• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020

基于主成分分析的西式快餐条件下煎炸油品质评价

胡明明 张权 吴思纷 张国文

胡明明,张权,吴思纷,等. 基于主成分分析的西式快餐条件下煎炸油品质评价[J]. 食品工业科技,2023,44(11):287−296. doi:  10.13386/j.issn1002-0306.2022070001
引用本文: 胡明明,张权,吴思纷,等. 基于主成分分析的西式快餐条件下煎炸油品质评价[J]. 食品工业科技,2023,44(11):287−296. doi:  10.13386/j.issn1002-0306.2022070001
HU Mingming, ZHANG Quan, WU Sifen, et al. Quality Evaluation of Frying Oils under the Conditions of Western Fast Food Restaurants Based on Principal Component Analysis[J]. Science and Technology of Food Industry, 2023, 44(11): 287−296. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022070001
Citation: HU Mingming, ZHANG Quan, WU Sifen, et al. Quality Evaluation of Frying Oils under the Conditions of Western Fast Food Restaurants Based on Principal Component Analysis[J]. Science and Technology of Food Industry, 2023, 44(11): 287−296. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022070001

基于主成分分析的西式快餐条件下煎炸油品质评价

doi: 10.13386/j.issn1002-0306.2022070001
基金项目: 江西省教育厅科学技术研究项目(GJJ210322);江西省重点研发计划项目(20192ACB60005)。
详细信息
    作者简介:

    胡明明(1986−),男,博士,助理研究员,研究方向:油脂质量分析及产品开发应用,E-mail:2006abc-hmm@163.com

  • 中图分类号: TS225.1

Quality Evaluation of Frying Oils under the Conditions of Western Fast Food Restaurants Based on Principal Component Analysis

  • 摘要: 为了研究西式快餐条件下煎炸油的品质并建立其评价体系,考察了5种常见煎炸油(大豆油、菜籽油、葵花籽油、棕榈油及稻米油)在模拟西式快餐条件170 ℃连续7 d煎炸薯条过程中11个品质相关的理化指标,通过主成分分析法综合评价了5种煎炸油在煎炸过程中的煎炸性能,并建立煎炸油品质评价模型。结果表明,5种煎炸油煎炸周期结束后酸价、极性组分、羰基价、茴香胺值、全氧化值和色泽均显著升高(P<0.05),维生素E总量和氧化稳定指数均显著降低(P<0.05)。相关性分析显示茴香胺值、全氧化值、羰基价两两之间均显著性正相关(r=0.877~0.997,P<0.05),色泽与酸价呈极显著正相关(r=0.822,P<0.01),碘值与氧化稳定指数呈极显著负相关(r=−0.846,P<0.01),与亚油酸/棕榈酸比值呈极显著正相关(r=0.833,P<0.01)。主成分分析提取出3个综合性评价指标,累计贡献率达84.115%,反映了原指标的大部分信息,并进一步建立煎炸油煎炸性能的综合评价得分模型F=0.405F1+0.295F2+0.141F3。该模型显示棕榈油综合得分最高,具有较好的煎炸性能。本研究结果可为西式快餐条件下煎炸油的品质评价和质量控制提供借鉴。
  • 图  1  5 种煎炸油煎炸周期前后酸价(A)、极性组分(B)、C18:2/C16:0(C)和碘值(D)的变化

    Figure  1.  Changes in AV (A), TPC (B), C18:2/C16:0 (C) and IV (D) of five frying oils before and after frying period

    注:不同小写字母表示相同煎炸天数不同煎炸油之间存在显著性差异(P<0.05),图2图3同。

    图  2  5 种煎炸油煎炸周期前后羰基价(A)、过氧化值(B)、茴香胺值(C)和全氧化值(D)的变化

    Figure  2.  Changes in CGV (A), PV (B), p-AV (C) and TOTOX (D) of five frying oils before and after frying period

    图  3  5 种煎炸油煎炸周期前后氧化诱导时间(A)、维生素 E 总量(B)和色泽(C)的变化

    Figure  3.  Changes in OSI (A), VE (B) and color (C) of five frying oils before and after frying period

