Extraction Optimization and Analysis on Properties of Protein on Peony Seed Meal
-
摘要: 本研究通过碱溶酸沉法对牡丹籽粕中的蛋白进行提取。选取料液比、pH、时间和温度进行单因素研究,结合响应面法优化获得最佳提取工艺,并对蛋白的物化特性进行分析。确定最佳工艺条件:料液比1:25 g/mL,pH10.6,温度55 ℃,时间130 min时,蛋白得率为23.81%±0.04%。在此条件下获得的牡丹籽粕蛋白中含有18种氨基酸;蛋白的持水性和持油性分别为3.72和3.67 g/g;起泡性和泡沫稳定性在pH2~4时均明显降低,pH4时最小,pH6~10之间时,起泡性持续增加,泡沫稳定性明显上升后略有下降;乳化性和乳化稳定性随pH增大而增加,与粒径和Zeta电位所反映的结果相符。本研究为牡丹籽粕蛋白的工业化生产和综合利用提供了理论依据。Abstract: In this study, an alkali solution and acid precipitation method were used to extract protein from peony seed meal. Solid-liquid ratio, pH, time, and temperature were selected to carry out a single-factor study and combined with the response surface method to optimize the optimal extraction process. The optimum process conditions were determined: The protein yield reached 23.81%±0.04% when the ratio of solid to liquid was 1:25 g/mL, pH10.6, the temperature was 55 ℃, and time was 130 min. The peony seed meal protein obtained under these conditions contained 18 kinds of amino acids. The water and oil retention of peony seed meal protein was 3.72 g/g and 3.67 g/g, respectively. Foamability and foam stability decreased significantly at pH2~4, and the lowest was at pH4. Between pH6 and 10, foamability continued to increase, while foam stability increased significantly and then decreased slightly. With the increase in pH, the emulsification and emulsification stability increased. The results were consistent with the variation trend of particle size and Zeta potential. This study provided a theoretical basis for the industrial production and comprehensive utilization of peony seed meal protein.
-
表 1 单因素变量实验水平设计
Table 1. Factor level of single factor variable design
实验设计 料液比(g/mL) pH 温度(℃) 时间(min) 1 1:15、1:20、1:25、1:30、1:35 10 40 30 2 1:25 8、9、10、11、12 40 30 3 1:25 11 40 70、90、110、130、150 4 1:25 11 40、45、50、55、60 130 表 2 响应面试验分析因素与水平
Table 2. Response surface test analysis factors and levels
水平 因素 料液比(g/mL) pH 温度(℃) −1 1:20 10 50 0 1:25 11 55 1 1:30 12 60 表 3 响应面试验结果
Table 3. Response surface test results
试验号 A 料液比 B pH C 温度 Y 得率(%) 1 −1 0 1 22.45 2 −1 1 0 17.73 3 −1 0 −1 22.04 4 −1 −1 0 22.29 5 0 0 0 23.38 6 0 1 −1 19.89 7 0 −1 1 23.06 8 0 0 0 23.78 9 0 0 0 23.61 10 0 0 0 23.71 11 0 1 1 19.48 12 0 −1 −1 23.18 13 0 0 0 23.56 14 1 1 0 19.6 15 1 −1 0 22.37 16 1 0 −1 22.87 17 1 0 1 22.57 表 4 回归模型方差分析
Table 4. Regression model variance analysis
来源 平方和 自由度 均方 F值 P值 差异性 模型 51.40 9 5.71 134.63 <0.0001 ** A 料液比 1.05 1 1.05 24.78 0.0016 ** B pH 25.20 1 25.20 594.20 <0.0001 ** C 温度 0.0221 1 0.0221 0.5198 0.4943 AB 0.8010 1 0.8010 18.88 0.0034 ** AC 0.1260 1 0.1260 2.97 0.1284 BC 0.0210 1 0.0210 0.4957 0.5042 A2 4.34 1 4.34 102.31 <0.0001 ** B2 18.48 1 18.48 435.76 <0.0001 ** C2 0.0512 1 0.0512 1.21 0.3084 残差 0.2969 7 0.0424 失拟项 0.2027 3 0.0676 2.87 0.1677 不显著 绝对误差 0.0943 4 0.0236 总和 51.70 16 注:**表示差异极显著(P<0.01);*表示差异显著(P<0.05)。 表 5 牡丹籽粕蛋白的氨基酸组成及含量
