• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020

抗氧化酵母醛脱氢酶提取物对鱼肉模拟消化过程中脂肪氧化的影响

肖毓 徐莉娜 刘慧 周湘人 郭薇丹 何英杰 付湘晋

肖毓,徐莉娜,刘慧,等. 抗氧化酵母醛脱氢酶提取物对鱼肉模拟消化过程中脂肪氧化的影响[J]. 食品工业科技,2023,44(11):404−410. doi:  10.13386/j.issn1002-0306.2022070233
引用本文: 肖毓,徐莉娜,刘慧,等. 抗氧化酵母醛脱氢酶提取物对鱼肉模拟消化过程中脂肪氧化的影响[J]. 食品工业科技,2023,44(11):404−410. doi:  10.13386/j.issn1002-0306.2022070233
XIAO Yu, XU Lina, LIU Hui, et al. Effects of Antioxidant Yeast ALDH Extract on Lipid Oxidation during Simulated Digestion of Fish[J]. Science and Technology of Food Industry, 2023, 44(11): 404−410. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022070233
Citation: XIAO Yu, XU Lina, LIU Hui, et al. Effects of Antioxidant Yeast ALDH Extract on Lipid Oxidation during Simulated Digestion of Fish[J]. Science and Technology of Food Industry, 2023, 44(11): 404−410. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022070233

抗氧化酵母醛脱氢酶提取物对鱼肉模拟消化过程中脂肪氧化的影响

doi: 10.13386/j.issn1002-0306.2022070233
基金项目: 湖南省重点研发计划(2022NK2032);湖南省自然科学基金项目(CX20192039);湖南省教育厅重点项目(18A155)。
详细信息
    作者简介:

    肖毓(1999−)(ORCID:0000−0003−4070−3504),男,硕士研究生,研究方向:食品加工与食品脂质氧化,E-mail:2776045147@qq.com

    通讯作者:

    付湘晋(1980−)(ORCID:0000−0002−9537−6216),男,博士,教授,研究方向:食品加工与食品脂质氧化,E-mail:drxjfu@163.com

  • 中图分类号: TS254.4

Effects of Antioxidant Yeast ALDH Extract on Lipid Oxidation during Simulated Digestion of Fish

  • 摘要: 鱼肉脂质在消化过程中可能发生明显氧化,产生有害醛类。本文以脂肪过氧化值(peroxidation value,POV)、硫代巴比妥酸反应物值(thiobarbituric acid reactant value,TBARS)、醛类化合物和多不饱和脂肪酸含量作为评价指标研究了一株抗氧化酵母醛脱氢酶(aldehyde dehydrogenase,ALDH)提取物对鱼肉模拟消化过程中脂肪氧化的影响。结果表明,在模拟胃肠道消化过程中,空白鱼肉(CK)在模拟消化5 h后POV从(0.12±0.06)meq/kg增加到(1.14±0.12)meq/kg,加入ALDH提取物的鱼肉(FE)模拟消化5 h后POV为(0.69±0.08)meq/kg,而加入包埋ALDH的鱼肉(EB)POV为(0.13±0.06)meq/kg;CK组TBARS值从(0.77±0.11)mg/kg增加到(2.31±0.13)mg/kg,而FE、EB组的TBARS值分别为(0.79±0.09)mg/kg和(0.19±0.09)mg/kg;模拟消化物中含量较多的醛包括壬醛、己醛、2-庚醛、壬二烯醛、2-己烯醛等;CK组的醛含量在消化过程中迅速增加,FE、EB组醛含量逐渐减少,消化结束时己醛、壬醛、2-庚醛含量已低于检测限。CK组鱼肉中EPA、DHA在消化过程中氧化损失分别为59%和58%,FE组的损失值分别为35%和32%,EB组的损失值分别为20%和26%。本研究证明了抗氧化酵母ALDH提取物可以很好地抑制鱼肉在模拟消化过程中的脂肪氧化并有效消减因脂肪氧化产生的有害物质。酵母酶提取物可能是控制脂质氧化致餐后氧化应激的新型有效活性制剂。
  • 图  1  包埋酶稳定性变化

    Figure  1.  Stability changes of embedded enzymes

    注:胃液消化时间中以未处理的包埋酶的相对酶活为100%;肠液消化时间以胃液消化后的包埋酶相对活力为100%。

    图  2  酵母提取在体外模拟消化阶段POV值的变化(n=3)

    Figure  2.  Changes of POV value of yeast extraction in the simulated digestion stage in vitro (n=3)

    图  3  酵母提取在体外模拟消化阶段TBARS值的变化(n=3)

    Figure  3.  The changes of TBARS value of yeast extraction in the simulated digestion stage in vitro (n=3)

    图  4  体外模拟消化过程中主要醛类化合物的变化

    Figure  4.  The changes of main aldehydes in vitro simulated digestion

    图  5  模拟消化过程中重要多不饱和脂肪酸的变化(n=3)

    Figure  5.  The changes of important polyunsaturated fatty acid in vitro simulated digestion (n=3)

