0.43a 1340.83±6.54a 801.04±0.96a 表 7 碗托样品体外消化性
Table 7. In vitro digestibility of Wantuo samples
样品 RDS(%) SDS(%) RS(%) C∞(%) k(s−1) R2 AUC HI(%) pGI CB 41.14±0.41 32.92±0.54 25.94±0.30 − − − − − − CBW 21.74±0.44a 23.30±0.44a 54.96±0.71c 40.62±1.03a 0.02±0.0010a 0.9790 54.86±0.60a 45.01±0.55a 64.42±0.30a BWT-1 18.61±0.28b 22.10±0.30b 59.29±0.12b 38.35±0.39b 0.02±0.0002a 0.9794 48.88±0.28ab 40.10±0.28ab 61.72±0.15b BWT-3 16.53±0.06d 21.13±0.44c 62.35±0.50a 37.79±0.42b 0.02±0.0003a 0.9703 44.86±0.06b 36.80±0.09b 59.91±0.05b BWT-5 17.04±0.25c 21.44±0.46c 61.52±1.23a 38.34±0.20b 0.01±0.0000b 0.9717 44.50±0.06b 36.54±0.10b 59.77±0.05b 表 8 碗托样品的体感官评价分析
Table 8. Eating quality of Wantuo samples
样品 色泽(分) 结构(分) 口感(分) 食味(分) 总分(分) 颜色 光泽 表面结构 内部结构 粘性 弹性 硬度 CBW 8.22±1.3a 8.00±1.1a 8.55±1.2a 8.81±1.2a 12.25±1.5a 9.52±1.2a 8.41±1.2a 15.35±0.9a 78.91±1.4a BWT-1 8.24±1.2a 8.13±1.2a 9.01±1.6a 8.65±1.5a 11.94±1.6a 9.15±1.4a 8.07±1.3a 15.17±1.3a 78.00±1.6a BWT-3 8.61±1.8a 8.52±1.5a 9.20±1.3a 8.55±1.1a 12.18±1.6a 8.95±1.2a 8.23±1.2a 12.38±1.5b 76.31±1.8b BWT-5 8.36±1.6a 8.53±1.0a 9.31±1.4a 8.27±1.6a 11.87±1.8a 8.72±1.0a 8.26±0.8a 11.44±1.4b 74.43±1.1b -
[1] 丘濂. 在陕北, 与杂粮相遇[J]. 科学之友,2021(11):72−75. [QIU L. In northern Shaanxi, meeting with grains[J]. Friend of Science Amateurs,2021(11):72−75. doi: 10.3969/j.issn.1000-8136.2021.11.027 [2] SAKAČ M, TORBICA A, SEDEJ I, et al. Influence of breadmaking on antioxidant capacity of gluten free breads based on rice and buckwheat flours[J]. Food Research International,2011,44(9):2806−2813. doi: 10.1016/j.foodres.2011.06.026 [3] DING Y, YANG L, XIA Y, et al. Effects of frying on starch structure and digestibility of glutinous rice cakes[J]. Journal of Cereal Science,2018,83:196−203. doi: 10.1016/j.jcs.2018.08.014 [4] WU Y, CHEN Z, LI X, et al. Effect of tea polyphenols on the retrogradation of rice starch[J]. Food Research International,2009,42(2):221−225. doi: 10.1016/j.foodres.2008.11.001 [5] LIU H, GUO X, LI W, et al. Changes in physicochemical properties and in vitro digestibility of common buckwheat starch by heat-moisture treatment and annealing[J]. Carbohydrate Polymers,2015,132:237−244. doi: 10.1016/j.carbpol.2015.06.071 [6] HU J, LI X, CHENG Z, et al. Modified Tartary buckwheat (Fagopyrum tataricum Gaertn.) starch by gaseous ozone: Structural, physicochemical and in vitro digestible properties[J]. Food Hydrocolloids,2022,125:107365. doi: 10.1016/j.foodhyd.2021.107365 [7] ZHANG Z, TIAN J, FANG H, et al. Physicochemical and digestion properties of potato starch were modified by complexing with grape seed proanthocyanidins[J]. Molecules,2020,25(5):1123. doi: 10.3390/molecules25051123 [8] ALVAREZ-POBLANO L, ROMAN-GUERRERO A, VERNON-CARTER E, et al. Exogenous addition of muicle (Justicia spicigera Schechtendal) extract to white maize tortillas affects the antioxidant activity, texture, color, and in vitro starch digestibility[J]. LWT,2020,133:110120. doi: 10.1016/j.lwt.2020.110120 [9] 谭沙, 朱仁威, 刘庆庆, 等. 外源添加物对淀粉理化性质和消化特性影响的研究进展[J/OL]. 