Table 5. Amino acid composition and content of peony seed meal protein
氨基酸 缩写 样品含量(%) 天冬氨酸 Asp 9.00±0.26 谷氨酸 Glu 22.79±0.30 丝氨酸 Ser 4.39±0.04 甘氨酸 Gly 4.16±0.01 组氨酸 His 1.77±0.03 精氨酸 Arg 6.78±0.13 苏氨酸* Thr 2.45±0.04 丙氨酸 Ala 3.91±0.00 脯氨酸 Pro 3.86±0.18 酪氨酸 Tyr 2.55±0.06 缬氨酸* Val 4.87±0.06 蛋氨酸* Met 1.06±0.04 胱氨酸 Cyr 1.16±0.04 异亮氨酸* Ile 3.53±0.08 亮氨酸* Leu 6.53±0.07 苯丙氨酸* Phe 3.19±0.11 赖氨酸* Lys 1.79±0.08 色氨酸* Trp 0.63±0.01 总量 84.42 注:*表示必需氨基酸。 -
[1] ZHANG X X, ZHANG Y L, NIU L X, et al. Chemometric classification of different tree peony species native to China based on the assessment of major fatty acids of seed oil and phenotypic characteristics of the seeds[J]. Chemistry & Biodiversity,2017,14(1):e1600111. [2] LI C, DU H, WANG L, et al. Flavonoid composition and antioxidant activity of tree peony (Paeonia section Moutan) yellow flowers[J]. Journal of Agricultural and Food Chemistry,2009,57(18):8496−8503. doi: 10.1021/jf902103b [3] GAO L L, LI Y Q, WANG Z S, et al. Physicochemical characteristics and functionality of tree peony (Paeonia suffruticosa Andr.) seed protein[J]. Food Chemistry,2018,240:980−988. doi: 10.1016/j.foodchem.2017.07.124 [4] 刘玉军, 索俊玲, 孙志强, 等. 牡丹籽活性成分及综合开发利用研究进展[J]. 食品与药品,2020,22(4):321−324. [LIU Y J, SUO J L, SUN Z Q, et al. Progress in active components and comprehensive utilization of peony seeds[J]. Food and Drug,2020,22(4):321−324. doi: 10.3969/j.issn.1672-979X.2020.04.016 [5] 刘东彦, 石晓峰, 沈薇, 等. HPLC法同时测定紫斑牡丹籽粕中4个成分的含量[J]. 中药材,2019,42(11):2607−2610. [LIU D Y, SHI X F, SHEN W, et al. Simultaneous determination of four components in seed meal of Paeonia viola by HPLC[J]. Journal of Chinese Medicinal Materials,2019,42(11):2607−2610. doi: 10.13863/j.issn1001-4454.2019.11.026 [6] 徐玥, 张存劳, 杨耿, 等. 碱提酸沉法提取牡丹籽饼中蛋白质的研究[J]. 中国油脂,2019,44(8):28−30,40. [XU Y, ZHANG C L, YANG G, et al. Extraction of protein from peony seed cake by alkali extraction and acid precipitation method[J]. China Oils and Fats,2019,44(8):28−30,40. [7] 盖晴晴. 水酶法提取牡丹籽油工艺改进及水相蛋白特性研究[D]. 无锡: 江南大学, 2020GAI Q Q. Process improvement on aqueous enzymatic extraction of peony seed oil and investigation[D]. Wuxi: Jiangnan University, 2020. [8] LO B, KASAPIS S, FARAHNAKY A. Lupin protein: Isolation and techno-functional properties: A review[J]. Food Hydrocolloids,2021,112:106318. doi: 10.1016/j.foodhyd.2020.106318 [9] 王青, 孙金月, 刘超, 等. 响应曲面法优化提取牡丹籽粕蛋白的工艺及应用研究[J]. 食品工业,2017,38(1):117−121. [WANG Q, SUN J Y, LIU C, et al. Study on protein extraction technology from peony seed meals optimized by response surface methodology[J]. The Food Industry,2017,38(1):117−121. [10] 鹿杰, 黄志强, 邱敏, 等. 牡丹籽蛋白的制备工艺及其性质研究[J]. 粮食与油脂,2022,35(5):97−102. [LU J, HUANG Z Q, QIU M, et al. Study on the preparation technology and properties of peony seed protein[J]. Cereals & Oils,2022,35(5):97−102. doi: 10.3969/j.issn.1008-9578.2022.05.023 [11] 宋艳秋, 吴苏喜, 肖志红. 牡丹籽蛋白的制备工艺优化及功能性质评价[J]. 