Effect of Arginine Combined with Chitosan on Quality of Postmortem Yak Meat during Maturing
-
摘要: 为了明确不同浓度精氨酸(Arginine,Arg)与壳聚糖(Chitosan,CH)的协同作用对宰后牦牛肉成熟过程中品质的影响及潜在作用机制。本研究将不同浓度的Arg和CH复配注射到牦牛肉中,测定其对牦牛肉成熟过程中品质的影响。结果表明,0.4%~0.8% Arg和1.0% CH复配可以显著提高牦牛肉的pH,降低牦牛肉成熟期间的L*、b*值、高铁肌红蛋白含量和蒸煮损失,并显著提高a*值和氧合肌红蛋白含量(P<0.05);同时,复配处理组肌原纤维小片化指数、硬度、咀嚼性、胶着性在成熟期间显著高于空白组,黏性和弹性则显著低于空白组(P<0.05);复配处理提高了牦牛肉过氧化值和硫代巴比妥酸值;同时,0.8% Arg和1.0% CH复配显著降低了成熟5 d前的羰基含量(P<0.05),但复配处理对巯基含量则没有显著影响(P>0.05);组织学观察显示,复配处理更有利于肌细胞的完整性和饱满度,且减少了水分通道。综上,不同浓度Arg和不同浓度CH复配处理在一定程度上改善了宰后牦牛肉成熟过程中的品质,提高其肉色稳定性并降低蒸煮损失,促进嫩化,使肌细胞更加完整饱满,但对脂肪氧化和蛋白氧化整体上呈现促进作用,具体原因和相关机理有待进一步探究。Abstract: In order to clarify the synergistic effect of different concentrations of arginine and different concentrations of chitosan on the quality of yak meat during postmortem aging and its potential mechanism, in this study, different concentrations of arginine and different concentrations of chitosan were injected into yak meat to determine their effects on the quality of yak meat during postmortem aging. The results showed that the combination of 0.4%~0.8% arginine and 1.0% chitosan could significantly increase the pH value, reduce the L*, b* values, metmyoglobin and cooking loss of yak meat during postmortem aging, and increase a* value and oxymyoglobin (P<0.05). Meanwhile, the myofibril fragmentation index, hardness, chewiness and adhesiveness of the compound treatment group were significantly higher than those of the control group during postmortem aging, while the viscosity and elasticity were significantly lower than those of the control group (P<0.05). The compound treatment increased the peroxide value and thiobarbituric acid reactive substances of yak meat. At the same time, the combination of 0.8% arginine and 1.0% chitosan significantly reduced the carbonyl content before maturation 5 day (P<0.05), but the compound treatment had no significant effect on the thiol content (P>0.05). Histological observation showed that the compound treatment was more conducive to the integrity and fullness of muscle cells, and reduced the water channel. In summary, the combination of different concentrations of arginine and different concentrations of chitosan improved the quality of postmortem yak meat during aging to a certain extent, improved its meat color stability and reduced cooking loss, promoted tenderization, and made muscle cells more complete and fuller, but it promoted fat oxidation and protein oxidation as a whole. The specific reasons and related mechanisms need to be further explored.
