Analysis on Volatile Components of Whole Milk Powder under Different Rehydration Processes by Comprehensive Two-Dimensional Gas Chromatography-Mass Spectrometry
-
摘要: 为了优化全脂乳粉水合工艺,探究低温水合对复原乳风味影响,本研究采用顶空固相微萃取(Headspace solid phase microextraction,HS-SPME)结合全二维气相色谱质谱法(Comprehensive two-dimensional gas chromatography-mass spectrometry,GC-GC-MS)考察全脂乳粉单段水合(55 ℃水合30 min)和两段水合(55 ℃水合30 min后4 ℃水合4、8、12 h)工艺条件下复原乳主要挥发性化合物相对含量,并利用ROAV法和主成分分析法分析挥发性物质对复原乳的风味贡献。结果表明:四组复原乳样品共鉴定出醇、醚、呋喃等9大类挥发性物质共68种,十二醇、正己醛、正辛醛、壬醛、反-2-辛烯醛、癸醛、反式-2-壬醛为四组复原乳共有的特征风味物质,醛类化合物对复原乳特征风味的贡献大于其他挥发性化合物;通过主成分分析,将单段水合复原乳与两段水合复原乳进行了良好区分,增加工序4 ℃水合工艺有利于降低1-辛烯-3-醇、十二醇、反式-2-癸烯醛造成的异味,其中4 ℃水合8 h最有利于提升复原乳有益风味,为最佳水合工艺。该结果为工业化复原乳的生产提供参考依据。
-
关键词:
- 全二维气相色谱质谱法 /
- 复原乳 /
- 挥发性物质 /
- ROAV值 /
- 主成分分析
Abstract: In order to optimize the rehydration process of whole milk powder and explore the effect of low temperature rehydration on the flavor of reconstituted milk, headspace solid phase microextraction (HS-SPME) combined with comprehensive two-dimensional gas chromatography-mass spectrometry (GC-GC-MS) was used in this study. The percentage of main volatile compounds in the reconstituted milk was investigated under the process conditions of single-stage rehydration (55 ℃ for 30 min) and two-stage rehydration (4 ℃ for 4, 8 and 12 h after rehydration 55 ℃ for 30 min). The ROAV method and principal component analysis were used to analyze the flavor contribution of volatile substances to the reconstituted milk. The results showed that a total of 68 kinds of volatile substances divided into 9 types, such as alcohol, ether and furan were identified in the 4 groups of reconstituted milk samples. Among these substances, dodecanol, n-hexanal, n-octaldehyde, nonanal, trans-2-octenal, decanal, and trans-2-nonanal were the common characteristic flavor substances in the four groups of reconstituted milk, the contribute of aldehydes to the reconstituted milk was more than that of other volatile compounds. The single-stage hydration reconstituted milk was well differentiated from the two-stage hydration reconstituted milk by principal component analysis. The rehydration process at 4 ℃ was beneficial to reduce the smell caused by 1-octene-3-alcohol, dodecanol and trans-2-decenoaldehyde. The rehydration process at 4 ℃ for 8 h was the most beneficial to improve the beneficial flavor of the reconstituted milk, which was the best rehydration process. The results could provide a reference for the industrial production of reconstituted milk. -
表 1 水合复原乳挥发性风味物质信息表
Table 1. Information of volatile flavor substances in hydrated and reconstituted milk