中国油脂,2015,40(7):26−30. [SONG Y Q, WU S X, XIAO Z H. Extraction optimization and evaluation on functional properties of peony seed protein[J]. China Oils and Fats,2015,40(7):26−30. doi: 10.3969/j.issn.1003-7969.2015.07.006 [12] 李加兴, 房惠芳, 陈选, 等. 牡丹籽粕蛋白提取工艺优化及其等电点分析[J]. 食品与机械,2014,30(3):147−150. [LI J X, FANG H F, CHEN X, et al. Optimization on extraction and analysis of isoelectric point condition of protein from peony seed dreg[J]. Food & Machinery,2014,30(3):147−150. [13] 张立娟, 姜瞻梅, 姚雪琳, 等. 双缩脲法检测大豆分离蛋白中蛋白质的研究[J]. 食品工业科技,2008(7):241−242. [ZHANG L J, JIANG Z M, YAO X L, et al. Detecting of protein in soybean isolated protein by biure method[J]. Science and Technology of Food Industry,2008(7):241−242. doi: 10.13386/j.issn1002-0306.2008.07.063 [14] 张俊杰, 郭晨, 刘毅飞, 等. 响应面法优化卡布里鹰嘴豆蛋白提取工艺[J]. 食品工业科技,2018,39(17):167−172. [ZHANG J J, GUO C, LIU Y F, et al. Optimization of extraction technology of Kabuli chickpea protein by response surface methodology[J]. Science and Technology of Food Industry,2018,39(17):167−172. doi: 10.13386/j.issn1002-0306.2018.17.028 [15] 庞庭才, 胡上英, 甘红, 等. 响应面分析法优化红菇蛋白质提取工艺[J]. 食品工业,2015,36(4):186−190. [PANG T C, HU S Y, GAN H, et al. Optimization of extraction technology of protein from Russula by using response surface methodology[J]. The Food Industry,2015,36(4):186−190. [16] 程涛, 孙艳波, 李健. 双缩脲法测定乳中酪蛋白含量[J]. 中国乳品工业,2000,28(3):33−35. [CHENG T, SUN Y B, LI J. Determination of casein content in milk by biuret’s method[J]. China Dairy Industry,2000,28(3):33−35. [17] 赵璇. 洋葱蛋白及多肽的制备及其体外抗氧化活性评价[J]. 中国调味品,2020,45(2):112−115. [ZHAO X. Preparation of onion protein and peptides and evaluation of their antioxidant activity in vitro[J]. China Condiment,2020,45(2):112−115. doi: 10.3969/j.issn.1000-9973.2020.02.025 [18] AHMEDNA M, PRINYAWIWATKUL W, RAO R M. Solubilized wheat protein isolate: Functional properties and potential food applications[J]. Journal of Agricultural and Food Chemistry,1999,47(4):1340−1345. doi: 10.1021/jf981098s [19] TOMOTAKE H, SHIMAOKA I, KAYASHITA J, et al. Physicochemical and functional properties of buckwheat protein product[J]. Journal of Agricultural and Food Chemistry,2002,50(7):2125−2129. doi: 10.1021/jf011248q [20] CRUZ N, CAPELLAS M, HERNÁNDEZ M, et al. Ultra high pressure homogenization of soymilk: Microbiological, physicochemical and microstructural characteristics[J]. Food Research International,2007,40(6):725−732. doi: 10.1016/j.foodres.2007.01.003 [21] XUE F, ZHU C, LIU F, et al. Effects of high-intensity ultrasound treatment on functional properties of plum (Pruni domesticae Semen) seed protein isolate[J]. Journal of the Science of Food and Agriculture,2018,98(15):5690−5699. doi: 10.1002/jsfa.9116 [22] 何胜华, 王永辉, 邓乾春. 胶束化和碱溶酸沉提取羽扇豆蛋白的物化特性[J]. 