    注:不同小写字母表示组间有显著性差异(P<0.05)。

  • [1] 刘秀妨, 刘胜男, 马云芳, 等. 胃肠道消化过程中脂质氧化的影响因素、健康危害及控制研究进展[J]. 食品工业科技,2017,38(21):330−335. [ZHANG X F, LIU S N, MA Y F, et al. Research progress on the influencing factors, health hazards, and control of lipid oxidation during gastrointestinal digestion[J]. Science and Technology of Food Industry,2017,38(21):330−335. doi:  10.13386/j.issn1002-0306.2017.21.064
    [2] NIEVA-ECHEVARRÍA B, GOICOECHEA E, GUILLÉN M D. Food lipid oxidation under gastrointestinal digestion conditions: A review[J]. Critical Reviews in Food Science and Nutrition,2020,60(3):461−478. doi:  10.1080/10408398.2018.1538931
    [3] DOMÍNGUEZ R, PATEIRO M, GAGAOUA M, et al. A comprehensive review on lipid oxidation in meat and meat products[J]. Antioxidants,2019,8(10):429. doi:  10.3390/antiox8100429
    [4] POLI D, GOLDONI M, CORRADI M, et al. Determination of aldehydes in exhaled breath of patients with lung cancer by means of on-fiber-derivatisation SPME-GC/MS[J]. J Chromatogr B,2010,878(27):2643−2651. doi:  10.1016/j.jchromb.2010.01.022
    [5] 吴宝森, 孙玥晖, 刘姝韵. 肉和肉制品中脂质氧化的研究进展[J]. 食品安全质量检测学报,2017(3):94−98. [WU B S, SUN Y H, LIU S Y. Research progress on lipid oxidation in meat and meat products[J]. Journal of Food Safety & Quality,2017(3):94−98. doi:  10.19812/j.cnki.jfsq11-5956/ts.2017.03.016
    [6] CHEN L, FU Y J, FANG W L, et al. Screening of a highly effective fluorescent derivatization reagent for carbonyl compounds and its application in HPLC with fluorescence detection[J]. Talanta,2018,186:221−228. doi:  10.1016/j.talanta.2018.04.017
    [7] GORELIK S, LIGUMSKY M, KOHEN R, et al. A novel function of red wine polyphenols in humans: Prevention of absorption of cytotoxic lipid peroxidation products[J]. FASEB Journal,2008,22(1):41−46. doi:  10.1096/fj.07-9041com
    [8] ZHAO J, CHEN J, ZHU H, et al. Mass spectrometric evidence of malonaldehyde and 4-hydroxynonenal adductions to radical-scavenging soy peptides[J]. J Agric Food Chem,2012,60(38):9727−9736. doi:  10.1021/jf3026277
    [9] LU J, LYU Y, LI M, et al. Alleviating acute alcoholic liver injury in mice with Bacillus subtilis co-expressing alcohol dehydrogenase and acetaldehyde dehydrogenase[J]. Journal of Functional Foods,2018,49:342−350.
    [10] AHMED LASKAR A, YOUNUS H. Aldehyde toxicity and metabolism: The role of aldehyde dehydrogenases in detoxification, drug resistance and carcinogenesis[J]. Drug Metabolism Reviews,2019,51(1):42−64. doi:  10.1080/03602532.2018.1555587
    [11] YOVAL-SÁNCHEZ B, RODRÍGUEZ-ZAVALA J S. Differences in susceptibility to inactivation of human aldehyde dehydrogenases by lipid peroxidation byproducts[J]. Chemical Research in Toxicology,2012,25(3):722−729. doi:  10.1021/tx2005184
    [12] KONKIT M, CHOI W J, KIM W. Aldehyde dehydrogenase activity in Lactococcus chungangensis: Application in cream cheese to reduce aldehyde in alcohol metabolism[J]. Journal of Dairy Science,2016,99(3):1755−1761. doi:  10.3168/jds.2015-10549
    [13] XU L, GUO W, LIU W, et al. Metabolites analysis for cold-resistant yeast (Wickerhamomyces anomalus) strains own antioxidant activity on cold stored fish mince[J]. Food Chemistry,2020,303:125368. doi:  10.1016/j.foodchem.2019.125368
    [14] XU L, LUO Y, FU X, et al. Effect of Saccharomyces uvarum on lipid oxidation and carbonyl compounds in silver carp mince during cold storage[J]. Food Science & Nutrition,2019,7(7):2404−2411.
    [15] 柯彩霞, 范艳利, 苏枫, 等. 酶的固定化技术最新研究进展[J]. 生物工程学报,2018,34(2):188−203. [KE C X, FAN Y L, SU F, et al. Recent advances in enzyme immobilization[J]. Chinese Journal of Biotechnology,2018,34(2):188−203. doi:  10.13345/j.cjb.170164
