• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020

牡丹籽粕蛋白提取工艺优化及特性分析

田璇 刘阳 王兆升 董淑君 张斌 郑振佳

田璇,刘阳,王兆升,等. 牡丹籽粕蛋白提取工艺优化及特性分析[J]. 食品工业科技,2023,44(11):187−195. doi:  10.13386/j.issn1002-0306.2022070244
引用本文: 田璇,刘阳,王兆升,等. 牡丹籽粕蛋白提取工艺优化及特性分析[J]. 食品工业科技,2023,44(11):187−195. doi:  10.13386/j.issn1002-0306.2022070244
TIAN Xuan, LIU Yang, WANG Zhaosheng, et al. Extraction Optimization and Analysis on Properties of Protein on Peony Seed Meal[J]. Science and Technology of Food Industry, 2023, 44(11): 187−195. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022070244
Citation: TIAN Xuan, LIU Yang, WANG Zhaosheng, et al. Extraction Optimization and Analysis on Properties of Protein on Peony Seed Meal[J]. Science and Technology of Food Industry, 2023, 44(11): 187−195. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022070244

牡丹籽粕蛋白提取工艺优化及特性分析

doi: 10.13386/j.issn1002-0306.2022070244
基金项目: 菏泽市科技创新突破计划(2021KJTP10)。
详细信息
    作者简介:

    田璇(2000−),女,本科,研究方向:食品加工与质量控制,E-mail:18905401763@163.com

    通讯作者:

    郑振佳(1985−),男,博士,副教授,研究方向:食品加工与质量控制,E-mail:pengyou-jia@163.com

  • 中图分类号: TS209

Extraction Optimization and Analysis on Properties of Protein on Peony Seed Meal

  • 摘要: 本研究通过碱溶酸沉法对牡丹籽粕中的蛋白进行提取。选取料液比、pH、时间和温度进行单因素研究,结合响应面法优化获得最佳提取工艺,并对蛋白的物化特性进行分析。确定最佳工艺条件:料液比1:25 g/mL,pH10.6,温度55 ℃,时间130 min时,蛋白得率为23.81%±0.04%。在此条件下获得的牡丹籽粕蛋白中含有18种氨基酸;蛋白的持水性和持油性分别为3.72和3.67 g/g;起泡性和泡沫稳定性在pH2~4时均明显降低,pH4时最小,pH6~10之间时,起泡性持续增加,泡沫稳定性明显上升后略有下降;乳化性和乳化稳定性随pH增大而增加,与粒径和Zeta电位所反映的结果相符。本研究为牡丹籽粕蛋白的工业化生产和综合利用提供了理论依据。
  • 图  1  吸光度随pH变化曲线

    Figure  1.  Curve of absorbance value with pH change

    图  2  料液比对牡丹籽粕蛋白得率的影响

    Figure  2.  Effect of solid-liquid ratio on protein yield of peony seed meal

    注:不同小写字母表示差异显著(P<0.05);图3~图5同。

    图  3  pH对牡丹籽粕蛋白得率的影响

    Figure  3.  Effect of pH on protein yield of peony seed meal

    图  4  时间对牡丹籽粕蛋白得率的影响

    Figure  4.  Effect of time on protein yield of peony seed meal

    图  5  温度对牡丹籽粕蛋白得率的影响

    Figure  5.  Effect of temperature on protein yield of peony seed meal

    图  6  各因素交互作用对牡丹籽粕蛋白得率影响的响应面图

    Figure  6.  Response surface of various factors on protein yield of peony seed meal

    图  7  牡丹籽粕蛋白的持水性和持油性

    Figure  7.  The water holding capacity and oil holding capacity of peony seed meal protein

    图  8  不同pH条件下牡丹籽粕蛋白溶液的粒径

    Figure  8.  Particle size of peony seed meal protein solution under different pH conditions

    图  9  不同pH条件下牡丹籽粕蛋白溶液的Zeta电位

    Figure  9.  Zeta potential of peony seed meal protein solution under different pH conditions