分类 序号 中文名称 分子式 相对含量(%) A B C D 醇 1 1-戊醇 C5H12O 0.15±0.04b 0.27±0.06a 0.28±0.05a 0.23±0.02a 2 正己醇 C6H14O 0.18±0.02 — — — 3 四氢芳樟醇 C10H22O 0.13±0.01b 0.18±0.02a 0.19±0.02a — 4 1-辛烯-3-醇 C8H16O 0.16±0.02 — — — 5 2,3-丁二醇 C4H10O2 0.15±0.03 — — — 6 十二醇 C12H26O 2.58±1.29a 1.77±0.55a 1.32±0.30a 2.19±0.24a 7 1-十六烷醇 C16H34O 0.43±0.14a — 0.26±0.02b 0.18±0.01b 8 芳樟醇 C10H18O — 0.23±0.03a — 0.21±0.03a 9 辛醇 C8H18O — — — 0.20±0.03 10 3-十二烷醇 C18H38O4 — — — 0.16±0.01 总醇 3.78±1.43a 2.45±0.56a 2.05±0.24a 3.17±0.25a 醚 11 十二烷基二乙二醇醚 C16H34O3 0.56±0.22 — — — 总醚 0.56±0.22 呋喃 12 2-正戊基呋喃 C9H14O 0.29±0.07a — 0.40±0.14a — 13 2-丁基四氢呋喃 C8H16O 0.28±0.04 — — — 总呋喃 0.57±0.05a — 0.40±0.14a — 醛 14 正己醛 C6H12O 12.44±2.42a 10.85±2.07a 15.51±1.89a 8.08±3.33b 15 正辛醛 C8H16O 1.72±0.17ab 1.55±0.28b 2.05±0.3a 1.51±0.22b 16 壬醛 C9H18O 6.30±0.69a 6.65±0.84a 7.69±0.79a 7.44±1.95a 17 反-2-辛烯醛 C8H14O 0.77±0.19a 0.52±0.11a 0.82±0.28a 0.51±0.06a 18 癸醛 C10H20O 0.67±0.08a 0.65±0.01a 0.78±0.24a 0.62±0.14a 19 反式-2-壬醛 C9H16O 0.27±0.07a 0.23±0.03a 0.22±0.03a 0.25±0.03a 20 反式-2-癸烯醛 C10H18O 0.19±0.08a — 0.23±0.07a — 21 2-十一烯醛 C11H20O 0.25±0.09 — — — 22 十四烷醛 C14H28O 0.19±0.03 — — — 23 顺式二庚醛 C7H12O 0.47±0.02a 0.46±0.07a — — 24 戊醛 C5H10O — 1.05±0.11 — — 25 异戊醛 C5H10O — — — 0.36±0.11 总醛 23.27±3.62ab 21.96±2.75ab 27.30±3.45a 18.77±1.57b 酸 26 己酸 C6H12O2 0.34±0.16a 0.34±0.04a — — 27 辛酸 C8H16O2 0.38±0.05ab 0.47±0.04a 0.32±0.12b — 28 正癸酸 C10H20O2 0.74±0.24a 0.97±0.25a 0.88±0.07a 0.34±0.10b 29 月桂酸 C12H24O2 — 0.63±0.09a 0.58±0.08a — 总脂肪酸 1.46±0.08ab 2.41±0.34a 1.78±0.10ab 0.34±0.10b 酮 30 5-甲基-2-己酮 C7H14O 2.34±0.36a 1.77±0.17ab 1.68±0.15b 2.12±0.44a 31 甲基壬基甲酮 C11H22O 0.19±0.01a 0.23±0.02a — — 32 十二烷-6,7-二酮 C12H22O2 0.16±0.01 — — — 总酮 2.69±0.38a 2.00±0.16ab 1.68±0.15b 2.12±0.44ab 烷 33 4-甲基辛烷 C9H20 2.24±1.00ab 1.87±0.56b 3.05±0.31ab 3.49±0.72a 34 十二烷 C12H26 0.44±0.02 — — — 35 十一烷 C11H24 3.13±0.29a 1.44±0.17b 1.16±0.86c 2.90±0.50ab 36 正十五烷 C15H32 0.40±0.02b 0.47±0.05b 0.25±0.02c 0.97±0.07a 37 正十九烷 C19H40 0.67±0.38a 0.63±0.06ab 0.30±0.02b 0.35±0.04ab 38 正二十一烷 C21H44 0.31±0.04 — — — 39 姥鲛烷 C19H40 1.05±0.06 — — — 40 正十七烷 C17H36 1.14±0.26a — — 0.24±0.03b 41 正十八烷 C18H38 0.88±0.12 — — — 42 5-苯基十一烷 C17H28 0.18±0.03 — — — 43 戊基环丙烷 C8H16 0.23±0.02a 0.21±0.04a 0.22±0.03a 0.25±0.02a 44 2,6,10-三甲基十四烷 C17H36 1.03±0.07 — — — 45 十三烷 C13H28 — — — 1.12±0.15 46 十四烷 C14H30 — 0.55±0.05 — — 47 正十六烷 C16H34 — — — 0.83±0.50 48 1-氢过氧己烷 C6H14O2 — 0.17±0.02a 0.18±0.01a — 49 1-环丙基戊烷 C8H16 0.21±0.02a 0.18±0.03a 0.20±0.00a 0.22±0.02a 50 2,4,6-三甲基癸烷 C13H28 — — 0.17±0.01 — 51 2,6-二甲基癸烷 C12H26 — — 0.26±0.01 — 52 1-甲基-2-辛基-环丙烷 C12H24 — — 0.50±0.04 — 53 环十二烷 C12H24 — — — 0.50±0.03 总烷 11.90±0.70a 5.52±0.56b 6.29±0.77b 10.87±0.85a 烯 55 (R)-1-甲基-5-(1-甲基乙烯基)-环己烯 C10H16 22.14±1.55a 21.32±2.68a 23.67±1.88a 23.79±1.65a 55 月桂烯 C10H16 — — — 0.20±0.03 总烯 22.14±1.55a 21.32±2.68a 23.67±1.88a 23.99±1.64a 酯 56 甲酸庚酯 C8H16O2 0.12±0.01 — — — 57 丁位癸内酯 C10H18O2 0.75±0.05b 1.09±0.08a 0.80±0.07b 0.80±0.09b 58 棕榈酸甲酯 C17H34O2 0.71±0.16a — 0.38±0.02b 0.30±0.04b 59 乙二醇月桂酸酯 C14H30O2 1.07±0.12a 0.87±0.09ab 0.85±0.13b 0.48±0.04c 60 丁位十二内酯 C12H22O2 0.35±0.06a 0.47±0.07a 0.41±0.08a 0.40±0.05a 61 油酸甲酯 C19H36O2 0.41±0.06a — 0.25±0.01b — 62 亚油酸甲酯 C19H34O2 0.98±0.13 — — — 63 邻苯二甲酸二异丁酯 C16H22O4 0.62±0.06 — — — 64 亚麻酸甲酯 C19H32O2 0.19±0.03 — — — 65 二氯乙酸十二烷基酯 C14H26Cl2O2 0.2±0.02 — — — 66 γ-十二内酯 C12H22O2 — — 0.18±0.02 — 67 邻苯二甲酸正丁异辛酯 C20H30O4 — — 0.29±0.03 — 68 9-顺式,11-反式十八碳二烯酸甲酯 C19H34O2 — — 0.55±0.08a 0.40±0.03a 总酯 5.40±0.37a 2.43±0.22c 3.71±0.24b 2.38±0.16c 总挥发性物质 71.75±4.44a 58.07±2.09c 66.89±2.58ab 61.61±1.68bc 注:同行不同字母代表组间具有显著差异(P<0.05);“—”表示未检出。 表 2 四种复原乳的挥发性风味物质及ROAV值
Table 2. Volatile flavor compounds and ROAV values of four reconstituted milks
序号 中文名称 阈值[35-36]
(mg/kg)ROAV A B C D 1 1-戊醇 0.15 0.02 0.03 0.03 0.02 2 正己醇 0.0056 0.57 — — — 3 1-辛烯-3-醇 0.0015 1.84 — — — 4 2,3-丁二醇 >100 0.00 — — — 5 十二醇 0.016 2.81 1.83 1.18 2.02 6 芳樟醇 0.00022 — 17.30 — 14.11 7 辛醇 0.1258 — — — 0.02 8 2-正戊基呋喃 0.0058 0.87 — 0.98 — 9 正己醛 0.005 43.44 35.92 44.39 23.88 10 正辛醛 0.0008 37.48 31.96 36.74 27.85 11 壬醛 0.0011 100.00 100.00 100.00 100.00 12 反-2-辛烯醛 0.003 4.46 2.85 3.93 2.52 13 癸醛 0.003 3.92 3.60 3.70 3.04 14 反式-2-壬醛 0.00019 24.51 20.44 16.87 19.78 15 反式-2-癸烯醛 0.0004 8.46 — 8.39 — 16 十四烷醛 0.11 0.03 — — — 17 戊醛 0.012 — 1.45 — — 18 异戊醛 0.0011 — — — 4.89 19 己酸 3 0.00 0.00 — — 20 辛酸 3 0.00 0.00 0.00 — 21 正癸酸 5 0.00 0.00 0.00 0.00 22 5-甲基-2-己酮 0.062 0.66 0.47 0.39 0.51 23 甲基壬基甲酮 0.0055 0.59 0.70 — — 24 十二烷 10 0.00 — — — 25 十一烷 10 0.01 0.00 0.00 0.00 26 正十五烷 1 0.01 0.01 0.00 0.01 27 丁位癸内酯 0.066 0.20 0.27 0.17 0.18 28 棕榈酸甲酯 2 0.01 — 0.00 0.00 29 丁位十二内酯 0.098 0.06 0.08 0.06 0.06 30 邻苯二甲酸二异丁酯 0.03 0.36 — — — 31 γ-十二内酯 0.002 — — 1.32 — 表 3 主成分方差贡献率
Table 3. Principal component variance contribution rate
成分 初始特征值 提取载荷平方和 总计 方差百分比(%) 累积(%) 总计 方差百分比(%) 累积(%) 1 8.14 42.840 42.840 8.14 42.840 42.840 2 6.895 36.292 79.132 6.895 36.292 79.132 3 3.965 20.868 100 3.965 20.868 100 表 4 因子载荷矩阵
Table 4. Factor loading matrix
挥发性成分 主成分 1 2 3 正己醇 −0.04 1.00 −0.08 1-辛烯-3-醇 −0.04 1.00 −0.08 十二醇 −0.65 0.74 0.17 芳樟醇 −0.57 −0.30 0.77 2-正戊基呋喃 0.90 0.43 0.10 正己醛 0.95 0.18 −0.24 正辛醛 0.99 0.08 0.08 壬醛 0.42 −0.67 0.61 反-2-辛烯醛 0.86 0.52 0.06 癸醛 1.00 −0.05 −0.03 反式-2-壬醛 −0.51 0.83 0.24 反式-2-癸烯醛 0.86 0.51 0.09 戊醛 −0.33 −0.42 −0.85 异戊醛 −0.57 −0.30 0.77 5-甲基-2-己酮 −0.50 0.79 0.35 甲基壬基甲酮 −0.35 0.36 −0.87 丁位癸内酯 −0.29 −0.54 −0.79 邻苯二甲酸二异丁酯 −0.04 1.00 −0.08 γ−十二内酯 0.95 −0.28 0.16 -