    [16] 郭薇丹, 刘薇丛, 胡作民, 等. 抗鱼肉脂肪氧化的耐冷冻酵母筛选及鉴定[J]. 食品科学,2019,40(10):166−170. [GUO W D, LIU W C, HU Z M, et al. Screening for and identification of freeze-tolerant yeasts with antioxidant activity in fish[J]. Food Science,2019,40(10):166−170. doi:  10.7506/spkx1002-6630-20180610-145
    [17] 衣海龙. 利用超声波法破碎啤酒酵母细胞壁的工艺研究[J]. 酿酒,2015,42(4):83−85. [YI H L. Study on the technology of breaking the cell wall of beer yeast by ultrasonic wave[J]. Liquor Making,2015,42(4):83−85. doi:  10.3969/j.issn.1002-8110.2015.04.023
    [18] 李超敏, 韩梅, 张良, 等. 细胞固定化技术—海藻酸钠包埋法的研究进展[J]. 安徽农业科学,2006(7):1281−1282, 1284. [LI C M, HAN M, ZHANG L, et al. Development of the sodium-aliginate immobilized cell technology[J]. Anhui Agricultural Sciences,2006(7):1281−1282, 1284. doi:  10.3969/j.issn.0517-6611.2006.07.003
    [19] OKIBE N, AMADA K, HIRANO S, et al. Gene cloning and characterization of aldehyde dehydrogenase from a petroleum-degrading bacterium, strain HD-1[J]. Journal of Bioscience and Bioengineering,1999,88(1):7−11. doi:  10.1016/S1389-1723(99)80167-4
    [20] 万茵, 罗成, 张鸿婷, 等. 海藻酸钠微胶囊对乳酸菌产乙醛脱氢酶在体外胃肠消化环境中保护作用[J]. 食品与发酵工业,2018,44(9):61−65. [WAN Y, LUO C, ZHANG H T, et al. Protection of Lactobacillus ALDH activity by sodium alginate microcapsule during gastrointestinal digestion in vitro[J]. Food and Fermentation Industries,2018,44(9):61−65. doi:  10.13995/j.cnki.11-1802/ts.015646
    [21] FU X, LIN Q, XU S, et al. Effect of drying methods and antioxidants on the flavor and lipid oxidation of silver carp slices[J]. LWT - Food Science and Technology,2015,61(1):251−257. doi:  10.1016/j.lwt.2014.10.035
    [22] 曹长江, 范文来, 聂尧, 等. HS-SPME同时萃取衍生化定量白酒中反-2-烯醛和二烯醛类化合物[J]. 食品工业科技,2014,35(21):286−290. [CAO C J, FAN W L, NIE Y, et al. Quantification of trans-2-alkenals and alkadienals in Chinese liquors by simultaneous extraction/derivatization by HS-SPME coupled with GC-MS-SIM[J]. Science and Technology of Food Industry,2014,35(21):286−290. doi:  10.13386/j.issn1002-0306.2014.21.053
    [23] 陈希苗, 李美英, 许秋莉, 等. 体外模拟胃肠消化中山楂多酚及抗氧化活性的变化[J]. 食品科学,2019,40(5):31−37. [CHEN X M, LI M Y, XU Q L, et al. Changes in polyphenol contents and antioxidant activity in hawthorn (Crataegus pinnatifida Bunge) during simulated gastrointestinal digestion[J]. Food Science,2019,40(5):31−37. doi:  10.7506/spkx1002-6630-20170930-447
    [24] 刘朝霞, 胡士德, 邹坤, 等. 资木瓜乙醇提取物的体外抗氧化活性研究[J]. 三峡大学学报(自然科学版),2008(4):72−75. [LIU C X, HU S D, ZOU K, et al. Studies of antioxidation in vitro of ethanol extract from Chaenomeles speciosa (Sweet) Nakai[J]. Journal of China Three Gorges University (Natural Sciences),2008(4):72−75.
    [25] ALARCÓN M, PÉREZ-COELLO M S, DÍAZ-MAROTO M C, et al. Inactive dry yeast to improve the oxidative stability of Spanish dry-fermented sausage “salchichón”[J]. LWT,2021,146:111385. doi:  10.1016/j.lwt.2021.111385
    [26] ZHANG H, TROISE A D, QI Y, et al. Insoluble dietary fibre scavenges reactive carbonyl species under simulated physiological conditions: The key role of fibre-bound polyphenols[J]. Food Chemistry,2021,349:129018. doi:  10.1016/j.foodchem.2021.129018
    [27] 张帆, 孙家娟, 简舒婷, 等. 气相色谱/质谱法检测草鱼肌肉脂肪酸组成[J]. 河南化工,2017,34(3):3. [ZHANG F, SUN J J, JIAN S T, et al. Determination of muscle fatty acid composition of grass carp by gas chromatography/mass spectrometry[J]. Henan Chemical,2017,34(3):3. doi:  10.14173/j.cnki.hnhg.2017.03.015
  • 加载中
图(5)
计量
  • 文章访问数:  68
  • HTML全文浏览量:  24
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-20
  • 网络出版日期:  2023-04-21
  • 刊出日期:  2023-06-01

目录

    /

    返回文章
    返回