    图  10  不同pH条件下牡丹籽粕蛋白的起泡性及泡沫稳定性

    Figure  10.  Foaming ability and foam stability of peony seed meal protein under different pH

    图  11  不同pH条件下牡丹籽粕蛋白的乳化性及乳化稳定性

    Figure  11.  Emulsification and emulsifying stability of peony seed meal protein under different pH

    表  1  单因素变量实验水平设计

    Table  1.   Factor level of single factor variable design

    实验设计料液比(g/mL)pH温度(℃)时间(min)
    11:15、1:20、1:25、1:30、1:35104030
    21:258、9、10、11、124030
    31:25114070、90、110、130、150
    41:251140、45、50、55、60130
    下载: 导出CSV

    表  2  响应面试验分析因素与水平

    Table  2.   Response surface test analysis factors and levels

    水平因素
    料液比(g/mL)pH温度(℃)
    −11:201050
    01:251155
    11:301260
    下载: 导出CSV

    表  3  响应面试验结果

    Table  3.   Response surface test results

    试验号A 料液比B pHC 温度Y 得率(%)
    1−10122.45
    2−11017.73
    3−10−122.04
    4−1−1022.29
    500023.38
    601−119.89
    70−1123.06
    800023.78
    900023.61
    1000023.71
    1101119.48
    120−1−123.18
    1300023.56
    1411019.6
    151−1022.37
    1610−122.87
    1710122.57
    下载: 导出CSV

    表  4  回归模型方差分析

    Table  4.   Regression model variance analysis

    来源平方和自由度均方FP差异性
    模型51.4095.71134.63<0.0001**
    A 料液比1.0511.0524.780.0016**
    B pH25.20125.20594.20<0.0001**
    C 温度0.022110.02210.51980.4943
    AB0.801010.801018.880.0034**
    AC0.126010.12602.970.1284
    BC0.021010.02100.49570.5042
    A24.3414.34102.31<0.0001**
    B218.48118.48435.76<0.0001**
    C20.051210.05121.210.3084
    残差0.296970.0424
    失拟项0.202730.06762.870.1677不显著
    绝对误差0.094340.0236
    总和51.7016
    注:**表示差异极显著(P<0.01);*表示差异显著(P<0.05)。
    下载: 导出CSV