[1] 钱宇, 汪慧超, 吴林昊, 等. 超高效液相色谱检测乳粉复原乳中的氨基酸[J]. 食品与机械,2016,32(7):56−60. [QIAN Y, WANG H C, WU L H, et al. Determination of amino acids in spray-dried milk by UPLC[J]. Food and Machinery,2016,32(7):56−60. doi: 10.13652/j.issn.1003-5788.2016.07.013 [2] 王海艳, 李昕, 石新华, 等. 双向电泳指纹图谱分析法鉴别鲜乳和复原乳[J]. 中国动物检疫,2022,39(4):120−123. [WANG H Y, LI X, SHI X H, et al. Identification of fresh milk from reconstituted milk by two-dimensional electrophoresis fingerprint analysis[J]. China Animal Health Inspection,2022,39(4):120−123. doi: 10.3969/j.issn.1005-944X.2022.04.021 [3] 李延华, 张兰威, 王伟军, 等. 热处理引起牛乳风味变化的研究进展[J]. 食品工业科技,2012,33(6):414−416, 420. [LI Y H, ZHANG L W, WANG W J, et al. Research progress in dairy products prepared from preheated treatments change in the flavor[J]. Science and Technology of Food Industry,2012,33(6):414−416, 420. doi: 10.13386/j.issn1002-0306.2012.06.101 [4] OTT A, FAY L B, CHAINTREAU A. Determination and origin of the aroma impact compounds of yogurt flavor[J]. Journal of Agricultural and Food Chemistry,1997,45(3):850−858. doi: 10.1021/jf960508e [5] LEE A P, BARBANO D M, DRAKE M A. The influence of ultra-pasteurization by indirect heating versus direct steam injection on skim and 2% fat milks[J]. Journal of Dairy Science,2017,100(3):1688−1701. doi: 10.3168/jds.2016-11899 [6] 庄柯瑾, 冯晓涵, 满朝新, 等. 乳粉储藏期间的品质变化及主要影响因素[J]. 中国乳品工业,2021,49(4):35−41. [ZHUANG K J, FENG X H, MAN C X, et al. Quality change of milk powder during storage and the main influencing factors[J]. China Dairy Industry,2021,49(4):35−41. doi: 10.19827/j.issn1001-2230.2021.04.007 [7] LI Y H, WANG W J, GUO L, et al. Comparative study on the characteristics and oxidation stability of commercial milk powder during storage[J]. Journal of Dairy Science,2019,102(10):8785−8797. doi: 10.3168/jds.2018-16089 [8] 巨智勇. 乳蛋白质与水互作的利用[J]. 国外畜牧学(草食家畜),1990(6):54−56. [JU Z Y. The application of milk protein-moisture interaction[J]. Grass-Feeding Livestock,1990(6):54−56. [9] 兰天. 乳粉的水合作用及其对酸奶质构的影响[D]. 哈尔滨: 哈尔滨工业大学, 2014LAN T. Hydration of milk power and its effect on texture of yogurt[D]. Harbin: Harbin Institute of Technology, 2014 [10] 李妍, 李海梅, 马薇, 等. 温度对浓缩乳蛋白复水过程的影响机制[J]. 食品科技,2015(6):56−61. [LI Y, LI H M, MA W, et al. Influence of temperature on milk protein concentrate rehydration process[J]. Food Science and Technology,2015(6):56−61. doi: 10.13684/j.cnki.spkj.2015.06.016 [11] LAN X Y, WANG J Q, BU D P, et al. Effects of heating temperatures and addition of reconstituted milk on the heat indicators in milk[J]. Journal of Food Science,2010,75(8):C653−C658. doi: 10.1111/j.1750-3841.2010.01802.x [12] JANSSON T, NIELSEN S B, PETERSEN M A, et al. Temperature-dependency of unwanted aroma formation in reconstituted whey protein isolate solutions[J]. International Dairy Journal,2020,104:104653. doi: 10.1016/j.idairyj.2020.104653 [13] CHOI I, LI N, VUIA-RISER J, et al. Neutral pH nonfat dry milk beverages with turbidity reduced by sodium hexametaphosphate: Physical and sensory properties during storage[J]. LWT,2021,147:111656. doi: 10.1016/j.lwt.2021.111656 [14] 马薇, 李妍, 李海梅, 等. 