    图  4  主成分分析特征值碎石图

    Figure  4.  Scree plot of principal component analysis

    图  5  煎炸油品质评价指标的主成分载荷图

    Figure  5.  Principal component loading plot of quality evaluation indexes of frying oils

    图  6  不同煎炸时间植物油的 PC1 和 PC2 得分图

    Figure  6.  PC1 and PC2 scores of frying oil samples during different frying time

    表  1  煎炸油各理化指标间相关性分析

    Table  1.   Correlation analysis of the physicochemical indexes determined in five frying oils

    理化指标AVPVp-AVTOTOXIVCGVTPCOSI色泽VEC18:2/C16:0
    AV1
    PV0.0071
    p-AV0.354*0.297*1
    TOTOX0.343*0.374**0.997**1
    IV−0.2290.1970.354*0.361**1
    CGV0.533**0.458**0.877**0.89*0.362*1
    TPC0.368*0.1340.471**0.469**0.338*0.633**1
    OSI−0.057−0.311−0.512**−0.524**−0.846**−0.599**−0.55**1
    色泽0.822**−0.1580.2090.188−0.454**0.392**0.542**0.0931
    VE−0.374**−0.202−0.165−0.1770.503**−0.2040.427**−0.301*−0.2331
    C18:2/C16:0−0.363*0.385**0.090.1210.833**0.1230.055−0.662**−0.626**0.325*1
    注:**表示极显著相关,P<0.01;*表示显著相关,P<0.05。
    下载: 导出CSV

    表  2  特征值及方差贡献分析表

    Table  2.   Characteristic values and contribution rates of principal components

    成分初始特征值方差提取平方和载入方差
    特征值方差贡献率(%)累计贡献率(%)特征值方差贡献率(%)累计贡献率(%)
    PC14.45440.49340.4934.45440.49340.493
    PC23.24429.49569.9883.24429.49569.988
    PC31.55414.12784.1151.55414.12784.115
    PC40.756.81790.932
    PC50.5875.33596.267
    PC60.1991.84698.078
    PC70.1090.99599.073
    PC80.0720.65899.731
    PC90.0170.15699.887
    PC100.0120.113100.000
    PC111.96E-050.000100.000
    下载: 导出CSV

    表  3  煎炸油主成分分析旋转成分矩阵

    Table  3.   Rotated component matrix of principal component analysis of frying oils

    评价指标主成分因子
    PC1PC2PC3
    AV (X10.3700.7660.122
    PV (X20.458−0.140−0.557
    p-AV (X30.8660.216−0.198
    TOTOX (X40.8800.196−0.240
    IV (X50.620−0.7210.141
    CGV (X60.9310.289−0.123
    TPC (X70.7000.1540.604
    OSI (X8−0.8070.417−0.151
    色泽 (X90.2060.8660.387
    VE (X100.061−0.5700.736
    C18:2/C16:0 (X110.382−0.824−0.132
    下载: 导出CSV

    表  4  煎炸油主成分得分系数矩阵

    Table  4.   Scoring coefficient matrix of principal component analysis of frying oils

    评价指标主成分因子
    PC1PC2PC3
    AV (X10.1750.4250.098
    PV (X20.217−0.078−0.447
    p-AV (X30.4100.120−0.159
    TOTOX (X40.4170.109−0.193
    IV (X50.294−0.4000.113
    CGV (X60.4410.160−0.099
    TPC (X70.3320.0860.485
    OSI (X8−0.3820.232−0.121
    色泽 (X90.0980.4810.310
    VE (X100.029−0.3160.590
    C18:2/C16:0 (X110.181−0.457−0.106
    下载: 导出CSV

    表  5  不同煎炸油煎炸性能评价得分情况

    Table  5.   Frying performance evaluation scores of different frying oils during frying