食品科学,2022,43(8):36−43. [HE S H, WANG Y H, DENG Q C. Physicochemical properties of lupin proteins extracted by micellization or alkali dissolution followed by acid precipitation[J]. Food Science,2022,43(8):36−43. [23] PIRES C, TEIXEIRA B, CARDOSO C, et al. Cape hake protein hydrolysates prepared from alkaline solubilised proteins pre-treated with citric acid and calcium ions: Functional properties and ACE inhibitory activity[J]. Process Biochemistry,2015,50(6):1006−1015. doi: 10.1016/j.procbio.2015.03.010 [24] 张娅妮, 阮晓惠, 陈浩, 等. 核桃蛋白的酶解工艺优化及产物特性研究[J]. 中国油脂,2021,46(10):18−23. [ZHANG Y N, RUAN X H, CHEN H, et al. Optimization of enzymatic process and product properties of walnut protein[J]. China Oils and Fats,2021,46(10):18−23. doi: 10.19902/j.cnki.zgyz.1003-7969.200702 [25] 林栋, 张爱民, 王绍校, 等. 赤小豆蛋白的提取工艺优化及其功能性质[J]. 中国食品添加剂,2022,33(1):75−82. [LIN D, ZHANG A M, WANG S X, et al. Extraction optimization and functional properties of protein isolates from red bean (Vigna umbellate)[J]. China Food Additives,2022,33(1):75−82. [26] 吕凯波, 吕述权, 朱家乐. 不同提取方式对红花籽粕蛋白提取率及其功能特性的影响[J]. 食品科技,2020,45(7):249−254. [LÜ K B, LÜ S Q, ZHU J L. Effects of different extraction methods on extraction yield and functional properties of protein from safflower seed meal[J]. Food Science and Technology,2020,45(7):249−254. doi: 10.13684/j.cnki.spkj.2020.07.042 [27] 黄浩, 秦高一鑫, 陈贵堂, 等. 响应面法优化黄芪下脚料蛋白提取工艺[J]. 食品工业科技,2017,38(23):170−176. [HUANG H, QIN G Y X, CHEN G T, et al. Optimization of protein extraction astragali radix waste by response surface methodology[J]. Science and Technology of Food Industry,2017,38(23):170−176. doi: 10.13386/j.issn1002-0306.2017.23.032 [28] 周丽卿. 鹰嘴豆多肽的制备及其改性研究[D]. 杨凌: 西北农林科技大学, 2012ZHOU L Q. Study on the preparation and modification of chickpea peptide[D]. Yangling: Northwest A & F University, 2012. [29] 廖灿杰, 杨宏, 王玉栋, 等. 响应面法优化番木瓜籽蛋白质提取工艺[J]. 食品研究与开发,2020,41(1):147−154. [LIAO C J, YANG H, WANG Y D, et al. Optimization of Carica papaya L. seed protein extraction using response surface methodology[J]. Food Research and Development,2020,41(1):147−154. doi: 10.12161/j.issn.1005-6521.2020.01.023 [30] 曾晓房, 于新, 林宏文, 等. 响应面法优化山毛豆蛋白质提取工艺[J]. 食品研究与开发,2012,33(6):53−56. [ZENG X F, YU X, LIN H W, et al. Optimize the extraction technology of tephrosia vogelii protein by response surface methodology[J]. Food Research and Development,2012,33(6):53−56. doi: 10.3969/j.issn.1005-6521.2012.06.015 [31] 赵玉红, 林洋, 张智, 等. 碱溶酸沉法提取黑木耳蛋白质研究[J]. 食品研究与开发,2016,37(16):32−36. [ZHAO Y H, LIN Y, ZHANG Z, et al. Optimization of alkali extraction of protein from auricularia auricula[J]. Food Research and Development,2016,37(16):32−36. doi: 10.3969/j.issn.1005-6521.2016.16.009 [32] 刘柏华, 殷钟意, 郑旭煦, 等. 超声波对牡丹籽粕蛋白质碱提取工艺及氨基酸组成的影响[J]. 食品与发酵工业,2015,41(9):215−219. [LIU B H, YIN Z Y, ZHENG X X, et al. Effect of ultrasound on alkali extraction and amino acid composition of peony seed meal protein[J]. Food and Fermentation Industries,2015,41(9):215−219. doi: 10.13995/j.cnki.11-1802/ts.201509041 [33] 林莉, 董玮, 林彩霞, 等. 脱脂油茶饼中蛋白质提取工艺[J]. 