复水条件对MPC乳粉复水过程的影响[J]. 中国乳品工业,2013,41(1):4−7. [MA W, LI Y, LI H M, et al. Effect of rehydration conditions on MPC rehydration dynamic process[J]. China Dairy Industry,2013,41(1):4−7. doi: 10.3969/j.issn.1001-2230.2013.01.001 [15] CROWLEY S V, MEGEMONT M, GAZI I, et al. Heat stability of reconstituted milk protein concentrate powders[J]. International Dairy Journal,2014,37(2):104−110. doi: 10.1016/j.idairyj.2014.03.005 [16] CELESTINO E L, IYER M, ROGINSKI H. Reconstituted UHT-treated milk: Effects of raw milk, powder quality and storage conditions of UHT milk on its physico-hemical attributes and flavour[J]. International Dairy Journal,1997,7(2-3):129−140. doi: 10.1016/S0958-6946(96)00042-8 [17] 中华人民共和国卫生部. GB 25190-2010食品安全国家标准灭菌乳[S]. 2010Ministry of Health of the People's Republic of China. GB 25190-2010, Chinese national food safety standard for sterilised milk[S]. 2010. [18] 王岩, 张哲, 张媛, 等. 市售酸奶油感官与风味特征[J]. 食品与发酵工业,2017,43(9):201−208. [WANG Y, ZHANG Z, ZHANG Y, et al. Sensory and flavor characteristics of commercial sour cream[J]. Food and Fermentation Industries,2017,43(9):201−208. doi: 10.13995/j.cnki.11-1802/ts.013934 [19] 刘登勇, 周光宏, 徐幸莲. 确定食品关键风味化合物的一种新方法: “ROAV”法[J]. 食品科学,2008(7):370−374. [LIU D Y, ZHOU G H, XU X L. “ROAV” method: A new method for determining key odor compounds of Rugao ham[J]. Food Science,2008(7):370−374. doi: 10.3321/j.issn:1002-6630.2008.07.082 [20] 翁晶晶, 周承哲, 朱晨, 等. 不同风味类型漳平水仙茶的主要品质差异分析[J]. 食品科学,2021,42(20):208−215. [WENG J J, ZHOU C Z, ZHU C, et al. Comparative analysis of major quality components in different flavor types of Zhangping Shuixian tea[J]. Food Science,2021,42(20):208−215. doi: 10.7506/spkx1002-6630-20200928-354 [21] 谢翔, 公丕民, 刘奥, 等. 商业发酵剂中乳酸乳球菌发酵风味特性及其化学表征的研究[J]. 食品工业科技,2021,42(19):152−162. [XIE X, GONG P M, LIU A, et al. Fermentation flavor characteristics and chemical characterization of Lactococcus lactis in commercial starters[J]. Science and Technology of Food Industry,2021,42(19):152−162. doi: 10.13386/j.issn1002-0306.2021030196 [22] 朱涔铭, 郝正祺, 郭顺堂. 不同菌种发酵所得酸豆乳风味物质的主成分分析[J]. 食品安全质量检测学报,2020,11(17):5971−5981. [ZHU C M, HAO Z Q, GUO S T. Principal component analysis of flavoring substances in fermented soymilk with different strains[J]. Journal of Food Safety & Quality,2020,11(17):5971−5981. doi: 10.19812/j.cnki.jfsq11-5956/ts.2020.17.030 [23] 曾桥, 吕生华, 段洁, 等. 基于气相离子迁移谱技术分析杜仲叶茯砖茶加工过程中挥发性成分[J]. 