中国粮油学报: 1−9 [2022-06-23]. http://kns.cnki.net/kcms/detail/11.2864.TS.20220325.1023.012.htmlTAN S, ZHU R W, LIU Q Q, et al. Research progress on the effects of exogenous additives on the physicochemical properties and digestibility of starch[J/OL]. Journal of the Chinese Cereals and Oils Association: 1−9 [2022-06-23]. http://kns.cnki.net/kcms/detail/11.2864.TS.20220325.1023.012.html [10] 王明福, 滕静. 多酚类化合物在食品热加工中的化学与生物活性变化及其对食品品质的影响[J]. 中国食品学报,2017,17(6):1−12. [WANG M F, TENG J. Changes in chemical and biological activities of polyphenolic compounds in food thermal processing and their effects on food quality[J]. Journal of Chinese Institute of Food Science and Technology,2017,17(6):1−12. doi: 10.16429/j.1009-7848.2017.06.001 [11] SĘCZYK Ł, SUGIER D, ŚWIECA M, et al. The effect of in vitro digestion, food matrix, and hydrothermal treatment on the potential bioaccessibility of selected phenolic compounds[J]. Food Chemistry,2021,344:128581. doi: 10.1016/j.foodchem.2020.128581 [12] WANG L, WANG L, WANG T, et al. Comparison of quercetin and rutin inhibitory influence on Tartary buckwheat starch digestion in vitro and their differences in binding sites with the digestive enzyme[J]. Food Chemistry,2022,367:130762. doi: 10.1016/j.foodchem.2021.130762 [13] DU J, YAO F, ZHANG M, et al. Effect of persimmon tannin on the physicochemical properties of maize starch with different amylose/amylopectin ratios[J]. International Journal of Biological Macromolecules,2019,132:1193−1199. doi: 10.1016/j.ijbiomac.2019.04.046 [14] PAN J, LI M, ZHANG S, et al. Effect of epigallocatechin gallate on the gelatinisation and retrogradation of wheat starch[J]. Food Chemistry,2019,294:209−215. doi: 10.1016/j.foodchem.2019.05.048 [15] ZHU S, LIU B, WANG F, et al. Characterization and in vitro digestion properties of cassava starch and epigallocatechin-3-gallate (EGCG) blend[J]. LWT-Food Science and Technology,2020:110398. [16] WU Y, NIU M, XU H. Pasting behaviors, gel rheological properties, and freeze-thaw stability of rice flour and starch modified by green tea polyphenols[J]. LWT,2020,118:108796. doi: 10.1016/j.lwt.2019.108796 [17] 刘丹. 山西碗托文化[J]. 青年文学家,2015(12):189. [LIU D. The culture of bowls in Shanxi[J]. The Young Literati,2015(12):189. doi: 10.3969/j.issn.1002-2139.2015.12.144 [18] GAO L, WANG H, WAN C, et al. Structural, pasting and thermal properties of common buckwheat (Fagopyrum esculentum Moench ) starches affected by molecular structure[J]. International Journal of Biological Macromolecules,2020,156:120−126. doi: 10.1016/j.ijbiomac.2020.04.064 [19] 彭登峰, 柴春祥, 张坤生, 等. 超高压处理对荞面碗托品质的影响[J]. 浙江农业学报,2014,26(4):1055−1061. [PENG D F, CHAI C X, ZHANG K S, et al. Effect of ultra-high pressure treatment on quality of buckwheat wantuo[J]. Acta Agriculturae Zhejiangensis,2014,26(4):1055−1061. [20] SUN X, YU C, FU M, et al. Extruded whole buckwheat noodles: Effects of processing variables on the degree of starch gelatinization, changes of nutritional components, cooking characteristics and in vitro starch digestibility[J]. Food & Function,2019,10(10):6362−6373. [21] BAKAR M F A, MOHAMED M, RAHMAT A, et