    煎炸油F1F2F3F 排名
    PO-0−6.4100.483−0.341−2.5021
    PO-1−3.7850.698−1.134−1.4875
    PO-2−2.7201.081−1.301−0.9667
    PO-3−2.4871.511−1.277−0.7419
    PO-4−2.1602.062−1.143−0.42712
    PO-5−1.9202.373−0.970−0.21414
    PO-6−1.7732.961−0.6340.06618
    PO-7−1.6263.648−0.3000.37524
    RBO-0−1.854−1.5641.682−0.9756
    RBO-1−0.701−0.4302.062−0.12016
    RBO-20.0770.1931.6720.32422
    RBO-30.2710.4911.6080.48125
    RBO-40.8571.0821.5410.88433
    RBO-51.1841.5941.5781.17237
    RBO-61.0411.9611.8661.26338
    RBO-71.2802.6812.2231.62340
    RSO-0−2.961−2.635−0.236−2.0103
    RSO-1−1.001−1.496−0.535−0.9228
    RSO-2−0.072−0.844−0.893−0.40413
    RSO-30.572−0.092−0.7800.09419
    RSO-40.7940.384−0.6490.34323
    RSO-51.1140.716−0.6000.57828
    RSO-61.2881.224−0.5060.81231
    RSO-70.7481.6090.2240.80930
    SBO-0−2.847−3.7281.967−1.9754
    SBO-1−0.155−2.4650.961−0.65410
    SBO-20.785−1.7830.551−0.13015
    SBO-31.291−1.2440.4880.22420
    SBO-41.666−0.7300.5480.53726
    SBO-51.956−0.2150.5940.81232
    SBO-61.8850.0970.7940.90434
    SBO-71.5690.6171.2640.99635
    SFO-0−1.887−4.333−0.201−2.0712
    SFO-10.774−2.436−0.959−0.54011
    SFO-21.518−1.861−1.273−0.11417
    SFO-32.507−1.486−2.4240.23521
    SFO-42.680−0.851−1.8930.56827
    SFO-52.532−0.380−1.2250.74129
    SFO-62.9780.242−1.3231.09136
    SFO-72.9920.867−1.0261.32339
    注:PO:棕榈油;RBO:稻米油;RSO:菜籽油;SBO:大豆油;SFO:葵花籽油;图6同;PO-0~PO-7分别表示煎炸0~7 d的棕榈油,其他的类同。
    下载: 导出CSV
  • [1] LI X, WU G C, YANG F, et al. Influence of fried food and oil type on the distribution of polar compounds in discarded oil during restaurant deep frying[J]. Food Chemistry,2019,272:12−17. doi:  10.1016/j.foodchem.2018.08.023
    [2] HU M, PAN K, NIU Y, et al. Comparative assessment of thermal resistance of palm stearin and high oleic blended oil when subjected to frying practice in fast food restaurants[J]. Journal of Oil Palm Research,2020,32(1):90−102.
    [3] LI X, LI J, WANG Y, et al. Effects of frying oils fatty acids profile on the formation of polar lipids components and their retention in French fries over deep-frying process[J]. Food Chemistry,2017,237:98−105. doi:  10.1016/j.foodchem.2017.05.100
    [4] YANG D, ZHU L, WU G, et al. Whether the degradation of frying oil affects oil absorption: Tracking fresh and degraded oil in fried potato strips during frying and cooling and microstructure characterization[J]. Food and Bioproducts Processing,2022,133:87−99. doi:  10.1016/j.fbp.2022.03.001
    [5] ZHU Y, LI X, HUANG J, et al. Correlations between polycyclic aromatic hydrocarbons and polar components in edible oils during deep frying of peanuts[J]. Food Control,2018,87:109−116. doi:  10.1016/j.foodcont.2017.12.011
    [6] ALADEDUNYE F, PRZYBYLSKI R. Performance of palm olein and modified rapeseed, sunflower, and soybean oils in intermittent deep-frying[J]. European Journal of Lipid Science and Technology,2014,116:144−152. doi:  10.1002/ejlt.201300284
    [7] WAGHMAREA A, PATILA S, LEBLANC J G, et al. Comparative assessment of algal oil with other vegetable oils for deep frying[J]. Algal Research,2018,31:99−106. doi:  10.1016/j.algal.2018.01.019
    [8] SANTOS CARLA S P, MOLINA-GARCIA L, CUNHA SARA C, et al. Fried potatoes: Impact of prolonged frying in monounsaturated oils[J]. Food Chemistry,2018,243:192−201. doi:  10.1016/j.foodchem.2017.09.117
    [9] 厉玉婷, 于艳艳, 杨振东, 等. 食用植物油煎炸过程中的品质变化[J]. 中国油脂,2022,47(2):46−50. [LI Y T, YU Y Y, YANG Z D, et al. Quality changes of edible vegetable oils during frying[J]. China Oils and Fats,2022,47(2):46−50.
    [10] 陈玉. 基于热稳定性的稻米煎炸油的研究[D]. 武汉: 武汉轻工业大学, 2019