食品工业科技,2021,42(21):73−82. [ZENG Q, LÜ S H, DUAN J, et al. Analysis of volatile compounds in the manufacturing process of Eucommia ulmoides leaves fu brick tea based on gas chromatography-ion mobility spectrometry method[J]. Science and Technology of Food Industry,2021,42(21):73−82. doi: 10.13386/j.issn1002-0306.2021020147 [24] 杜晓敏, 刘文俊, 张和平. 传统酸马奶发酵过程中挥发性风味物质动态变化研究[J]. 中国乳品工业,2017,45(5):4−9. [DU X M, LIU W J, ZHANG H P. Study on the dynamic change of volatile flavor compounds in traditional fermented koumiss[J]. China Dairy Industry,2017,45(5):4−9. doi: 10.3969/j.issn.1001-2230.2017.05.001 [25] BIOLATTO A, GRIGIONI G, IRURUETA M, et al. Seasonal variation in the odour characteristics of whole milk powder[J]. Food Chemistry,2007,103(3):960−967. doi: 10.1016/j.foodchem.2006.09.050 [26] CHEN C, ZHAO S, HAO G, et al. Role of lactic acid bacteria on the yogurt flavour: A review[J]. International Journal of Food Properties,2017,20(sup1):S316−S330. doi: 10.1080/10942912.2017.1295988 [27] SFAKIANAKIS P, TZIA C. Flavour profiling by gas chromatography-mass spectrometry and sensory analysis of yoghurt derived from ultrasonicated and homogenised milk[J]. International Dairy Journal,2017,75:120−128. doi: 10.1016/j.idairyj.2017.08.003 [28] LIC N C C, DE MENDOZA J H, MAGGI L, et al. Optimization of headspace sorptive extraction for the analysis of volatiles in pressed ewes' milk cheese[J]. International Dairy Journal,2012,23(1):53−61. doi: 10.1016/j.idairyj.2011.09.003 [29] 杨姗姗, 丁瑞雪, 史海粟, 等. 热处理条件对巴氏杀菌乳风味品质的影响[J]. 食品科学,2020,41(24):131−136. [YANG S S, DING R X, SHI H S, et al. Effects of different heat treatment conditions on the flavor of pasteurized milk[J]. Food Science,2020,41(24):131−136. doi: 10.7506/spkx1002-6630-20191206-069 [30] ZHENG X, GE Z, LIN K, et al. Dynamic changes in bacterial microbiota succession and flavour development during milk fermentation of Kazak artisanal cheese[J]. International Dairy Journal,2021,113:104878. doi: 10.1016/j.idairyj.2020.104878 [31] LIU C, YANG P, WANG H, et al. Identification of odor compounds and odor-active compounds of yogurt using DHS, SPME, SAFE, and SBSE/GC-O-MS[J]. LWT,2022,154:112689. doi: 10.1016/j.lwt.2021.112689 [32] 张超越, 张雪颖, 胡锦华, 等. 人乳脂肪球在低温储存下的结构变化及其对人乳风味的影响[J]. 食品与发酵工业,2021,47(17):111−118. [ZHANG C Y, ZHANG X Y, HU J H, et al. Structural changes of human milk fat globules during low temperature storage and its effect on flavor of human milk[J]. Food and Fermentation Industries,2021,47(17):111−118. doi: 10.13995/j.cnki.11-1802/ts.026889 [33] 马瑞娟, 许英瑞, 薛元泰, 等. 牦牛乳风味物质及影响因素研究进展[J]. 食品工业技,2020,41(10):363−368. [MA R J, XU Y R, XUE Y T, et al. Research progress on flavor substances and influencing factors of yak milk[J]. Science and Technology of Food Industry,2020,41(10):363−368. [34] 杨淑娟, 苗壮壮, 史嘉琪, 等. 