al. Phytochemicals and antioxidant activity of different parts of bambangan (Mangifera pajang) and tarap (Artocarpus odoratissimus)[J]. Food Chemistry,2009,113(2):479−483. doi: 10.1016/j.foodchem.2008.07.081 [22] RE R, PELLEGRINI N, PROTEGGENTE A, et al. Antioxidant activity applying an improved ABTS radical cation decolorization assay[J]. Free radical Biology and Medicine,1999,26(9−10):1231−1237. doi: 10.1016/S0891-5849(98)00315-3 [23] BENZIE I F, STRAIN J J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay[J]. Analytical Biochemistry,1996,239(1):70−76. doi: 10.1006/abio.1996.0292 [24] GOH R, GAO J, ANANINGSIH V K, et al. Green tea catechins reduced the glycaemic potential of bread: An in vitro digestibility study[J]. Food Chemistry,2015,180:203−210. doi: 10.1016/j.foodchem.2015.02.054 [25] GOÑI I, GARCIA-ALONSO A, SAURA-CALIXTO F. A starch hydrolysis procedure to estimate glycemic index[J]. Nutrition Research, 1997, 17: 427−437. [26] 彭登峰, 柴春祥, 张坤生, 等. 不同解冻方式对冷冻荞面碗托品质的影响[J]. 浙江农业学报,2014,26(3):592−597. [PENG D F, CAI C X, ZHANG K S, et al. Effects of different thawing methods on quality of buckwheat wantuo[J]. Acta Agriculturae Zhejiangensis,2014,26(3):592−597. doi: 10.3969/j.issn.1004-1524.2014.03.10 [27] NA L, TAYLOR L S, FERRUZZI M G, et al. Color and chemical stability of tea polyphenol (-)-epigallocatechin-3-gallate in solution and solid states[J]. Food Research International,2013,53(2):909−921. doi: 10.1016/j.foodres.2012.11.019 [28] FAN W, CHEN Y, SUN J, et al. Effects of tea polyphenol on quality and shelf life of pork sausages[J]. Journal of Food science and Technology,2014,51(1):191−195. doi: 10.1007/s13197-013-1076-x [29] LI C, DHITAL S, GILBERT R G, et al. High-amylose wheat starch: Structural basis for water absorption and pasting properties[J]. Carbohydrate Polymers,2020,245:116557. doi: 10.1016/j.carbpol.2020.116557 [30] 谢亚敏, 许飞, 陈洁, 等. 多酚与淀粉相互作用对板栗淀粉特性的影响[J]. 河南工业大学学报(自然科学版),2021,42(5):30−38. [XIE Y M, XU F, CHEN J, et al. Study on the interaction between polyphenols and starch and its effect on chesnut starch properties[J]. Journal of Henan University of Technology (Natural Science Edition),2021,42(5):30−38. doi: 10.16433/j.1673-2383.2021.05.004 [31] HAN X, ZHANG M, ZHANG R, et al. Physicochemical interactions between rice starch and different polyphenols and structural characterization of their complexes[J]. LWT,2020,125:109227. doi: 10.1016/j.lwt.2020.109227 [32] SEVENOU O, HILL S, FARHAT I, et al. Organisation of the external region of the starch granule as determined by infrared spectroscopy[J]. International Journal of Biological Macromolecules,2002,31(1-3):79−85. doi: 10.1016/S0141-8130(02)00067-3 [33] ZHU F. Interactions between starch and phenolic compound[J]. Trends in Food Science & Technology,2015,43(2):129−143. [34] 张连水, 聂志矗, 赵晓辉, 等. 表儿茶素类单质红外光谱特性研究[J]. 