中国食品添加剂,2021,32(11):59−66. [LIN L, DONG W, LIN C X, et al. Extraction technology of protein from defatted camellia[J]. China Food Additives,2021,32(11):59−66. doi: 10.19804/j.issn1006-2513.2021.11.009 [34] ZHANG B, CUI Y, YIN G, et al. Alkaline extraction method of cottonseed protein isolate[J]. Mod Appl Sci,2009,3(3):77−82. [35] MURALIDHAR R V, CHIRUMAMILA R R, MARCHANT R, et al. A response surface approach for the comparison of lipase production by Candida cylindracea using two different carbon sources[J]. Biochemical Engineering Journal,2001,9(1):17−23. doi: 10.1016/S1369-703X(01)00117-6 [36] 丁东源, 李海波, 梁锐, 等. 牡丹籽粗蛋白提取工艺优化[J]. 粮食与油脂,2021,34(4):96−99. [DING D Y, LI H B, LIANG R, et al. Optimizing extraction technology of crude protein from peony seed[J]. Cereals & Oils,2021,34(4):96−99. doi: 10.3969/j.issn.1008-9578.2021.04.023 [37] LI F, YIN Y, TAN B, et al. Leucine nutrition in animals and humans: mTOR signaling and beyond[J]. Amino Acids,2011,41(5):1185−1193. doi: 10.1007/s00726-011-0983-2 [38] VAN SADELHOFF J H J, WIERTSEMA S P, GARSSEN J, et al. Free amino acids in human milk: A potential role for glutamine and glutamate in the protection against neonatal allergies and infections[J]. Frontiers in Immunology,2020,11:1007. doi: 10.3389/fimmu.2020.01007 [39] 昝丽霞, 陈君红, 韩豪, 等. 油用牡丹籽粕营养成分分析研究[J]. 粮食与油脂,2019,32(9):45−47. [ZAN L X, CHEN J H, HAN H, et al. Analysis of nutrient compositions of peony seed meal[J]. Cereals & Oils,2019,32(9):45−47. doi: 10.3969/j.issn.1008-9578.2019.09.012 [40] ALETOR O, OSHODI A A, IPINMOROTI K. Chemical composition of common leafy vegetables and functional properties of their leaf protein concentrates[J]. Food Chemistry,2002,78(1):63−68. doi: 10.1016/S0308-8146(01)00376-4 [41] 王振斌, 王玺, 马海乐, 等. 芝麻饼粕蛋白质的理化和功能性质研究[J]. 中国粮油学报,2014,29(11):30−35. [WANG Z B, WANG X, MA H L, et al. Physicochemical and functional properties of sesame cake protein[J]. Journal of the Chinese Cereals and Oils Association,2014,29(11):30−35. [42] 高晓莉, 王丽丽, 刘丽娅, 等. pH值和温度对燕麦蛋白溶解与聚集特性的影响[J]. 核农学报,2020,34(11):2492−2498. [GAO X L, WANG L L, LIU L Y, et al. Effects of pH and temperature on the solubility and aggregation of oat protein[J]. Journal of Nuclear Agricultural Sciences,2020,34(11):2492−2498. doi: 10.11869/j.issn.100-8551.2020.11.2492 [43] TIAN W L, LEI L L, ZHANG Q, et al. Physical stability and antimicrobial activity of encapsulated cinnamaldehyde by self‐emulsifying nanoemulsion[J]. Journal of Food Process Engineering,2016,39(5):462−471. doi: 10.1111/jfpe.12237 [44] 朱建宇, 赵城彬, 江连洲, 等. 碱性条件下大豆11S球蛋白溶液的性质和分子结构[J]. 中国食品学报,2019,19(7):85−92. [ZHU J Y, ZHAO C B, JIANG L Z, et al. Solution properties and molecular structure of 11S glycinin at alkaline condition[J]. Journal of Chinese Institute of Food Science and Technology,2019,19(7):85−92. doi: 10.16429/j.1009-7848.2019.07.012 [45] 贾润红. pH对糖基化花生蛋白乳化特性的影响[J]. 