    表  5  牡丹籽粕蛋白的氨基酸组成及含量

    Table  5.   Amino acid composition and content of peony seed meal protein

    氨基酸缩写样品含量(%)
    天冬氨酸Asp9.00±0.26
    谷氨酸Glu22.79±0.30
    丝氨酸Ser4.39±0.04
    甘氨酸Gly4.16±0.01
    组氨酸His1.77±0.03
    精氨酸Arg6.78±0.13
    苏氨酸*Thr2.45±0.04
    丙氨酸Ala3.91±0.00
    脯氨酸Pro3.86±0.18
    酪氨酸Tyr2.55±0.06
    缬氨酸*Val4.87±0.06
    蛋氨酸*Met1.06±0.04
    胱氨酸Cyr1.16±0.04
    异亮氨酸*Ile3.53±0.08
    亮氨酸*Leu6.53±0.07
    苯丙氨酸*Phe3.19±0.11
    赖氨酸*Lys1.79±0.08
    色氨酸*Trp0.63±0.01
    总量84.42
    注:*表示必需氨基酸。
    下载: 导出CSV
  • [1] ZHANG X X, ZHANG Y L, NIU L X, et al. Chemometric classification of different tree peony species native to China based on the assessment of major fatty acids of seed oil and phenotypic characteristics of the seeds[J]. Chemistry & Biodiversity,2017,14(1):e1600111.
    [2] LI C, DU H, WANG L, et al. Flavonoid composition and antioxidant activity of tree peony (Paeonia section Moutan) yellow flowers[J]. Journal of Agricultural and Food Chemistry,2009,57(18):8496−8503. doi:  10.1021/jf902103b
    [3] GAO L L, LI Y Q, WANG Z S, et al. Physicochemical characteristics and functionality of tree peony (Paeonia suffruticosa Andr.) seed protein[J]. Food Chemistry,2018,240:980−988. doi:  10.1016/j.foodchem.2017.07.124
    [4] 刘玉军, 索俊玲, 孙志强, 等. 牡丹籽活性成分及综合开发利用研究进展[J]. 食品与药品,2020,22(4):321−324. [LIU Y J, SUO J L, SUN Z Q, et al. Progress in active components and comprehensive utilization of peony seeds[J]. Food and Drug,2020,22(4):321−324. doi:  10.3969/j.issn.1672-979X.2020.04.016
    [5] 刘东彦, 石晓峰, 沈薇, 等. HPLC法同时测定紫斑牡丹籽粕中4个成分的含量[J]. 中药材,2019,42(11):2607−2610. [LIU D Y, SHI X F, SHEN W, et al. Simultaneous determination of four components in seed meal of Paeonia viola by HPLC[J]. Journal of Chinese Medicinal Materials,2019,42(11):2607−2610. doi:  10.13863/j.issn1001-4454.2019.11.026
    [6] 徐玥, 张存劳, 杨耿, 等. 碱提酸沉法提取牡丹籽饼中蛋白质的研究[J]. 中国油脂,2019,44(8):28−30,40. [XU Y, ZHANG C L, YANG G, et al. Extraction of protein from peony seed cake by alkali extraction and acid precipitation method[J]. China Oils and Fats,2019,44(8):28−30,40.
    [7] 盖晴晴. 水酶法提取牡丹籽油工艺改进及水相蛋白特性研究[D]. 无锡: 江南大学, 2020