茶叶,2009,35(3):152−156. [ZHANG L S, NIE Z C, ZHAO X H. Study on epicatechins by infrared spectroscope[J]. Journal of Tea,2009,35(3):152−156. [35] BOHN T. Dietary factors affecting polyphenol bioavailability[J]. Nutrition Reviews,2014,72(7):429−452. doi: 10.1111/nure.12114 [36] GUO P, YU J, COPELAND L, et al. Mechanisms of starch gelatinization during heating of wheat flour and its effect on in vitro starch digestibility[J]. Food Hydrocolloids,2018,82:370−378. doi: 10.1016/j.foodhyd.2018.04.012 [37] GARCIA-VALLE D E, BELLO-PÉREZ L A, AGAMA-ACEVEDO E, et al. Effects of mixing, sheeting, and cooking on the starch, protein, and water structures of durum wheat semolina and chickpea flour pasta[J]. Food Chemistry,2021,360:129993. doi: 10.1016/j.foodchem.2021.129993 [38] VAN SOEST J J G, TOURNOIS H, DE WIT D, et al. Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance FTIR[J]. Carbohydrate Research,1995,279:201−214. doi: 10.1016/0008-6215(95)00270-7 [39] YAN Z, ZHONG Y, DUAN Y, et al. Antioxidant mechanism of tea polyphenols and its impact on health benefits[J]. Animal Nutrition,2020,6(2):115−123. doi: 10.1016/j.aninu.2020.01.001 [40] 缪铭, 张涛, 沐万孟, 等. 淀粉的支链精细结构与消化性能[J]. 食品科学,2010,31(9):12−15. [MIAO M, ZHANG T, MU W M, et al. Relationship between fine structure of amylopectin and digestibility from cereal starch[J]. Chinese Food Science,2010,31(9):12−15. [41] LI C, GONG B, HU Y, et al. Combined crystalline, lamellar and granular structural insights into in vitro digestion rate of native starches[J]. Food Hydrocolloids,2020,105:105823. doi: 10.1016/j.foodhyd.2020.105823 [42] ZHU J, ZHANG B, TAN C P, et al. Effect of rosa Roxburghii juice on starch digestibility: A focus on the binding of polyphenols to amylose and porcine pancreatic α-amylase by molecular modeling[J]. Food Hydrocolloids,2022,123:106966. doi: 10.1016/j.foodhyd.2021.106966 [43] QIN R, YU J, LI Y, et al. Structural changes of starch-lipid complexes during postprocessing and their effect on in vitro enzymatic digestibility[J]. Journal of Agricultural and Food Chemistry,2019,67:1530−1536. doi: 10.1021/acs.jafc.8b06371 [44] CHI C, LI X, ZHANG Y, et al. Modulating the in vitro digestibility and predicted glycemic index of rice starch gels by complexation with gallic acid[J]. Food Hydrocolloids,2019,89:821−828. doi: 10.1016/j.foodhyd.2018.11.016 [45] JIANG C, CHEN Y, YE X, et al. Three flavanols delay starch digestion by inhibiting α-amylase and binding with starch[J]. International Journal of Biological Macromolecules,2021,172:503−514. doi: 10.1016/j.ijbiomac.2021.01.070 [46] MYA B, BO L, FANG Z, et al. Interactions between caffeic acid and corn starch with varying amylose content and their effects on starch digestion[J]. Food Hydrocolloids,2021,114:106544. doi: 10.1016/j.foodhyd.2020.106544 [47] ZHU S, LIU B, WANG F, et al. Characterization and in vitro digestion properties of cassava starch and epigallocatechin-3-gallate (EGCG) blend[J]. LWT,2021,137:110398. doi: 10.1016/j.lwt.2020.110398 [48] 刘盼盼, 邓余良, 尹军峰, 等. 绿茶滋味量化及其与化学组分的相关性研究[J]. 中国食品学报,2014(12):173−181. [LIU P P, DENG Y L, YIN J F, et al. Quantification of green tea taste and its correlation with chemical components[J]. Journal of Chinese Institute of Food Science and Technology,2014(12):173−181. doi: 10.16429/j.1009-7848.2014.12.029 -