-
表 1 不同Arg处理组对牦牛肉成熟过程中色度的影响
Table 1. Effect of different arginine treatments on color of yak meat during maturation
肉色指标 组别 成熟时间(d) 1 3 5 7 L*值 CON 38.20±1.64Aa 38.31±2.01Aa 39.63±0.29Aa 41.04±2.03Aa Arg1 37.87±2.32Aa 33.01±0.46Bb 33.61±1.74Bb 37.08±0.41Ab Arg2 39.31±0.75Aa 38.80±0.64ABa 35.42±0.56Cb 37.20±1.11Bb Arg3 37.52±0.73Aa 32.45±0.37BCb 33.58±1.46Bb 30.81±0.47Cc a*值 CON 11.45±0.24Ac 11.20±0.44Ab 10.26±0.23Ba 8.84±0.25Ca Arg1 11.37±0.38Ac 11.61±0.21Aab 10.65±0.18Ba 9.21±0.51Ca Arg2 13.32±1.02Ab 11.99±0.51Aa 10.71±0.46Ba 8.45±0.55Ca Arg3 15.12±1.13Aa 12.16±0.33Ba 10.54±0.27Ca 8.60±0.45Da b*值 CON 12.12±0.73Aa 10.85±0.64ABa 10.57±1.09Ba 9.86±0.59Ba Arg1 11.37±0.76Aa 8.17±0.09Bb 7.93±0.82Bb 7.81±0.30Bb Arg2 11.58±0.82Aa 10.74±0.49Aa 9.27±0.42Bab 7.47±0.30Cb Arg3 13.28±0.96Aa 8.60±0.54Bb 8.48±0.98Bb 7.13±0.25Cb 注:不同小写字母表示同一成熟时间不同处理组间差异显著(P<0.05);不同大写字母表示同一处理组内不同成熟时间差异显著(P<0.05);表2~表6同。 表 2 不同CH处理对牦牛肉成熟过程中色度的影响
Table 2. Effects of different CH treatments on color of yak meat during maturation
肉色指标 组别 成熟时间(d) 1 3 5 7 L*值 CON 38.20±1.64Aa 38.31±2.01Aa 39.63±0.29Aa 41.04±2.03Aa CH1 34.27±0.89Ab 32.59±0.28Bc 32.36±0.48Bb 29.56±0.16Cc CH2 36.64±0.91Aa 34.94±1.31ABb 33.18±0.36Bb 34.42±1.11Bb CH3 37.52±0.73Aa 32.45±0.37BCc 33.58±1.46Bb 30.81±0.47Cc a*值 CON 11.45±0.24Ac 11.20±0.44Ab 10.26±0.23Bb 8.84±0.25Cb CH1 13.88±0.32Aa 12.57±0.72Ba 11.64±0.50Ca 10.12±0.19Da CH2 12.74±0.64Ab 11.71±0.27Bab 10.65±0.19Cb 9.59±0.31Da CH3 15.12±1.13Aa 12.16±0.33Ba 10.54±0.27Cb 8.60±0.45Db b*值 CON 12.12±0.73Aab 10.85±0.64ABa 10.57±1.09Ba 9.86±0.59Ba CH1 9.85±0.25Ac 9.73±0.39Ab 9.63±0.37Aab 6.96±0.37Bc CH2 11.20±0.14Ab 10.29±0.27Bab 8.82±0.12Cb 8.22±0.42Db CH3 13.28±0.96Aa 8.60±0.54Bc 8.48±0.98Bb 7.13±0.25Cc 表 3 不同Arg处理组对牦牛肉成熟过程中TPA的影响
Table 3. Effects of different arginine treatment groups on texture of yak meat during maturation
质构特性 组别 成熟时间(d) 1 3 5 7 硬度(g) CON 1126.8±4.59Cd 1207.5±16.68Cc 1300.2±3.37Bd 1469.6±57.98Ab Arg1 1362.4±30.23BCc 1338.2±139.58Cbc 1553.2±8.96Ac 1579±22.03Ab Arg2 1715.7±21.51Cb 1472.8±11.79Db 1931.9±33.99Ab 1871.4±8.87Ba Arg3 2084.9±76.77Aa 1940.7±20.28Aa 2113.8±25.95Aa 1952.8±112.68Aa 弹性(mm) CON 0.723±0.02Aa 0.665±0.046Aa 0.709±0.006Aa 0.68±0.05Aa Arg1 0.711±0.02Aa 0.719±0.01Aa 0.728±0.01Aa 0.728±0.02Aa Arg2 0.675±0.01Aa 0.736±0.01Aa 0.722±0.04Aa 0.74±0.03Aa Arg3 0.686±0.04Aa 0.675±0.02Aa 0.718±0.01Aa 0.739±0.02Aa 黏性(N.sec) CON 0.629±0.002Ab 0.632±0.029Ab 0.663±0.053Aa 0.655±0.097Aa Arg1 0.679±0.03Aab 0.66±0.01Aab 0.694±0.03Aa 0.728±0.02Aa Arg2 0.678±0.02Ab 0.697±0.01Aab 0.691±0.05Aa 0.695±0.05Aa Arg3 0.733±0.01Aa 0.734±0.05Aa 0.705±0.08Aa 0.718±0.02Aa 胶着性(N) CON 708.84±5.26Ad 763.71±45.78Ac 861.89±66.72Ac 965.34±180.45Ab Arg1 925.3±65.92BCc 883.1±86.66Cbc 1078.3±39.84ABbc 1149.5±16.61Aab Arg2 1149.5±18.92BCb 1026.3±21.44Cb 1334.4±68.38Aab 1301.4±99.91ABa Arg3 1527.8±66.98Aa 1423.3±76.6Aa 1491.3±184.33Aa 1400±35.74Aa 咀嚼性(mJ) CON 512.39±10.15Ac 509.18±65.75Ac 611.03±41.75Ac 661.27±170.77Ab Arg1 658.8±63.42BCbc 635.2±70.86Cbc 785±19.83ABbc 836.7±7.36Aab Arg2 776.1±24.29Ab 755.2±7.43Ab 965±104.49Aab 964.9±111.09Aa Arg3 1050±108.75Aa 961.4±79.85Aa 1072.1±147.31Aa 1034.3±1.52Aa 表 4 不同CH处理对牦牛肉成熟过程中TPA的影响
