• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020

牛蒡多糖锌的制备工艺优化及其抗氧化活性评价

刘阳 孙晓晶 陈锵 刘旭龙 张超杰 郑振佳

刘阳,孙晓晶,陈锵,等. 牛蒡多糖锌的制备工艺优化及其抗氧化活性评价[J]. 食品工业科技,2023,44(11):179−186. doi:  10.13386/j.issn1002-0306.2022060291
引用本文: 刘阳,孙晓晶,陈锵,等. 牛蒡多糖锌的制备工艺优化及其抗氧化活性评价[J]. 食品工业科技,2023,44(11):179−186. doi:  10.13386/j.issn1002-0306.2022060291
LIU Yang, SUN Xiaojing, CHEN Qiang, et al. Preparation Process Optimization and Evaluation of Antioxidant Activity of Burdock Polysaccharide Zinc Complex[J]. Science and Technology of Food Industry, 2023, 44(11): 179−186. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022060291
Citation: LIU Yang, SUN Xiaojing, CHEN Qiang, et al. Preparation Process Optimization and Evaluation of Antioxidant Activity of Burdock Polysaccharide Zinc Complex[J]. Science and Technology of Food Industry, 2023, 44(11): 179−186. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022060291

牛蒡多糖锌的制备工艺优化及其抗氧化活性评价

doi: 10.13386/j.issn1002-0306.2022060291
基金项目: 博德牛蒡研究基金“牛蒡资源利用与产业提质增效研究”(Burdock2022001)。
详细信息
    作者简介:

    刘阳(1998−),女,硕士研究生,研究方向:农产品加工,E-mail:1332834210@qq.com

    通讯作者:

    郑振佳(1985−),男,博士,副教授 ,研究方向:农产品精深加工与质量控制,E-mail:pengyou-jia@163.com

  • 中图分类号: TS201.4

Preparation Process Optimization and Evaluation of Antioxidant Activity of Burdock Polysaccharide Zinc Complex

  • 摘要: 本研究以牛蒡多糖和硫酸锌为原料,通过硫酸锌法合成牛蒡多糖锌。采用单因素实验和响应面试验优化牛蒡多糖锌的制备工艺,并对其抗氧化活性进行研究。结果表明:牛蒡多糖锌的最佳制备工艺为:牛蒡多糖与硫酸锌的质量比为37:1、温度50 ℃、时间121 min、pH8.6,此时螯合率为93.21%±0.58%。抗氧化试验表明:当浓度为1.0 mg/mL时,牛蒡多糖锌对DPPH自由基、超氧阴离子自由基和ABTS+自由基的清除率分别为84.59%±0.60%、67.27%±1.00%、38.88%±1.68%,自由基清除能力均优于牛蒡多糖;而牛蒡多糖锌对羟基自由基的清除率略低于牛蒡多糖。锌修饰牛蒡多糖可增强牛蒡多糖的抗氧化能力,为牛蒡多糖的高值化利用提供了参考。
  • 图  1  质量比对螯合率的影响

    Figure  1.  Effect of the weight ratio on the chelation rate

    注:不同小写字母表示不同条件间螯合率差异显著(P<0.05),图2~图4同。

    图  2  反应温度对螯合率的影响

    Figure  2.  Effect of the reaction temperature on the chelation rate

    图  3  反应时间对螯合率的影响

    Figure  3.  Effect of the reaction time on the chelation rate

    图  4  反应pH对螯合率的影响

    Figure  4.  Effect of the reaction pH on the chelation rate

    图  5  各因素交互作用对牛蒡多糖锌螯合能力影响的响应面图

    Figure  5.  Response surface diagram of the effect of interaction of factors on chelating ability of burdock polysaccharide zinc

    图  6  牛蒡多糖和牛蒡多糖锌对DPPH自由基的清除能力

    Figure  6.  Scavenging ability of burdock polysaccharide and burdock polysaccharide zinc on DPPH radicals

    注:不同大写字母代表相同浓度下组间差异显著(P<0.05),不同小写字母代表同一样品组内不同浓度间差异显著(P<0.05),图7~图9同。

    图  7  牛蒡多糖和牛蒡多糖锌对超氧阴离子自由基的清除能力

    Figure  7.  Scavenging ability of burdock polysaccharide and burdock polysaccharide zinc on superoxide anion radicals