    CHEN Y. Study of rice bran frying oil based on the thermal stability[D]. Wuhan: Wuhan Polytechnic University, 2019.
    [11] AĞÇAM E. Modeling of the changes in some physical and chemical quality attributes of potato chips during frying process[J]. Applied Food Research,2022,2(1):100064. doi:  10.1016/j.afres.2022.100064
    [12] 王彦花, 王容, 张云, 等. 基于主成分分析的油茶果经济性状及茶油脂肪酸组成[J]. 食品与发酵工业,2019,40(1):251−255. [WANG Y H, WANG R, ZHANG Y, et al. Economic indexes of Camellia oleifera fruit and fatty acid composition of camellia oil based on principal component analysis[J]. Science and Technology of Food Industry,2019,40(1):251−255.
    [13] 曾静, 伊雄海, 曲栗, 等. 基于脂肪酸含量分析结合化学计量学的橄榄油等级鉴别方法[J]. 分析测试学报,2021,40(10):1432−1438. [ZENG J, YIN X H, QU L. Grade identification of olive oil based on fatty acids analysis combined with chemometrics[J]. Journal of Instrumental Analysis,2021,40(10):1432−1438. doi:  10.19969/j.fxcsxb.21032803
    [14] 黎海红, 李雪琴, 苗笑亮. 掺伪芝麻油检测的主成分分析方法研究[J]. 食品工业科技,2008,29(6):297−300. [LI H H, LI X Q, MIAO X L. Study on sesame oil adulteration detection by principal component analysis[J]. Science and Technology of Food Industry,2008,29(6):297−300. doi:  10.13386/j.issn1002-0306.2008.06.081
    [15] 许春芳, 董喆, 郑明明, 等. 不同产地的紫苏籽油活性成分检测与主成分分析[J]. 中国油料作物学报,2019,41(2):275−282. [XU C F, DONG J, ZHENG M M, et al. Active compound and principal component analysis of perilla seed oils from different production areas[J]. Chinese Journal of Oil Crop Sciences,2019,41(2):275−282. doi:  10.7505/j.issn.1007-9084.2019.02.017
    [16] 雷春妮, 张雅珩, 李经纬, 等. 基于主成分分析构建初榨橄榄油香气质量评价模型[J]. 中国粮油学报,2019,34(12):65−70. [LEI C N, ZHANG Y H, LI J W, et al. Modeling for aroma quality evaluation of virgin olive oil based on principal component analysis[J]. Journal of the Chinese Cereals and Oils Association,2019,34(12):65−70. doi:  10.3969/j.issn.1003-0174.2019.12.012
    [17] 杨雯懿, 陈林, 周学忠. 基于主成分分析和聚类分析的橄榄油中微量元素的统计比较[J]. 食品与发酵工业,2020,46(14):222−227. [YANG W Y, CHEN L, ZHOU X Z. Statistical comparison of trace elements in olive oil based on principal component analysis and cluster analysis[J]. Food and Fermentation Industries,2020,46(14):222−227. doi:  10.13995/j.cnki.11-1802/ts.024115
    [18] ZOU M, CHEN Y, HU C, et al. Physicochemical properties of rice bran blended oil in deep frying by principal component analysis[J]. Journal of Food Science and Technology,2022,59:4187−4197. doi:  10.1007/s13197-022-05472-7
    [19] VERMA V, SINGH V, CHAUHAN O P, et al. Comparative evaluation of conventional and advanced frying methods on hydroxymethylfurfural and acrylamide formation in French fries[J]. Innovative Food Science & Emerging Technologies,2023,83:103233.
    [20] 王晨颖. 煎炸用油的品质管理的研究[D]. 上海: 华东理工大学, 2011