    GAI Q Q. Process improvement on aqueous enzymatic extraction of peony seed oil and investigation[D]. Wuxi: Jiangnan University, 2020.
    [8] LO B, KASAPIS S, FARAHNAKY A. Lupin protein: Isolation and techno-functional properties: A review[J]. Food Hydrocolloids,2021,112:106318. doi:  10.1016/j.foodhyd.2020.106318
    [9] 王青, 孙金月, 刘超, 等. 响应曲面法优化提取牡丹籽粕蛋白的工艺及应用研究[J]. 食品工业,2017,38(1):117−121. [WANG Q, SUN J Y, LIU C, et al. Study on protein extraction technology from peony seed meals optimized by response surface methodology[J]. The Food Industry,2017,38(1):117−121.
    [10] 鹿杰, 黄志强, 邱敏, 等. 牡丹籽蛋白的制备工艺及其性质研究[J]. 粮食与油脂,2022,35(5):97−102. [LU J, HUANG Z Q, QIU M, et al. Study on the preparation technology and properties of peony seed protein[J]. Cereals & Oils,2022,35(5):97−102. doi:  10.3969/j.issn.1008-9578.2022.05.023
    [11] 宋艳秋, 吴苏喜, 肖志红. 牡丹籽蛋白的制备工艺优化及功能性质评价[J]. 中国油脂,2015,40(7):26−30. [SONG Y Q, WU S X, XIAO Z H. Extraction optimization and evaluation on functional properties of peony seed protein[J]. China Oils and Fats,2015,40(7):26−30. doi:  10.3969/j.issn.1003-7969.2015.07.006
    [12] 李加兴, 房惠芳, 陈选, 等. 牡丹籽粕蛋白提取工艺优化及其等电点分析[J]. 食品与机械,2014,30(3):147−150. [LI J X, FANG H F, CHEN X, et al. Optimization on extraction and analysis of isoelectric point condition of protein from peony seed dreg[J]. Food & Machinery,2014,30(3):147−150.
    [13] 张立娟, 姜瞻梅, 姚雪琳, 等. 双缩脲法检测大豆分离蛋白中蛋白质的研究[J]. 食品工业科技,2008(7):241−242. [ZHANG L J, JIANG Z M, YAO X L, et al. Detecting of protein in soybean isolated protein by biure method[J]. Science and Technology of Food Industry,2008(7):241−242. doi:  10.13386/j.issn1002-0306.2008.07.063
    [14] 张俊杰, 郭晨, 刘毅飞, 等. 响应面法优化卡布里鹰嘴豆蛋白提取工艺[J]. 食品工业科技,2018,39(17):167−172. [ZHANG J J, GUO C, LIU Y F, et al. Optimization of extraction technology of Kabuli chickpea protein by response surface methodology[J]. Science and Technology of Food Industry,2018,39(17):167−172. doi:  10.13386/j.issn1002-0306.2018.17.028
    [15] 庞庭才, 胡上英, 甘红, 等. 响应面分析法优化红菇蛋白质提取工艺[J]. 食品工业,2015,36(4):186−190. [PANG T C, HU S Y, GAN H, et al. Optimization of extraction technology of protein from Russula by using response surface methodology[J]. The Food Industry,2015,36(4):186−190.
    [16] 程涛, 孙艳波, 李健. 双缩脲法测定乳中酪蛋白含量[J]. 中国乳品工业,2000,28(3):33−35. [CHENG T, SUN Y B, LI J. Determination of casein content in milk by biuret’s method[J]. China Dairy Industry,2000,28(3):33−35.
    [17] 赵璇. 洋葱蛋白及多肽的制备及其体外抗氧化活性评价[J]. 中国调味品,2020,45(2):112−115. [ZHAO X. Preparation of onion protein and peptides and evaluation of their antioxidant activity in vitro[J]. China Condiment,2020,45(2):112−115. doi:  10.3969/j.issn.1000-9973.2020.02.025