Table 4. Effects of different chitosan treatment groups on texture of yak meat during maturation
质构特性 组别 成熟时间(d) 1 3 5 7 硬度(g) CON 1126.8±4.59Cd 1207.5±16.68Cd 1300.2±3.37Bc 1469.6±57.98Ac CH1 1492.6±20.44Bc 1466.2±2.98Bc 1774.2±58.94Ab 1767.7±155.21Ab CH2 1817.8±8.65Bb 1568±39.41Db 1734.1±27.79Cb 2414.8±7.57Aa CH3 2084.9±76.77Aa 1940.7±20.28Aa 2113.8±25.95Aa 1952.8±112.68Ab 弹性(mm) CON 0.723±0.02Aa 0.665±0.046Aa 0.709±0.006Ab 0.68±0.05Aa CH1 0.696±0.01Aa 0.742±0.02Aa 0.711±0.017Ab 0.722±0.03Aa CH2 0.741±0.05Aa 0.645±0.05Aa 0.775±0.02Aa 0.683±0.06Aa CH3 0.686±0.04Aa 0.675±0.02Aa 0.718±0.01Ab 0.739±0.02Aa 黏性(N.sec) CON 0.629±0.002Ab 0.632±0.029Ab 0.663±0.053Aa 0.655±0.097Aa CH1 0.65±0.05Aab 0.675±0.02Aa 0.692±0.044Aa 0.593±0.02Aa CH2 0.676±0.03Aab 0.611±0.02Bb 0.68±0.02Aa 0.65±0.01ABa CH3 0.733±0.01Aa 0.734±0.05Aa 0.705±0.08Aa 0.718±0.02Aa 胶着性(N) CON 708.84±5.26Ad 763.71±45.78Ac 861.89±66.72Ab 965.34±180.45Ab CH1 971.2±89.4Ac 989.5±26.87Ab 1228.6±118.26Aa 1050±124.84Ab CH2 1228.8±50.39Bb 957.1±6.37Cb 1178.7±47.87Bab 1570.8±26.96Aa CH3 1527.8±66.98Aa 1423.3±76.6Aa 1491.3±184.33Aa 1400±35.74Aa 咀嚼性(mJ) CON 512.39±10.15Ab 509.18±65.75Ac 611.03±41.75Ab 661.27±170.77Ab CH1 675.7±62.6Ab 734.2±39.88Ab 874±105.34Aab 756.8±59.27Ab CH2 909.1±28.45Ba 617.5±39.76Cab 913.7±55.4Ba 1071.6±71.2Aa CH3 1050±108.75Aa 961.4±79.85Aa 1072.1±147.31Aa 1034.3±1.52Aa 表 5 不同复配处理对牦牛肉成熟过程中POV值的影响
Table 5. Effects of different compound treatments on peroxidation value of yak meat during maturation
样品组 成熟时间(d) 1 3 5 7 CON 0.942±0.130Ab 0.363±0.019Ca 0.622±0.016Bb 1.115±0.001Aa Arg1 0.913±0.019Ab 0.737±0.570Aa 1.050±0.080Aa 0.632±0.092Ab Arg2 1.312±0.139Aa 0.408±0.163Ca 0.802±0.059Bab 0.340±0.007Cc Arg3 0.860±0.099Ab 0.490±0.189ABa 0.530±0.170ABb 0.312±0.151Bc CON 0.942±0.130Aa 0.363±0.019Cb 0.622±0.016Bb 1.115±0.001Aa CH1 0.812±0.125Aa 0.787±0.179Aa 0.552±0.016Ab 0.485±0.130Ab CH2 0.878±0.016BCa 0.705±0.111Cab 1.032±0.068Aa 1.028±0.000Aa CH3 0.860±0.099Aa 0.490±0.189ABab 0.530±0.170ABb 0.312±0.151Bb 表 6 不同复配处理对牦牛肉成熟过程中TBARS值的影响
Table 6. Effect of different compound treatments on TBARS value of yak meat during maturation
样品组 成熟时间(d) 1 3 5 7 CON 2.87±0.03Bc 3.13±0.26Bc 3.42±0.64Bc 4.56±0.33Ac Arg1 2.70±0.14Cd 3.22±0.26Bc 3.49±0.05Bc 3.97±0.21Ac Arg2 6.12±0.10Da 8.28±0.12Ba 7.05±0.15Ca 8.62±0.19Aa Arg3 3.39±0.05Cb 3.94±0.12Cb 4.66±0.36Bb 7.14±0.47Ab CON 2.87±0.03Bbc 3.13±0.26Bb 3.42±0.64Bb 4.56±0.33Ab CH1 3.13±0.26Bab 2.88±0.05Bb 2.87±0.47Bb 4.04±0.50Abc CH2 2.77±0.05Cc 3.24±0.07Bb 3.55±0.18Ab 3.35±0.09ABc CH3 3.39±0.05Ca 3.94±0.12Ca 4.66±0.36Ba 7.14±0.47Aa -