    WANG C Y. Research on quality control of frying oil[D]. Shanghai: East China University of Science and Technology, 2011.
    [21] AHMAD TARMIZI A H, ISMAIL R. Use of pilot plant scale continuous fryer to simulate industrial production of potato chips: Thermal properties of palm olein blends under continuous frying conditions[J]. Food Science & Nutrition,2014,2(1):28−38.
    [22] ISMAIL R. Palm oil and palm olein frying applications[J]. Asia Pacific Journal of Clinical Nutrition,2005,14(4):414−419.
    [23] 胡明明, 牛跃庭, 季敏, 等. 市售火腿肠中油脂调研[J]. 粮食与油脂,2017,30(12):78−80. [HU M M, NIU Y T, JI M, et al. Technical survey on oils and fats in sausages[J]. Cereals & Oils,2017,30(12):78−80. doi:  10.3969/j.issn.1008-9578.2017.12.021
    [24] 樊之雄. 煎炸棕榈油品质变化及其对丙烯酰胺生成的影响[D]. 无锡: 江南大学, 2012

    FAN Z X. The quality changes of frying palm oil and impact to the generation of acrylamide[D]. Wuxi: Jiangnan University, 2012.
    [25] 李徐, 徐晓光, 刘睿杰, 等. 9种市售稻米油极性物质含量的测定及组成分析[J]. 中国粮油学报,2017,32(2):120−124. [LI X, XU X G, LIU R J, et al. Analysis on polar material content and composition in 9 rice bran oils[J]. Journal of the Chinese Cereals and Oils Association,2017,32(2):120−124. doi:  10.3969/j.issn.1003-0174.2017.02.021
    [26] 刘玉兰, 王莹辉, 张振山, 等. 4种油脂煎炸过程中维生素E组分含量变化的研究[J]. 中国油脂,2015,40(12):48−52. [LIU Y L, WANG Y H, ZHANG Z S, et al. Changes of vitamin E composition and content in four kinds of oils and fats during frying[J]. China Oils and Fats,2015,40(12):48−52. doi:  10.3969/j.issn.1003-7969.2015.12.011
    [27] SERBINOVA E, KAGAN V, HAN D, et al. Free radical recycling and intramembrane mobility in the antioxidant properties of alpha-tocopherol and alpha-tocotrienol[J]. Free Radical Biology and Medicine,1991,10(5):263−275. doi:  10.1016/0891-5849(91)90033-Y
    [28] XU Z, YE Z, LI Y, et al. Comparative study of the oxidation stability of high oleic oils and palm oil during thermal treatment[J]. Journal of Oleo Science, 2020, 69(6): 1−12.
    [29] 张铁英, 姜元荣, 陈雅琼. 煎炸油在煎炸过程中脂肪酸组成的变化[J]. 食品科学,2013,34(5):132−136. [ZHANG T Y, JIANG Y R, CHEN Y Q. Change in fatty acid composition of frying oils during frying[J]. Food Science,2013,34(5):132−136.
    [30] ABDULKARIM S M, LONG K, LAI O M, et al. Frying quality and stability of high-oleic Moringa oleifera seed oil in comparison with other vegetable oils[J]. Food Chemistry,2007,105(4):1382−1389. doi:  10.1016/j.foodchem.2007.05.013
    [31] ZHANG H, MA J, MIAO Y, et al. Analysis of carbonyl value of frying oil by fourier transform infrared spectroscopy[J]. Journal of Oleo Science,2015,64(4):375−380. doi:  10.5650/jos.ess14201
    [32] 慕鸿雁, 郑琦. 3种食用油在薯条煎炸过程中的品质变化[J]. 食品科学,2012,33(19):168−171. [MU H Y, ZHENG Q. Quality change of three kinds of edible oil during frying process[J]. Food Science,2012,33(19):168−171.
    [33] KHOR Y P, WAN S Y, TAN C P, et al. Potential of using basa catfish oil as a promising alternative deep-frying medium: A thermo-oxidative stability study[J]. Food Research International,2021,141:109897. doi:  10.1016/j.foodres.2020.109897