    图  8  牛蒡多糖和牛蒡多糖锌对羟基自由基的清除能力

    Figure  8.  Scavenging ability of burdock polysaccharide and burdock polysaccharide zinc on hydroxyl radicals

    图  9  牛蒡多糖和牛蒡多糖锌对ABTS+自由基的清除能力

    Figure  9.  Scavenging ability of burdock polysaccharide and burdock polysaccharide zinc on ABTS+ radicals

    表  1  响应面试验因素与水平

    Table  1.   Response surface experimental factors and levels

    水平因素
    A牛蒡多糖与硫酸锌
    的质量比
    B反应温度
    (℃)
    C反应时间
    (min)
    D反应
    pH
    −130:150907
    035:1601208
    140:1701509
    下载: 导出CSV

    表  2  微波消解升温程序

    Table  2.   Temperature rise procedure of microwave digestion

    步骤控制温度(℃)升温时间(min)恒温时间(min)
    112053
    216550
    31901015
    下载: 导出CSV

    表  3  响应面试验结果

    Table  3.   Response surface test results

    试验号A牛蒡多糖与硫酸
    锌的质量比
    B反应
    温度
    C反应
    时间
    D反应
    pH
    螯合率
    (%)
    1−1−10071.54
    2−10−1056.68
    3−101082.63
    4−100174.40
    5−100−153.17
    6−110076.95
    70−1−1081.56
    80−10−163.55
    90−10190.00
    100−11087.52
    11001184.94
    12000090.32
    1300−1−160.08
    14000086.17
    15000086.51
    16000086.67
    17001−176.18
    1800−1172.95
    19000088.32
    2001−1074.82
    21011084.82
    22010−178.93
    23010176.99
    241−10088.99
    2510−1083.77
    26101077.30
    27100−175.87
    28100179.54
    29110083.33
    下载: 导出CSV

    表  4  回归模型方差分析

    Table  4.   Analysis of variance of regression model

    来源平方和自由度均方FP差异性
    模型2659.3714189.9645.25<0.0001显著
    A449.331449.33107.05<0.0001**
    B4.4714.471.060.3198
    C336.341336.3480.13<0.0001**
    D420.561420.56100.19<0.0001**
    AB30.64130.647.300.0172*
    AC262.761262.7662.60<0.0001**
    AD77.09177.0918.370.0008**
    BC4.0814.080.970.3409
    BD201.501201.5048.00<0.0001**
    CD4.2214.221.010.3329
    A2345.571345.5782.33<0.0001**
    B21.2911.290.310.5887
    C2156.631156.6337.32<0.0001**
    D2584.821584.82139.33<0.0001**
    残差58.77144.20
    失拟项46.75104.681.560.3556不显著
    绝对误差12.0143.00
    总和2718.1428
    注:**P<0.01,差异极显著;*P<0.05,差异显著。
    下载: 导出CSV
  • [1] HOU B, WANG W C, GAO H, et al. Effects of aqueous extract of Arctium lappa L. roots on serum lipid metabolism[J]. The Journal of International Medical Research,2018,46(1):158−167. doi:  10.1177/0300060517716341
    [2] 刘萍. 牛蒡的开发利用现状及展望[J]. 食品研究与开发,2013,34(15):128−130. [LIU P. Processing and utilization situation of great burdock and its prospect[J]. Food Research and Development,2013,34(15):128−130.
    [3] 朱姗姗, 张斌, 朱文卿, 等. 牛蒡多糖特性分析及对脂多糖诱导巨噬细胞炎症的调节作用[J]. 食品工业科技,2022,43(15):272−278. [ZHU S S, ZHANG B, ZHU W Q, et al. Analysis of properties of burdock polysaccharide and its regulatory effect on lipopolysaccharide-induced macrophage inflammation[J]. Science and Technology of Food Industry,2022,43(15):272−278.
    [4] ZHANG N F, WANG Y, KAN J, et al. In vivo and in vitro anti-inflammatory effects of water-soluble polysaccharide from Arctium lappa[J]. International Journal of Biological Macromolecules,2019,135:717−724. doi:  10.1016/j.ijbiomac.2019.05.171
    [5] 王佳佳, 刘玮, 朱静, 等. 牛蒡多糖的降血糖活性[J]. 中国药科大学学报,2013,44(5):455−459. [WANG J J, LIU W, ZHU J, et al. Hypoglycemic activity of a polysaccharide from the roots of Arctium lappa L