    [18] AHMEDNA M, PRINYAWIWATKUL W, RAO R M. Solubilized wheat protein isolate: Functional properties and potential food applications[J]. Journal of Agricultural and Food Chemistry,1999,47(4):1340−1345. doi:  10.1021/jf981098s
    [19] TOMOTAKE H, SHIMAOKA I, KAYASHITA J, et al. Physicochemical and functional properties of buckwheat protein product[J]. Journal of Agricultural and Food Chemistry,2002,50(7):2125−2129. doi:  10.1021/jf011248q
    [20] CRUZ N, CAPELLAS M, HERNÁNDEZ M, et al. Ultra high pressure homogenization of soymilk: Microbiological, physicochemical and microstructural characteristics[J]. Food Research International,2007,40(6):725−732. doi:  10.1016/j.foodres.2007.01.003
    [21] XUE F, ZHU C, LIU F, et al. Effects of high-intensity ultrasound treatment on functional properties of plum (Pruni domesticae Semen) seed protein isolate[J]. Journal of the Science of Food and Agriculture,2018,98(15):5690−5699. doi:  10.1002/jsfa.9116
    [22] 何胜华, 王永辉, 邓乾春. 胶束化和碱溶酸沉提取羽扇豆蛋白的物化特性[J]. 食品科学,2022,43(8):36−43. [HE S H, WANG Y H, DENG Q C. Physicochemical properties of lupin proteins extracted by micellization or alkali dissolution followed by acid precipitation[J]. Food Science,2022,43(8):36−43.
    [23] PIRES C, TEIXEIRA B, CARDOSO C, et al. Cape hake protein hydrolysates prepared from alkaline solubilised proteins pre-treated with citric acid and calcium ions: Functional properties and ACE inhibitory activity[J]. Process Biochemistry,2015,50(6):1006−1015. doi:  10.1016/j.procbio.2015.03.010
    [24] 张娅妮, 阮晓惠, 陈浩, 等. 核桃蛋白的酶解工艺优化及产物特性研究[J]. 中国油脂,2021,46(10):18−23. [ZHANG Y N, RUAN X H, CHEN H, et al. Optimization of enzymatic process and product properties of walnut protein[J]. China Oils and Fats,2021,46(10):18−23. doi:  10.19902/j.cnki.zgyz.1003-7969.200702
    [25] 林栋, 张爱民, 王绍校, 等. 赤小豆蛋白的提取工艺优化及其功能性质[J]. 中国食品添加剂,2022,33(1):75−82. [LIN D, ZHANG A M, WANG S X, et al. Extraction optimization and functional properties of protein isolates from red bean (Vigna umbellate)[J]. China Food Additives,2022,33(1):75−82.
    [26] 吕凯波, 吕述权, 朱家乐. 不同提取方式对红花籽粕蛋白提取率及其功能特性的影响[J]. 食品科技,2020,45(7):249−254. [LÜ K B, LÜ S Q, ZHU J L. Effects of different extraction methods on extraction yield and functional properties of protein from safflower seed meal[J]. Food Science and Technology,2020,45(7):249−254. doi:  10.13684/j.cnki.spkj.2020.07.042
    [27] 黄浩, 秦高一鑫, 陈贵堂, 等. 响应面法优化黄芪下脚料蛋白提取工艺[J]. 食品工业科技,2017,38(23):170−176. [HUANG H, QIN G Y X, CHEN G T, et al. Optimization of protein extraction astragali radix waste by response surface methodology[J]. Science and Technology of Food Industry,2017,38(23):170−176. doi:  10.13386/j.issn1002-0306.2017.23.032
    [28] 周丽卿. 鹰嘴豆多肽的制备及其改性研究[D]. 杨凌: 西北农林科技大学, 2012

