• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020

底物浓度对三种不同来源的脱支重结晶淀粉的影响

田霞 田梦洋 王志伟 周中凯

田霞,田梦洋,王志伟,等. 底物浓度对三种不同来源的脱支重结晶淀粉的影响[J]. 食品工业科技,2023,44(11):95−102. doi:  10.13386/j.issn1002-0306.2022070270
引用本文: 田霞,田梦洋,王志伟,等. 底物浓度对三种不同来源的脱支重结晶淀粉的影响[J]. 食品工业科技,2023,44(11):95−102. doi:  10.13386/j.issn1002-0306.2022070270
TIAN Xia, TIAN Mengyang, WANG Zhiwei, et al. Effects of Substrate Concentration on Debranched Recrystallized Starch from Three Different Sources[J]. Science and Technology of Food Industry, 2023, 44(11): 95−102. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022070270
Citation: TIAN Xia, TIAN Mengyang, WANG Zhiwei, et al. Effects of Substrate Concentration on Debranched Recrystallized Starch from Three Different Sources[J]. Science and Technology of Food Industry, 2023, 44(11): 95−102. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022070270

底物浓度对三种不同来源的脱支重结晶淀粉的影响

doi: 10.13386/j.issn1002-0306.2022070270
基金项目: 天津市自然科学基金(20JCZDJC00040)。
详细信息
    作者简介:

    田霞(1996−),女,硕士研究生,研究方向:农产品加工,E-mail:luckytianxia@126.com

    通讯作者:

    王志伟(1979−),男,博士,副研究员,研究方向:粮油科学,E-mail:wangzw@tust.edu.cn

    周中凯(1964−),男,博士,教授,研究方向:谷物科学与营养,E-mail:zkzhou@tust.edu.cn

  • 中图分类号: TS201.2

Effects of Substrate Concentration on Debranched Recrystallized Starch from Three Different Sources

  • 摘要: 以三种不同来源淀粉(普通玉米淀粉、木薯淀粉、豌豆淀粉)为研究对象,对样品进行脱支重结晶处理,分析底物浓度对三类脱支重结晶淀粉的形态、大小、结晶结构、热性质和凝胶性质等功能特性的影响。结果表明,原淀粉表面光滑无孔洞,脱支重结晶淀粉完整性均被破坏且受浓度影响不明显;粒径随底物浓度增加而增大;相对结晶度随底物浓度增加呈先减小后增大的趋势;与原淀粉相比,三种改性淀粉的储能模量(G')高于损耗模量(G"),凝胶强度增强,热稳定性和有序度(DO)均下降而双螺旋度(DD)均上升。改性玉米淀粉和木薯淀粉在较低底物浓度(6%、10%)表现出较弱的粘弹性,而豌豆淀粉在中等底物浓度(10%、14%)表现为较高的粘弹性;DD值随底物浓度增加而减小(底物浓度为18%样品除外);热稳定性随底物浓度增大有所改善,但仍低于原淀粉。由此可见,调节底物浓度可以选择性地获取理想的脱支重结晶淀粉,这将为不同品种淀粉的综合利用提供思路。
  • 图  1  不同来源重结晶淀粉电镜对比图

    Figure  1.  Electron microscopic contrast of different sources of recrystallized starch

    注:A、B、C依次为NCS、NTS、NPS(1000×);a1、a2、a3、a4依次为6%CS、10%CS、14%CS、18%CS;b1、b2、b3、b4依次为6%TS、10%TS、14%TS、18%TS;c1、c2、c3、c4依次为6%PS、10%PS、14%PS、18%PS(2000×)。

    图  2  不同来源淀粉重结晶前后衍射图谱

    Figure  2.  Diffraction patterns of starch from different sources before and after recrystallization

    图  3  不同来源淀粉重结晶前后DSC曲线

    Figure  3.  DSC spectra of starch from different sources before and after recrystallization

    图  4  不同来源淀粉重结晶前后红外光谱图

    Figure  4.  Infrared spectra of starch from different sources before and after recrystallization

    图  5  不同来源淀粉重结晶前后流变曲线

    Figure  5.  Rheological curve of starch from different sources before and after recrystallization

    图  6  不同来源淀粉重结晶前后TGA曲线

    Figure  6.  TGA curve of starch from different sources before and after recrystallization

    表  1  不同来源淀粉重结晶后D10、D50、D90、(D90-D10)/D50对比

    Table  1.   Comparison of D10, D50, D90, (D90-D10)/D50 after recrystallization of starch from different sources