    J]. Journal of China Pharmaceutical University,2013,44(5):455−459.
    [6] WATAANABE A, SASAKI H, MIYAKAWA H, et al. Effect of dose and timing of burdock (Arctium lappa) root intake on intestinal microbiota of mice[J]. Microorganisms,2020,8(2):220. doi:  10.3390/microorganisms8020220
    [7] ZHANG W, LI L Y, MA Y, et al. Structural characterization and hypoglycemic activity of a novel pumpkin peel polysaccharide-chromium (III) complex[J]. Foods,2022,11(13):1821. doi:  10.3390/foods11131821
    [8] XU Y, WU Y J, SUN P L, et al. Chemically modified polysaccharides: Synthesis, characterization, structure activity relationships of action[J]. International Journal of Biological Macromolecules,2019,132(1):970−977.
    [9] 李玲玉, 邱志常, 朱姗姗, 等. 响应面法优化牛蒡多糖超声辅助提取工艺与抗氧化活性评价[J]. 食品科技,2020,45(11):197−204, 211. [LI L Y, QIU Z C, ZHU S S, et al. Optimization of polysaccharides from Arctium lappa L. by ultrasound-assisted extraction using response surface methodology and its antioxidant activity[J]. Food Science and Technology,2020,45(11):197−204, 211.
    [10] WANG Y, ZHANG N F, KAN J, et al. Structural characterization of water-soluble polysaccharide from Arctium lappa and its effects on colitis mice[J]. Carbohydrate Polymers,2019,213:89−99. doi:  10.1016/j.carbpol.2019.02.090
    [11] LI L Y, QIU Z C, DONG H J, et al. Structural characterization and antioxidant activities of one neutral polysaccharide and three acid polysaccharides from the roots of Arctium lappa L.: A comparison[J]. International Journal of Biological Macromolecules,2021,182:187−196. doi:  10.1016/j.ijbiomac.2021.03.177
    [12] 李卷梅. 牛蒡根多糖提取和结构特征[D]. 南昌: 南昌大学, 2019

    LI J M. Extraction and structural characteristic of polysaccharides from Arctium lappa Linn. radix[D]. Nanchang: Nanchang University, 2019.
    [13] 朱文卿, 朱姗姗, 何秋霞, 等. 牛蒡多糖与绿原酸对斑马鱼氧化损伤的协同抗氧化作用[J]. 中国食品学报,2022,22(4):95−103. [ZHU W Q, ZHU S S, HE Q X, et al. Synergistic antioxidant effects of burdock polysaccharide and chlorogenic acid on oxidative damage in zebrafish[J]. Journal of Chinese Institute of Food Science and Technology,2022,22(4):95−103.
    [14] MALINOWSKA E, KRZYCZKOWSKI W, HEROLD F, et al. Biosynthesis of selenium-containing polysaccharides with antioxidant activity in liquid culture of Hericium erinaceum[J]. Enzyme and Microbial Technology,2009,44(5):334−343. doi:  10.1016/j.enzmictec.2008.12.003
    [15] 张金尧, 汪洪. 锌肥施用与人体锌素营养健康[J]. 肥料与健康,2020,47(1):11−16. [ZHANG J Y, WANG H. Zinc fertilizer application and human zinc nutrient health[J]. Fertilizer and Health,2020,47(1):11−16.
    [16] 袁心田, 陈华国, 赵超, 等. 锌多糖的合成方法、结构特征和生物活性研究进展[J]. 食品与发酵工业,2022,48(14):336−344. [YUAN X T, CHEN H G, ZHAO C, et al. Progress of synthesis methods, structural characteristics and biological activities of zinc polysaccharides[J]. Food and Fermentation Industry,2022,48(14):336−344.
    [17] SANDSTEAD H H. Subclinical zinc deficiency impairs human brain function[J]. Journal of Trace Elements in Medicine and Biology,2012,26(2/3):70−73.
    [18] 姜莉媛. 水溶性大豆多糖与锌离子螯合反应机理与产物性质研究[D]. 广州: 华南理工大学, 2021