[1] 郭兆斌, 余群力, 陈骋, 等. 宰后牦牛肉水分分布变化与持水性能关系研究[J]. 农业机械学报,2019,50(10):343−351. [GUO Zaobin, YU Qunli, CHEN Cheng, et al. Relationship between water distribution change and water retention properties of yak meat during postmortem aging[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(10):343−351. doi: 10.6041/j.issn.1000-1298.2019.10.040 [2] 杨巧能, 梁琪, 文鹏程, 等. 不同年龄牦牛宰后钙激活酶活性及嫩度指标变化[J]. 食品科学,2016,37(1):45−49. [YANG Qiaoneng, LIANG Qi, WEN Pengcheng, et al. Changes of calpain activity and tenderness indexes during postmortem of yak meat from different aged yaks[J]. Food Science,2016,37(1):45−49. doi: 10.7506/spkx1002-6630-201601009 [3] 崔文斌, 宋艳艳, 李明华, 等. 高铁肌红蛋白氧化对牦牛肉肌原纤维蛋白生化特性的影响[J]. 食品科学,2020,41(12):77−83. [CUI Wenbin, SONG Yanyan, LI Minghua, et al. Effect of metmyoglobin oxidation on biochemical characteristics of myofibrillar protein in yak meat[J]. Food Science,2020,41(12):77−83. doi: 10.7506/spkx1002-6630-20190320-268 [4] NING Cheng, LI Linxian, FANG Hongmei, et al. L-Lysine/L- arginine/L-cysteine synergistically improves the color of cured sausage with NaNO2 by hindering myoglobin oxidation and promoting nitrosyl myoglobin formation[J]. Food Chemistry,2019,284:219−226. doi: 10.1016/j.foodchem.2019.01.116 [5] CHEN Li, BAO Pengqi, WANG Yan, et al. Improving quality attributes of refrigerated prepared pork chops by injecting L-arginine and L-lysine solution[J]. Food Science and Technology,2022,153:112423. [6] ZHU Xiaoxu, LI Linxian, LI Shiyi, et al. L-Arginine/L-lysine improves emulsion stability of chicken sausage by increasing electrostatic repulsion of emulsion droplet and decreasing the interfacial tension of soybean oil-water[J]. Food Hydrocolloids,2019,89:492−502. doi: 10.1016/j.foodhyd.2018.11.021 [7] ZHU Xiaoxu, NING Cheng, LI Shiyi, et al. Effects of L-lysine/L-arginine on the emulsion stability, textural, rheological and microstructural characteristics of chicken sausages[J]. International Journal of Food Science and Technology,2018,53(1):88−96. doi: 10.1111/ijfs.13561 [8] ZHENG Yadong. Effects of L-lysine/L-arginine on the physicochemical properties and quality of sodium reduced and phosphate-free pork sausage[J]. International Journal of Nutrition and Food Sciences,2017,6(1):12−18. doi: 10.11648/j.ijnfs.20170601.13 [9] XU Peng, ZHENG Yadong, ZHU Xiaoxu, et al. L-lysine and L-arginine inhibit the oxidation of lipids and proteins of emulsion sausage by chelating iron ion and scavenging radical[J]. Asian-Australasian Journal of Animal Sciences,2018,31(6):905−913. doi: 10.5713/ajas.17.0617 [10] 李星科. 壳聚糖的增稠、乳化性质及机制研究[D]. 无锡: 江南大学, 2011LI Xingke. Study on thickening, emulsifying properties and mechanism of chitosan[D]. Wuxi: Jiangnan University, 2011. [11] KACHANECHAI T, JANTAWAT P, PICHYANGKURA R. The influence of chitosan on physico-chemical properties of chicken salt-soluble protein gel[J]. Food Hydrocolloids,2008,22(1):74−83. doi: 10.1016/j.foodhyd.2007.04.010 [12] LI Xingke, XIA WenShui. Effects of chitosan on the gel properties of salt-soluble meat proteins from silver carp[J]. Carbohydrate Polymers,2010,82(3):958−964. doi: 10.1016/j.carbpol.2010.06.026 [13] 李楠, 吴婧, 单林鲜, 等. 壳聚糖-三七叶黄酮复合保鲜剂对冷鲜黄牛肉的保鲜效果[J]. 