    种类D10(µm)D50(µm)D90(µm)(D90-D10)/D50
    6%CS16.01±0.33g54.36±0.39k91.89±1.31j1.39±0.01de
    10%CS37.08±0.39e94.38±1.10h177.60±2.68f1.48±0.02bc
    14%CS36.19±0.42e105.30±0.14f213.90±0.84d1.68±0.01a
    18%CS46.24±0.84c130.60±0.00c234.00±0.28b1.43±0.00cd
    6%TS31.09±0.29f70.82±0.84j128.90±1.83i1.39±0.02de
    10%TS36.71±0.98e84.23±0.14i158.60±0.84h1.44±0.01cd
    14%TS42.80±0.56d96.40±0.35g171.10±0.42g1.33±0.01ef
    18%TS49.32±0.12b132.60±0.56b236.60±1.48b1.41±0.02d
    6%PS46.89±0.34c114.20±0.14e194.70±0.07e1.29±0.00f
    10%PS40.88±0.29d121.00±0.00d227.90±0.28c1.54±0.00b
    14%PS42.82±0.35d122.20±0.14d228.70±2.19c1.52±0.02b
    18%PS56.17±1.71a155.00±1.52a263.10±2.58a1.33±0.05ef
    注:同一列不同字母表示差异性显著,P<0.05。
    下载: 导出CSV

    表  2  不同来源淀粉重结晶前后各参数对比

    Table  2.   Comparison of parameters before and after recrystallization of starch from different sources

    种类DO(R1047/1022DD(R995/1022tanδ起始分解温度(℃)
    NCS1.148±0.001a0.965±0.001e0.191±0.005c299.52±0.53a
    6%CS1.126±0.009ab1.123±0.004a0.419±0.021b285.74±0.35e
    10%CS1.094±0.007bc1.077±0.003b0.841±0.034a291.19±0.21d
    14%CS0.992±0.001d1.009±0.000d0.106±0.001e294.69±0.17c
    18%CS1.061±0.049c1.054±0.004c0.123±0.004d296.50±0.21b
    NTS1.145±0.000a0.987±0.014b0.511±0.024a301.08±0.11a
    6%TS1.031±0.022c1.022±0.001a0.063±0.001d288.00±0.46c
    10%TS1.034±0.000c1.021±0.001a0.293±0.012b293.00±0.49b
    14%TS1.046±0.014b1.014±0.001a0.119±0.001c293.52±0.62b
    18%TS1.039±0.014c1.035±0.001a0.107±0.002c294.38±0.91b
    NPS1.053±0.001a0.970±0.001b0.114±0.001d301.33±0.91a
    6%PS1.012±0.001c1.030±0.001a0.652±0.008a291.27±0.82e
    10%PS1.025±0.000b1.015±0.014a0.126±0.002c296.92±0.86d
    14%PS1.011±0.000c1.014±0.021a0.145±0.001b298.88±0.28c
    18%PS1.010±0.001c1.017±0.001a0.101±0.003e299.29±0.38b
    注:同一列同一类淀粉不同字母表示差异性显著,P<0.05。
    下载: 导出CSV
  • [1] 方玲. 不同氨基酸对马铃薯淀粉特性影响的研究[D]. 武汉: 华中农业大学, 2012

    FANG L. Effects of different amino acids on potato starch properties[D]. Wuhan: Huazhong Agricultural University, 2012.
    [2] MARYAM A, MASOUD R, RABI B. Characterization of physical, mechanical, and antibacterial properties of agar-cellulose bionanocomposite films incorporated with savory essential oil[J]. Food Hydrocolloids,2015,45:150−157. doi:  10.1016/j.foodhyd.2014.09.037
    [3] LIU W, HONG Y, GU Z B, et al. In structure and in-vitro digestibility of waxy corn starch debranched by pullulanase[J]. Food Hydrocolloids,2017,67:104−110. doi:  10.1016/j.foodhyd.2016.12.036
    [4] ISHITA C, POOJA N, NIRMAL M, et al. An insight into the gelatinization properties influencing the modified starches used in food industry: A review[J]. Food and Bioprocess Technology,2022,15:1195−1223. doi:  10.1007/s11947-022-02761-z
    [5] 杨晓惠. 木薯淀粉的理化性质及其抗性淀粉制备工艺研究[D]. 广州: 暨南大学, 2011