粮食与油脂,2021,34(3):107−110. [JIA R H. Effect of pH on emulsification of glycosylated peanut protein[J]. Cereals & Oils,2021,34(3):107−110. doi: 10.3969/j.issn.1008-9578.2021.03.027 [46] SHI X, GUO S. Effect of diluent type on analysis of zeta potential of colloid particles of soymilk protein[J]. Transactions of the Chinese Society of Agricultural Engineering,2016,32(7):270−275. [47] 肖连冬, 程爽, 李杰. 大豆分离蛋白起泡性和乳化性影响因素的研究[J]. 中国酿造,2014,33(4):83−86. [XIAO L D, CHENG S, LI J. Influence factors of foaming properties and emulsifying properties of soybean protein isolate[J]. China Brewing,2014,33(4):83−86. doi: 10.3969/j.issn.0254-5071.2014.04.020 [48] 冯凌凌, 熊犍, 李琳, 等. pH值对SPC功能性和结构的影响[J]. 食品科学,2006,27(5):129−133. [FENG L L, XIONG J, LI L, et al. pH effects on functional properties and structure of SPC[J]. Food Science,2006,27(5):129−133. doi: 10.3321/j.issn:1002-6630.2006.05.025 [49] KHALID E K, BABIKER E E, TINAY A H E L. Solubility and functional properties of sesame seed proteins as influenced by pH and/or salt concentration[J]. Food Chemistry,2003,82(3):361−366. doi: 10.1016/S0308-8146(02)00555-1 [50] 何希强, 肖怀秋, 王穗萍. 豌豆蛋白质起泡性与乳化性研究初探[J]. 粮油食品科技,2008,16(3):50−52, 54. [HE X Q, XIAO H Q, WANG S P. Studies on foaming and emulsifying properties of pea protein[J]. Science and Technology of Cereals, Oils and Foods,2008,16(3):50−52, 54. doi: 10.3969/j.issn.1007-7561.2008.03.018 [51] 吴兴雨, 姚玥, 孙丰梅. 不同提取方法及因素对亚麻蛋白功能性质的影响[J]. 中国酿造,2020,39(11):192−198. [WU X Y, YAO Y, SUN F M. Effect of different extraction methods and factors on functional properties of flax protein[J]. China Brewing,2020,39(11):192−198. doi: 10.11882/j.issn.0254-5071.2020.11.037 [52] 范三红, 贾槐旺, 张锦华, 等. 不同提取方法对紫苏籽粕蛋白功能性质的影响[J]. 中国调味品,2021,46(12):61−69. [FAN S H, JIA H W, ZHANG J H, et al. Effects of different extraction methods on the functional properties of perilla seed meal protein[J]. China Condiment,2021,46(12):61−69. doi: 10.3969/j.issn.1000-9973.2021.12.011 [53] 王棐, 张文斌, 杨瑞金, 等. 藜麦蛋白质的提取及其功能性质研究[J]. 食品科技,2018,43(2):228−234. [WANG F, ZHANG W B, YANG R J, et al. Extraction and functional properties of quinoa protein isolates[J]. Food Science and Technology,2018,43(2):228−234. doi: 10.13684/j.cnki.spkj.2018.02.043 [54] 张艺玮, 任静, 张舒, 等. pH对微波改性薏米蛋白功能特性的影响[J]. 中国调味品,2021,46(9):48−52. [ZHANG Y W, REN J, ZHANG S, et al. Effect of pH on functional properties of microwave-modified coix seed protein[J]. China Condiment,2021,46(9):48−52. doi: 10.3969/j.issn.1000-9973.2021.09.009 [55] 李超, 蒲彪, 罗松明, 等. pH和NaCl浓度对花椒籽仁分离蛋白乳化性的影响[J]. 食品与发酵工业,2017,43(6):92−97. [LI C, PU B, LUO S M, et al. Emulsifying properties of Zanthoxylum bungeanum maxim seed kernel protein isolate: effect of pH and NaCl concentration[J]. Food and Fermentation Industries,2017,43(6):92−97. doi: 10.13995/j.cnki.11-1802/ts.201706015 [56] XI C, KANG N, ZHAO C, et al. Effects of pH and different sugars on the structures and emulsification properties of whey protein isolate-sugar conjugates[J]. Food Bioscience,2020,33:100507. doi: 10.1016/j.fbio.2019.100507 -