    JIANG L Y. Study on the chelation mechanism of soluble soybean polysaccharides with zinc ion and the properties of the products[D]. Guangzhou: South China University of Technology, 2021.
    [19] 黄靖, 邹烨, 王未, 等. 肉苁蓉多糖锌的制备、表征及抗氧化活性[J]. 化学研究,2015,26(6):584−589. [HUANG J, ZOU Y, WANG W, et al. Preparation, characterization and antioxidant activity of Cistanche tubulosa Zn2+-polysaccharide complex[J]. Chemical Research,2015,26(6):584−589.
    [20] MOHANTA B, SEN D J, MAHANTI B, et al. Antioxidant potential of herbal polysaccharides: An overview on recent researches[J]. Sensors International,2022,3:100158. doi:  10.1016/j.sintl.2022.100158
    [21] WANG J Q, HU S Z, NIE S P, et al. Reviews on mechanisms of in vitro antioxidant activity of polysaccharides[J]. Oxidative Medicine and Cellular Longevity,2016,2016:5692852.
    [22] 董淑君, 张禧庆, 刘旭龙, 等. 南瓜皮多糖锌的制备及生物利用率研究[J]. 食品工业科技,2022,43(18):200−207. [DONG S J, ZHANG X Q, LIU X L, et al. Study on preparation and bioacceptability of pumpkin skin polysaccharide-zinc complex[J]. Science and Technology of Food Industry,2022,43(18):200−207.
    [23] 李文文, 王丹, 董淑君, 等. 生姜皮多糖锌的制备及体外模拟消化研究[J]. 食品工业科技,2022,43(18):185−191. [LI W W, WANG D, DONG S J, et al. Preparation of ginger peel polysaccharide-zinc complex and in vitro simulated digestion study[J]. Science and Technology of Food Industry,2022,43(18):185−191.
    [24] 汤陈鹏, 吕峰, 王蓉琳. 孔石莼多糖锌结构表征与体外降血糖活性[J]. 食品科学,2020,41(7):52−58. [TANG C P, LÜ F, WANG R L. Structural characterization and hypoglycemic activity in vitro of Ulva pertusa polysaccharides-zinc complex[J]. Food Science,2020,41(7):52−58.
    [25] ZHANG M, ZHAO H, SHEN Y, et al. Preparation, characterization and antioxidant activity evaluation in vitro of Fritillaria ussuriensis polysaccharide-zinc complex[J]. International Journal of Biological Macromolecules,2020,146(1):462−474.
    [26] 罗敬文, 司风玲, 顾子玄, 等. 3种木耳多糖的抗氧化活性与抑菌能力比较分析[J]. 食品科学,2018,39(19):64−69. [LUO J W, SI F L, GU Z X, et al. Antioxidant and antimicrobial activities of polysaccharides from three species ofAuricularia[J]. Food Science,2018,39(19):64−69.
    [27] DONG S J, ZHANG B, MA Y, et al. Pumpkin skin polysaccharide–Zn(II) complex: Preparation, characterization, and suppression of inflammation in zebrafish[J]. Foods,2022,11:2610. doi:  10.3390/foods11172610
    [28] 廉雯蕾. 脱酰胺-酶解法制备米蛋白肽及其亚铁螯合物的研究[D]. 无锡: 江南大学, 2015