    YANG X H. Study on physicochemical properties of cassava starch and its preparation process of resistant starch[D]. Guangzhou: Jinan University, 2011.
    [6] PETER A, MARZIEHOSSADAT S Y, EDMOND L. Starch modification for non-food, industrial applications: Market intelligence and critical review[J]. Carbohydrate Polymers,2022,291:119590. doi:  10.1016/j.carbpol.2022.119590
    [7] VHULENDA M M, Henry S, SHINISANI E R, et al. Effects of heat-moisture treatment on the thermal, functional properties and composition of cereal, legume and tuber starches-A review[J]. Journal of Food Science and Technology,2020,58:412−416.
    [8] LIU G D, GU Z B, HONG Y, et al. Structure, functionality and applications of debranched starch: A review[J]. Trends in Food Science & Technology,2017,63:70−79.
    [9] MIAO M, JIANG T, ZHANG T. Effect of pullulanase debranching and recrystallization on structure and digestibility of waxy maize starch[J]. Carbohydrate Polymers,2009,76(2):214−221. doi:  10.1016/j.carbpol.2008.10.007
    [10] SUREEPORN B, SUNANTA T. Structural transformation of crystallized debranched cassava starch during dual hydrothermal treatment in relation to enzyme digestibility[J]. Carbohydrate Polymers,2018,191:1−7. doi:  10.1016/j.carbpol.2018.03.006
    [11] MA Z, YIN X X, CHANG D N, et al. Long- and short-range structural characteristics of pea starch modified by autoclaving, α-amylolysis, and pullulanase debranching[J]. International Journal of Biological Macromolecules,2018,120:650−656. doi:  10.1016/j.ijbiomac.2018.08.132
    [12] SUN Q J, LI G H, DAI L, et al. Green preparation and characterisation of waxy maize starch nanoparticles through enzymolysis and recrystallisation[J]. Food Chemistry,2014,162(11):223−228.
    [13] FLÁVIA V, WILLIAM M, LUIZ A, et al. Effect of amylolysis on the formation, the molecular, crystalline and thermal characteristics and the digestibility of retrograded starches[J]. International Journal of Biological Macromolecules,2020,163:1333−1343. doi:  10.1016/j.ijbiomac.2020.07.181
    [14] 王志伟, 王喆, 周中凯. 不同支链比例玉米淀粉脱支重结晶后的组分变化[J]. 食品工业科技,2019,40(20):66−70, 81. [WANG Z W, WANG Z, ZHOU Z K. Component changes of corn starch with different branching ratio after debranching and recrystallization[J]. Food Industry Science and Technology,2019,40(20):66−70, 81.
    [15] REDDY C K, LEE D J, LIM S T, et al. Enzymatic debranching of starches from different botanical sources for complex formation with stearic acid[J]. Food Hydrocolloids,2019,89:856−863. doi:  10.1016/j.foodhyd.2018.11.059
    [16] XIE A J, LEE D J, LIM S T. Characterization of resistant waxy maize dextrins prepared by simultaneous debraching and crystallization followed by acidic or enzymatic hydrolysis[J]. Food Hydrocolloids,2021,121:106942. doi:  10.1016/j.foodhyd.2021.106942
    [17] LIU Y Q, LIU J G, KONG J, et al. Citrate esterification of debranched waxy maize starch: Structural, physicochemical and amylolysis properties[J]. Food Hydrocolloids,2020,104:105704. doi:  10.1016/j.foodhyd.2020.105704
    [18] 郭瑾. 不完全糊化淀粉的流变特性及凝胶特性的研究[D]. 西安: 陕西科技大学, 2019

    GUO J. Study on rheological properties and gel properties of incomplete gelatinized starch[D]. Xi’an: Shaanxi University of Science and Technology, 2019.
    [19] 展海军, 张佳佳, 徐飞, 等. 用热重分析法同时测定大豆中主要成分含量[J]. 粮食与饲料工业,2016,11:56−61. [ZHAN H Z, ZHANG J J, XU F, et al. Simultaneous determination of main components in soybean by thermogravimetry[J]. Cereal and Feed Industry,2016,11:56−61.
    [20] ZHOU D, MA Z, YIN X, et al. Structural characteristics and physicochemical properties of field pea starch modified by physical, enzymatic, and acid treatments[J]. Food Hydrocolloids,2019,93:386−394. doi:  10.1016/j.foodhyd.2019.02.048
    [21] LI L, YUAN T Z, AI Y. Development, structure and in vitro digestibility of type 3 resistant starch from acid-thinned and debranched pea and normal maize starches[J]. Food Chemistry,2020,318:126485. doi:  10.1016/j.foodchem.2020.126485
    [22] SHI J, MICHAEL C, SHI Y. Structure, birefringence and digestibility of spherulites produced from debranched waxy maize starch[J]. International Journal of Biological Macromolecules,2021,183:1486−1494. doi:  10.1016/j.ijbiomac.2021.05.127
    [23] DONG J, JUN M, SEUNG T. Characterization of resistant waxy maize dextrins prepared by simultaneous debranching and crystallization[J]. Food Hydrocolloids,2021,112:106315. doi:  10.1016/j.foodhyd.2020.106315
    [24] MA Z, MA M, ZHOU D, et al. The retrogradation characteristics of pullulanase debranched field pea starch: Effects of storage time and temperature[J]. International Journal of Biological Macromolecules,2019,134:984−992. doi:  10.1016/j.ijbiomac.2019.05.064
    [25] ZENG S X, WU X T, LIN S, et al. Structural characteristics and physicochemical properties of lotus seed resistant starch prepared by different methods[J]. Food Chemistry,2015,186:213−222. doi:  10.1016/j.foodchem.2015.03.143
    [26] NING Y, CUI B, YUAN C, et al. Effects of konjac glucomannan on the rheological, microstructure and digestibility properties of debranched corn starch[J]. Food Hydrocolloids,2019,100:105342.
    [27] MUTUNGI C, PASSAUER L, ONYANGO C, et al. Debranched cassava starch crystallinity determination by Raman spectroscopy: Correlation of features in Raman spectra with X-ray diffraction and 13C CP/MAS NMR spectroscopy[J]. Carbohydrate Polymers,2012,87:598−606. doi:  10.1016/j.carbpol.2011.08.032
    [28] CAI L M, BAI Y J, SHI Y C. Study on melting and crystallization of short-linear chains from debranched waxy starches by in situ synchrotron wide-angle X-ray diffraction[J]. Journal of Cereal Science,2012,55(3):373−379. doi:  10.1016/j.jcs.2012.01.013
    [29] 徐兵, 刘洁, 刘亚伟. 普鲁兰酶脱支对淀粉结构及热稳定性的影响[J]. 食品科技,2020,45(7):255−261. [XU B, LIU J, LIU Y W. Effect of pullulanase debranching on starch structure and thermal stability[J]. Food Science and Technology,2020,45(7):255−261.
    [30] 常然然. 重结晶型抗性淀粉制备、消化过程及酵解规律研究[D]. 无锡: 江南大学, 2021