    ZHOU L Q. Study on the preparation and modification of chickpea peptide[D]. Yangling: Northwest A & F University, 2012.
    [29] 廖灿杰, 杨宏, 王玉栋, 等. 响应面法优化番木瓜籽蛋白质提取工艺[J]. 食品研究与开发,2020,41(1):147−154. [LIAO C J, YANG H, WANG Y D, et al. Optimization of Carica papaya L. seed protein extraction using response surface methodology[J]. Food Research and Development,2020,41(1):147−154. doi:  10.12161/j.issn.1005-6521.2020.01.023
    [30] 曾晓房, 于新, 林宏文, 等. 响应面法优化山毛豆蛋白质提取工艺[J]. 食品研究与开发,2012,33(6):53−56. [ZENG X F, YU X, LIN H W, et al. Optimize the extraction technology of tephrosia vogelii protein by response surface methodology[J]. Food Research and Development,2012,33(6):53−56. doi:  10.3969/j.issn.1005-6521.2012.06.015
    [31] 赵玉红, 林洋, 张智, 等. 碱溶酸沉法提取黑木耳蛋白质研究[J]. 食品研究与开发,2016,37(16):32−36. [ZHAO Y H, LIN Y, ZHANG Z, et al. Optimization of alkali extraction of protein from auricularia auricula[J]. Food Research and Development,2016,37(16):32−36. doi:  10.3969/j.issn.1005-6521.2016.16.009
    [32] 刘柏华, 殷钟意, 郑旭煦, 等. 超声波对牡丹籽粕蛋白质碱提取工艺及氨基酸组成的影响[J]. 食品与发酵工业,2015,41(9):215−219. [LIU B H, YIN Z Y, ZHENG X X, et al. Effect of ultrasound on alkali extraction and amino acid composition of peony seed meal protein[J]. Food and Fermentation Industries,2015,41(9):215−219. doi:  10.13995/j.cnki.11-1802/ts.201509041
    [33] 林莉, 董玮, 林彩霞, 等. 脱脂油茶饼中蛋白质提取工艺[J]. 中国食品添加剂,2021,32(11):59−66. [LIN L, DONG W, LIN C X, et al. Extraction technology of protein from defatted camellia[J]. China Food Additives,2021,32(11):59−66. doi:  10.19804/j.issn1006-2513.2021.11.009
    [34] ZHANG B, CUI Y, YIN G, et al. Alkaline extraction method of cottonseed protein isolate[J]. Mod Appl Sci,2009,3(3):77−82.
    [35] MURALIDHAR R V, CHIRUMAMILA R R, MARCHANT R, et al. A response surface approach for the comparison of lipase production by Candida cylindracea using two different carbon sources[J]. Biochemical Engineering Journal,2001,9(1):17−23. doi:  10.1016/S1369-703X(01)00117-6
    [36] 丁东源, 李海波, 梁锐, 等. 牡丹籽粗蛋白提取工艺优化[J]. 粮食与油脂,2021,34(4):96−99. [DING D Y, LI H B, LIANG R, et al. Optimizing extraction technology of crude protein from peony seed[J]. Cereals & Oils,2021,34(4):96−99. doi:  10.3969/j.issn.1008-9578.2021.04.023
    [37] LI F, YIN Y, TAN B, et al. Leucine nutrition in animals and humans: mTOR signaling and beyond[J]. Amino Acids,2011,41(5):1185−1193. doi:  10.1007/s00726-011-0983-2
    [38] VAN SADELHOFF J H J, WIERTSEMA S P, GARSSEN J, et al. Free amino acids in human milk: A potential role for glutamine and glutamate in the protection against neonatal allergies and infections[J]. Frontiers in Immunology,2020,11:1007. doi:  10.3389/fimmu.2020.01007
    [39] 昝丽霞, 陈君红, 韩豪, 等. 油用牡丹籽粕营养成分分析研究[J]. 粮食与油脂,2019,32(9):45−47. [ZAN L X, CHEN J H, HAN H, et al. Analysis of nutrient compositions of peony seed meal[J]. Cereals & Oils,2019,32(9):45−47. doi:  10.3969/j.issn.1008-9578.2019.09.012
    [40] ALETOR O, OSHODI A A, IPINMOROTI K. Chemical composition of common leafy vegetables and functional properties of their leaf protein concentrates[J]. Food Chemistry,2002,78(1):63−68. doi:  10.1016/S0308-8146(01)00376-4
    [41] 王振斌, 王玺, 马海乐, 等. 芝麻饼粕蛋白质的理化和功能性质研究[J]. 中国粮油学报,2014,29(11):30−35. [WANG Z B, WANG X, MA H L, et al. Physicochemical and functional properties of sesame cake protein[J]. Journal of the Chinese Cereals and Oils Association,2014,29(11):30−35.
    [42] 高晓莉, 王丽丽, 刘丽娅, 等. pH值和温度对燕麦蛋白溶解与聚集特性的影响[J]. 核农学报,2020,34(11):2492−2498. [GAO X L, WANG L L, LIU L Y, et al. Effects of pH and temperature on the solubility and aggregation of oat protein[J]. Journal of Nuclear Agricultural Sciences,2020,34(11):2492−2498. doi:  10.11869/j.issn.100-8551.2020.11.2492