乳双歧杆菌Probio-M8对发酵乳风味的影响及应用评价[J]. 中国食品学报,2022,22(7):256−266. [YANG S J, MIAO Z Z, SHI J Q, et al. Effect of Bifidobacterium lactis Probio-M8 on fermented milk flavor and its application evaluation[J]. Journal of Chinese Institute of Food Science and Technology,2022,22(7):256−266. doi: 10.16429/j.1009-7848.2022.07.026 [35] VAN GEMERT L J. Odour thresholds: Compilations of odour threshold values in air, water and other media[M]. Oliemans Punter, 2011. [36] 王婷婷, 许柠, 汪丽萍, 等. 麸胚水分含量对挤压稳定化回填法制备全麦挂面特征风味化合物的影响[J]. 河南工业大学学报(自然科学版),2022,43(1):65−74. [WANG T T, XU N, WANG L P, et al. Effect of wheat bran and embryo moisture content on the preparation of characteristic flavor compounds of whole wheat noodles by extrusion stabilization backfilling method[J]. Journal of Henan University of Technology (Natural Science Edition),2022,43(1):65−74. [37] HE A, WANG M, HAO H, et al. Hepatoprotective triterpenes from Sedum sarmentosum[J]. Phytochemistry,1998,49(8):2607−2610. doi: 10.1016/S0031-9422(98)00434-8 [38] 罗丽萍, 乔宁, 郭利敏, 等. 基于顶空固相微萃取-气相色谱质谱联用技术分析山乌桕蜜挥发性成分[J]. 南昌大学学报(理科版),2022,46(3):320−326, 333. [LUO L P, QIAO M, GUO L M, et al. Analysis of volatile components of triadica cochinchinensis honey by HS-SPME-GC-MS[J]. Journal of Nanchang University(Natural Science),2022,46(3):320−326, 333. doi: 10.3969/j.issn.1006-0464.2022.03.006 [39] YANG F, LIU Y, WANG B, et al. Screening of the volatile compounds in fresh and thermally treated watermelon juice via headspace-gas chromatography-ion mobility spectrometry and comprehensive two-dimensional gas chromatography-olfactory-mass spectrometry analysis[J]. LWT,2021,137:110478. doi: 10.1016/j.lwt.2020.110478 [40] 杨飞艳, 罗章, 谢司伟, 等. 西藏不同海拔牦牛奶渣营养、风味特性及抗氧化活性研究[J]. 食品工业科技,2021,42(11):81−88. [YANG F Y, LUO Z, XIE S W, et al. Study on nutrition, flavor characteristics and antioxidant activity of yak milk dregs at different elevations in tibet[J]. Science and Technology of Food Industry,2021,42(11):81−88. doi: 10.13386/j.issn1002-0306.2020090265 [41] 吴静, 黄卉, 李来好, 等. HS-SPME-GC-MS分析大蒜水提取物对罗非鱼肉腥味的影响[J]. 食品与发酵工业,2019,45(14):133−142. [WU J, HUANG H, LI L H, et al. Effects of garlic aqueous extracts on fishy odor of tilapia fillets analyzed by HS-SPME-GC-MS[J]. Food and Fermentation Industries,2019,45(14):133−142. doi: 10.13995/j.cnki.11-1802/ts.019629 [42] 黄玉坤, 田红媚, 陈芳, 等. 三种香型食用牛油的挥发性风味物质分析及鉴定[J]. 食品与发酵工业,2019,45(3):196−205. [HUANG Y K, TIAN H M, CHENG F, et al. Analysis and identification of volatile compounds in three types of edible tallow[J]. Food and Fermentation Industries,2019,45(3):196−205. doi: 10.13995/j.cnki.11-1802/ts.017118 -