    CHANG R R. Study on the preparation, digestion and fermentation of recrystallized resistant starch[D]. Wuxi: Jiangnan University, 2021
    [31] WANG K, SUI J, GAO W, et al. Effects of xanthan gum and sodium alginate on gelatinization and gels structure of debranched pea starch by pullulanase[J]. Food Hydrocolloids,2022,130:107733. doi:  10.1016/j.foodhyd.2022.107733
    [32] SUN Y J, LI F, LUAN Y J, et al. Gelatinization, pasting, and rheological properties of pea starch in alcohol solution[J]. Food Hydrocolloids,2021,112:106331. doi:  10.1016/j.foodhyd.2020.106331
    [33] PO C, LIH S. In vitro starch digestibility, rheological, and physicochemical properties of water caltrop starch modified with cycled heat-moisture treatment[J]. Foods,2021,10(8):1687. doi:  10.3390/foods10081687
    [34] SUTHSIRI P, DUDSADEE U, LEONARD M. Linear and nonlinear rheological behavior of native and debranched waxy rice starch gels[J]. Food Hydrocolloids,2018,85:1−9. doi:  10.1016/j.foodhyd.2018.06.050
    [35] LIU G D, JI N, GU Z B, et al. Molecular interactions in debranched waxy starch and their effects on digestibility and hydrogel properties[J]. Food Hydrocolloids,2018,84:166−172. doi:  10.1016/j.foodhyd.2018.05.057
    [36] LIU Y, YANG L T, MA C P, et al. Thermal behavior of sweet potato starch by non-isothermal thermogravimetric analysis[J]. Materials,2019,12(5):699. doi:  10.3390/ma12050699
    [37] LIU X X, YU L, XIE F W, et al. Kinetics and mechanism of thermal decomposition of cornstarches with different amylose/amylopectin ratios[J]. Starch,2010,62(3-4):139−146. doi:  10.1002/star.200900202
    [38] 宋哲, 汪兰, 何会, 等. 不同生长期莲藕淀粉的凝胶特性、热重与核磁共振测定[J]. 食品科学,2009,30(23):105−109. [SONG Z, WANG L, HE H, et al. Determination of gel properties, thermogravimetry and nuclear magnetic resonance of lotus root starch at different growth stages[J]. Food Science,2009,30(23):105−109.
    [39] TIAN Y Q, LI Y, XU X M, et al. Starch retrogradation studied by thermogravimetric analysis (TGA)[J]. Carbohydrate Polymers,2011,84(3):1165−1168. doi:  10.1016/j.carbpol.2011.01.006
    [40] QIU C, YANG J, GE S J, et al. Preparation and characterization of size-controlled starch nanoparticles based on short linear chains from debranched waxy corn starch[J]. LWT-Food Science and Technology,2016,74:303−310. doi:  10.1016/j.lwt.2016.07.062
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  73
  • HTML全文浏览量:  17
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-21
  • 网络出版日期:  2023-04-20
  • 刊出日期:  2023-06-01

目录

    /

    返回文章
    返回