肉类研究,2020,34(4):71−76. [LI Nan, WU Jing, SHAN Linxian, et al. A chitosan-based coating with flavonoids extracted from Panax notoginseng leaves extends the shelf life of refrigerated beef[J]. Meat Research,2020,34(4):71−76. doi: 10.7506/rlyj1001-8123-20200220-050 [14] CHENG Yuanxia, HU Jingfei, WU Shengjun. Chitosan based coatings extend the shelf-life of beef slices during refrigerated storage[J]. Food Science and Technology,2021,138:110694. [15] SUMAN S P, MANCINI R A, JOSEPH P, et al. Packaging-specific influence of chitosan on color stability and lipid oxidation in refrigerated ground beef[J]. Meat Science,2010,86(4):994−998. doi: 10.1016/j.meatsci.2010.08.006 [16] KANATT S R, RAO M S, CHAWLA S P, et al. Effects of chitosan coating on shelf-life of ready-to-cook meat products during chilled storage[J]. Food Science and Technology,2013,53(1):321−326. [17] WANG Wenjie, XUE Changhu, MAO Xiangzhao. Chitosan: Structural modification, biological activity and application[J]. International Journal of Biological Macromolecules,2020,64:4532−4564. [18] 马国源. 低剂量亚硝酸钠抑制牦牛肉肌红蛋白氧化的作用机制[D]. 兰州: 甘肃农业大学, 2021MA Guoyuan. The mechanism of low dose sodium nitrite inhibiting the oxidation of yak meat myoglobin[D]. Lanzhou: Gansu Agricultural University, 2021. [19] 张坤, 王道营, 张淼, 等. 高强度超声对鹅胸肉嫩度及品质的影响[J]. 食品科学,2018,39(15):122−127. [ZHANG Kun, WANG Daoying, ZHANG Miao, et al. Effect of high-intensity ultrasonic treatment on goose tenderness and meat quality[J]. Food Science,2018,39(15):122−127. doi: 10.7506/spkx1002-6630-201815018 [20] 许鹏. 赖氨酸/精氨酸对乳化香肠脂肪和蛋白质氧化及品质影响的研究[D]. 合肥: 合肥工业大学, 2017XU Peng. The study of the effects of Lysine/Arginine on lipid and protein oxidation and quality properties of emulsion sausages[D]. Hefei: Hefei University of Technology, 2017. [21] 王琳琳, 陈炼红, 李璐倩, 等. 解冻方式对牦牛肉蛋白氧化、功能特性及新鲜度的影响[J]. 农业机械学报,2021,52(5):342−349. [WANG Linlin, CHEN Lianhong, LI Luqian, et al. Effects of thawing methods on protein oxidation, protein functional properties and freshness of yak meat[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(5):342−349. doi: 10.6041/j.issn.1000-1298.2021.05.038 [22] NYCHAS G J E, SKANDAMIS P N, TASSOU C C, et al. Meat spoilage during distribution[J]. Meat Science,2008,78(1−2):77−89. doi: 10.1016/j.meatsci.2007.06.020 [23] SANTOS M H S. Biogenic amines: Their importance in foods[J]. International Journal of Food Microbiology,1996,29(2−3):213−231. doi: 10.1016/0168-1605(95)00032-1 [24] DARMADJI P, IZUMIMOTO M. Effect of chitosan in meat preservation[J]. Meat Science,1994,38(2):243−254. doi: 10.1016/0309-1740(94)90114-7 [25] ZHOU Cunliu, LI Jun, TAN Shengjiang, et al. Effects of l-arginine on physicochemical and sensory characteristics of pork sausage[J]. Advance Journal of Food Science and Technology,2014,6(5):660−667. doi: 10.19026/ajfst.6.91 [26] GEORGANTELIS D, BLEKAS G, KATIKOU P, et al. Effect of rosemary extract, chitosan and a-tocopherol on lipid oxidation and colour stability during frozen storage of beef burgers[J]. Meat Science,2007,75:256−264. doi: 