    LIAN W L. Study on preparation of rice protein peptides with acid deamidation-enzymolysis and iron chelating[D]. Wuxi: Jiangnan University, 2015.
    [29] 张浩然, 徐汀, 田恺, 等. 快速消解-电感耦合等离子体质谱法测定水产配合饲料中的铬、铜、锌、砷、镉、汞和铅[J]. 食品安全质量检测学报,2021,12(11):4365−4372. [ZHANG H R, XU T, TIAN K, et al. Determination of chromium, copper, zinc, arsenic, cadmium, mercury and lead in aquatic formula feeds by rapid digestion-inductively coupled plasma mass spectrometry[J]. Food Safety and Quality Detection Technology,2021,12(11):4365−4372.
    [30] 郭雷, 宋宇, 邵天舒, 等. 微波消解-电感耦合等离子体质谱法测定整蛋白型肠内营养剂中铁、锌、铜、锰元素含量[J]. 中国药业,2020,29(21):72−74. [GUO L, SONG Y, SHAO T S, et al. Content determination of Fe, Zn, Cu and Mn in intacted protein enteral nutrition powder by MAE-ICP-MS[J]. China Pharmaceuticals,2020,29(21):72−74.
    [31] 符玉霞, 郭欣, 魏亚博, 等. 红枣多糖羧甲基化修饰及其抗氧化活性研究[J]. 食品工业科技,2022,43(17):104−113. [FU Y X, GUO X, WEI Y B, et al. Study on carboxymethylation modification and antioxidant activity of polysaccharides from jujube[J]. Science and Technology of Food Industry,2022,43(17):104−113.
    [32] LI Y, ZHU C P, ZHAI X C, et al. Optimization of enzyme assisted extraction of polysaccharides from pomegranate peel by response surface methodology and their anti-oxidant potential[J]. Chinese Herbal Medicines,2018,10(4):416−423. doi:  10.1016/j.chmed.2018.08.007
    [33] 阮进基, 苏帆, 云少君, 等. 杏鲍菇多糖-钙螯合物的制备及其抗氧化活性[J]. 食品工业,2022,43(2):88−93. [RUAN J J, SU F, YUN S J, et al. Preparation of Pleurotus eryngii polysaccharides-calcium chelate and its antioxidant activity research[J]. Food Industry,2022,43(2):88−93.
    [34] 何坤明, 王国锭, 白新鹏, 等. 山茱萸籽多糖分离纯化、结构表征及抗氧化活性[J]. 食品科学,2021,42(19):81−88. [HE K M, WANG G D, BAI X P, et al. Isolation, purification, structural characterization and antioxidant activity of Cornus officinalis seeds polysaccharides[J]. Food Science,2021,42(19):81−88.
    [35] 董金满, 李鸿梅, 李炳东. 罗耳阿太菌多糖锌的制备及其抗氧化活性研究[J]. 食品工业,2018,39(6):22−26. [DONG J M, LI H M, LI B D. Preparation and antioxidant activity of Athelia rolfsii polysaccharide-zinc[J]. Food Industry,2018,39(6):22−26.
    [36] 李兴艳, 张丙云, 尚永彪. 正交实验优化酵母多糖锌配合物的制备及其对尿素的吸附性能[J]. 食品科学,2013,34(14):57−62. [LI X Y, ZHANG B Y, SHANG Y B. Preparation of yeast polysaccharide-Zn complex and its adsorption performance for urea[J]. Food Science,2013,34(14):57−62.
    [37] 赵姝雯. 金针菇(Flammulina velutipes)锌多糖的制备、结构分析及其生物活性研究[D]. 南京: 南京农业大学, 2016

    ZHAO S W. Preparation, characterization, antioxidant and anti-inflammatory effect of the chelate of Flammulina velutipes polysaccharide with Zn[D]. Nanjing: Nanjing Agricultural University, 2016.
    [38] 顾冰飞, 赵圆圆, 陈义勇. 杏鲍菇多糖锌螯合物的制备工艺及其抗氧化活性[J]. 食品研究与开发,2019,40(4):97−103. [GU B F, ZHAO Y Y, CHEN Y Y. Preparation technology of Pleurotus eryngii polysaccharide-zinc (Ⅱ) chelate and its antioxidant activity[J]. Food Research and Development,2019,40(4):97−103.
    [39] 吕侠影, 姜绍通, 余振宇, 等. 苦丁-荔枝复合饮料的研制[J]. 食品工业科技,2015,36(13):225−228, 233. [LÜ X Y, JIANG S T, YU Z Y, et al. Preparation of beverage from ilex and litchi[J]. Science and Technology of Food Industry,2015,36(13):225−228, 233.
    [40] 吴新建, 林素英, 李荣华. 槲皮素与3d-过渡金属二价离子的配位反应研究[J]. 福建师范大学学报,2007(6):68−71. [WU X J, LIN S Y, LI R H. Research on the coordination reactions of 3d-transition metal (Ⅱ) ions with quercetin[J]. Journal of Fujian Normal University,2007(6):68−71.
    [41] 王元凤, 金征宇, 魏新林. 茶多糖金属络合物的制备及清除自由基活性研究[J]. 天然产物研究与开发,2009,21(3):382−387. [WANG Y F, JIN Z Y, WEI X L. Preparation and hydroxyl radical-scavenging effects of tea polysaccharides metal complexes[J]. Natural Products Research and Development,2009,21(3):382−387.
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  75
  • HTML全文浏览量:  20
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-29
  • 网络出版日期:  2023-04-20
  • 刊出日期:  2023-06-01

目录

    /

    返回文章
    返回