    [34] MATTHÄUS B. Utilization of high-oleic rapeseed oil for deep-fat frying of French fries compared to other commonly used edible oils[J]. European Journal of Lipid Science and Technology,2006,108:200−211. doi:  10.1002/ejlt.200500249
    [35] 蒋晓菲, 杨叶波, 金青哲, 等. 5种精制食用油在煎炸薯条过程中的品质变化[J]. 中国油脂,2020,2014(8):47−51. [JIANG X F, YANG Y B, JIN Q Z, et al. Quality changes of five kinds of refined oils during potato chips frying[J]. China Oils and Fats,2020,2014(8):47−51.
    [36] MBA O I, DUMONT M J, NGADI M. Characterization of tocopherols, tocotrienols and total carotenoids in deep fat fried French fries[J]. Journal of Food Composition and Analysis,2018,69:78−86. doi:  10.1016/j.jfca.2018.02.011
    [37] NAYAK, P K, DASH U, RAYAGURU K, et al. Physio-chemical changes during repeated frying of cooked oil: A review[J]. Journal of Food Biochemistry,2015,40(3):371−390.
    [38] TYAGI V K, VASISHTHA A K. Changes in the characteristics and composition of oils during deep-fat frying[J]. Journal of the American Oil Chemists Society,1996,73:499−506. doi:  10.1007/BF02523926
    [39] ALADEDUNYE F A, PRZYBYLSKI R. Degradation and nutritional quality changes of oil during frying[J]. Journal of the American Oil Chemists Society,2009,86(2):149−156. doi:  10.1007/s11746-008-1328-5
    [40] RANAMUKHAARACHCHI S A, PEIRIS R H, MORESOLI C. Fluorescence spectroscopy and principal component analysis of soy protein hydrolysate fractions and the potential to assess their antioxidant capacity characteristics[J]. Food Chemistry,2017,217:469−475. doi:  10.1016/j.foodchem.2016.08.029
    [41] 王建芳, 高山, 牟德华. 基于主成分分析和聚类分析的不同品种燕麦品质评价[J]. 食品工业科技,2020,41(13):85−91. [WANG J F, GAO S, MOU D H. Comprehensive quality evaluation of different varieties of oat based on principal components analysis and cluster analysis[J]. Science and Technology of Food Industry,2020,41(13):85−91. doi:  10.13386/j.issn1002-0306.2020.13.014
    [42] YILDIRIM E, TOKER Ö S, KARAMAN S, et al. Investigation of fatty acid composition and trans fatty acid formation in extracted oils from French-fried potatoes and classification of samples using chemometric approaches[J]. Turkish Journal of Agriculture & Forestry,2015,39:80−90.
    [43] 郝麒麟, 黄先智, 贺燕, 等. 基于主成分分析法评价巫山脆李食用品质[J]. 食品与发酵工业,2020,46(19):251−257. [HAO Q L, HUANG X Z, HE Y, et al. Evaluation of Wushan plum edible quality based on principal component analysis[J]. Food and Fermentation Industries,2020,46(19):251−257. doi:  10.13995/j.cnki.11-1802/ts.024178
    [44] ZRIBI A, JABEUR H, MATTHÄUS B, et al. Quality control of refined oils mixed with palm oil during repeated deep-frying using FT-NIRS, GC, HPLC, and multivariate analysis[J]. European Journal of Lipid Science & Technology,2016,118(4):512−523.
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  81
  • HTML全文浏览量:  19
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-01
  • 网络出版日期:  2023-04-20
  • 刊出日期:  2023-06-01

目录

    /

    返回文章
    返回