10.1016/j.meatsci.2006.07.018 [27] MANCINI R, HUNT M. Current research in meat color[J]. Meat Science,2005,71(1):100−121. doi: 10.1016/j.meatsci.2005.03.003 [28] ZHANG Yawei, GUO Xiuyun, PENG Zengqi, et al. A review of recent progress in reducing NaCl content in meat and fish products using basic amino acids[J]. Trends in Food Science & Technology,2022,119:215−226. [29] GUO X Y, PENG Z Q, ZHANG Y W, et al. The solubility and conformational characteristics of porcine myosin as affected by the presence of L-lysine and L-histidine[J]. Food Chemistry,2018,170:212−217. [30] LEI Zhen, FU Yuan, XU Peng, et al. Effects of l-arginine on the physicochemical and gel properties of chicken actomyosin[J]. International Journal of Biological Macromolecules,2016,92:1258−1265. doi: 10.1016/j.ijbiomac.2016.08.040 [31] 黄明, 周光宏, 徐幸莲, 等. 不同注射处理对牛肉剪切力和肌原纤维小片化指数的影响[J]. 食品科学,2005(2):68−70. [HUANG Ming, ZHOU Guanghong, XU Xinglian, et al. Effects of injection treatments on beef warner-bratzler shear force and myofibrillar fragmentation index[J]. Food Science,2005(2):68−70. doi: 10.3321/j.issn:1002-6630.2005.02.011 [32] CLAUSEN I, JAKOBSEN M, ERTBJERG P, et al. Modified atmosphere packaging affects lipid oxidation, myofibrillar fragmentation index and eating quality of beef[J]. Packaging Technology and Science,2009,22(2):85−96. doi: 10.1002/pts.828 [33] HUANG Ming, HUANG Feng, MA Hanjun, et al. Preliminary study on the effect of caspase-6 and calpain inhibitors on postmortem proteolysis of myofibrillar proteins in chicken breast muscle[J]. Meat Science,2012,90(3):536−542. doi: 10.1016/j.meatsci.2011.09.004 [34] 王惠惠. 不同氧化强度下内源酶对牦牛肉宰后嫩度形成的影响[D]. 兰州: 甘肃农业大学, 2020WANG Huihui. Effect of endogenous enzymes on the formation of tenderness of yak meat under different oxidation intensity during postmortem aging[D]. Lanzhou: Gansu Agricultural University, 2020. [35] CHATTOPADHYAY K, XAVIER K A M, BALANGE A, et al. Chitosan gel addition in pre-emulsified fish mince-Effect on quality parameters of sausages under refrigerated storage[J]. Food Science and Technology,2019,110:283−291. [36] ZHUANG Xinbo, WANG Lijian, JIANG Xiping, et al. Insight into the mechanism of myofibrillar protein gel influenced by konjac glucomannan: Moisture stability and phase separation behavior[J]. Food Chemistry, 2020, 127941. [37] KANATT S R, CHANDER R, SHARMA A. Chitosan and mint mixture: A new preservative for meat and meat products[J]. Food Chemistry,2008,107(2):845−852. doi: 10.1016/j.foodchem.2007.08.088 [38] 李立敏, 成立新, 高爱武. 肉糜体系的氧化稳定性机理及影响因素[J]. 食品工业,2019,40(11):282−286. [LI Limin, CHENG Lixin, GUO Aiwu. Mechanism and influencing factors of oxidative stability of meat batters system[J]. The Food Industry,2019,40(11):282−286. [39] LI Shiyi, ZHENG Yadong, XU Peng, et al. L-Lysine and L-arginine inhibit myosin aggregation and interact with acidic amino acid residues of myosin: The role in increasing myosin solubility[J]. Food Chemistry,2018,242:22−28. doi: 10.1016/j.foodchem.2017.09.033 -