    [43] TIAN W L, LEI L L, ZHANG Q, et al. Physical stability and antimicrobial activity of encapsulated cinnamaldehyde by self‐emulsifying nanoemulsion[J]. Journal of Food Process Engineering,2016,39(5):462−471. doi:  10.1111/jfpe.12237
    [44] 朱建宇, 赵城彬, 江连洲, 等. 碱性条件下大豆11S球蛋白溶液的性质和分子结构[J]. 中国食品学报,2019,19(7):85−92. [ZHU J Y, ZHAO C B, JIANG L Z, et al. Solution properties and molecular structure of 11S glycinin at alkaline condition[J]. Journal of Chinese Institute of Food Science and Technology,2019,19(7):85−92. doi:  10.16429/j.1009-7848.2019.07.012
    [45] 贾润红. pH对糖基化花生蛋白乳化特性的影响[J]. 粮食与油脂,2021,34(3):107−110. [JIA R H. Effect of pH on emulsification of glycosylated peanut protein[J]. Cereals & Oils,2021,34(3):107−110. doi:  10.3969/j.issn.1008-9578.2021.03.027
    [46] SHI X, GUO S. Effect of diluent type on analysis of zeta potential of colloid particles of soymilk protein[J]. Transactions of the Chinese Society of Agricultural Engineering,2016,32(7):270−275.
    [47] 肖连冬, 程爽, 李杰. 大豆分离蛋白起泡性和乳化性影响因素的研究[J]. 中国酿造,2014,33(4):83−86. [XIAO L D, CHENG S, LI J. Influence factors of foaming properties and emulsifying properties of soybean protein isolate[J]. China Brewing,2014,33(4):83−86. doi:  10.3969/j.issn.0254-5071.2014.04.020
    [48] 冯凌凌, 熊犍, 李琳, 等. pH值对SPC功能性和结构的影响[J]. 食品科学,2006,27(5):129−133. [FENG L L, XIONG J, LI L, et al. pH effects on functional properties and structure of SPC[J]. Food Science,2006,27(5):129−133. doi:  10.3321/j.issn:1002-6630.2006.05.025
    [49] KHALID E K, BABIKER E E, TINAY A H E L. Solubility and functional properties of sesame seed proteins as influenced by pH and/or salt concentration[J]. Food Chemistry,2003,82(3):361−366. doi:  10.1016/S0308-8146(02)00555-1
    [50] 何希强, 肖怀秋, 王穗萍. 豌豆蛋白质起泡性与乳化性研究初探[J]. 粮油食品科技,2008,16(3):50−52, 54. [HE X Q, XIAO H Q, WANG S P. Studies on foaming and emulsifying properties of pea protein[J]. Science and Technology of Cereals, Oils and Foods,2008,16(3):50−52, 54. doi:  10.3969/j.issn.1007-7561.2008.03.018
    [51] 吴兴雨, 姚玥, 孙丰梅. 不同提取方法及因素对亚麻蛋白功能性质的影响[J]. 中国酿造,2020,39(11):192−198. [WU X Y, YAO Y, SUN F M. Effect of different extraction methods and factors on functional properties of flax protein[J]. China Brewing,2020,39(11):192−198. doi:  10.11882/j.issn.0254-5071.2020.11.037
    [52] 范三红, 贾槐旺, 张锦华, 等. 不同提取方法对紫苏籽粕蛋白功能性质的影响[J]. 中国调味品,2021,46(12):61−69. [FAN S H, JIA H W, ZHANG J H, et al. Effects of different extraction methods on the functional properties of perilla seed meal protein[J]. China Condiment,2021,46(12):61−69. doi:  10.3969/j.issn.1000-9973.2021.12.011
    [53] 王棐, 张文斌, 杨瑞金, 等. 藜麦蛋白质的提取及其功能性质研究[J]. 食品科技,2018,43(2):228−234. [WANG F, ZHANG W B, YANG R J, et al. Extraction and functional properties of quinoa protein isolates[J]. Food Science and Technology,2018,43(2):228−234. doi:  10.13684/j.cnki.spkj.2018.02.043
    [54] 张艺玮, 任静, 张舒, 等. pH对微波改性薏米蛋白功能特性的影响[J]. 中国调味品,2021,46(9):48−52. [ZHANG Y W, REN J, ZHANG S, et al. Effect of pH on functional properties of microwave-modified coix seed protein[J]. China Condiment,2021,46(9):48−52. doi:  10.3969/j.issn.1000-9973.2021.09.009
    [55] 李超, 蒲彪, 罗松明, 等. pH和NaCl浓度对花椒籽仁分离蛋白乳化性的影响[J]. 食品与发酵工业,2017,43(6):92−97. [LI C, PU B, LUO S M, et al. Emulsifying properties of Zanthoxylum bungeanum maxim seed kernel protein isolate: effect of pH and NaCl concentration[J]. Food and Fermentation Industries,2017,43(6):92−97. doi:  10.13995/j.cnki.11-1802/ts.201706015
    [56] XI C, KANG N, ZHAO C, et al. Effects of pH and different sugars on the structures and emulsification properties of whey protein isolate-sugar conjugates[J]. Food Bioscience,2020,33:100507. doi:  10.1016/j.fbio.2019.100507
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  80
  • HTML全文浏览量:  33
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-20
  • 网络出版日期:  2023-04-20
  • 刊出日期:  2023-06-01

目录

    /

    返回文章
    返回