Effects of Substrate Concentration on Debranched Recrystallized Starch from Three Different Sources
-
摘要: 以三种不同来源淀粉(普通玉米淀粉、木薯淀粉、豌豆淀粉)为研究对象,对样品进行脱支重结晶处理,分析底物浓度对三类脱支重结晶淀粉的形态、大小、结晶结构、热性质和凝胶性质等功能特性的影响。结果表明,原淀粉表面光滑无孔洞,脱支重结晶淀粉完整性均被破坏且受浓度影响不明显;粒径随底物浓度增加而增大;相对结晶度随底物浓度增加呈先减小后增大的趋势;与原淀粉相比,三种改性淀粉的储能模量(G')高于损耗模量(G"),凝胶强度增强,热稳定性和有序度(DO)均下降而双螺旋度(DD)均上升。改性玉米淀粉和木薯淀粉在较低底物浓度(6%、10%)表现出较弱的粘弹性,而豌豆淀粉在中等底物浓度(10%、14%)表现为较高的粘弹性;DD值随底物浓度增加而减小(底物浓度为18%样品除外);热稳定性随底物浓度增大有所改善,但仍低于原淀粉。由此可见,调节底物浓度可以选择性地获取理想的脱支重结晶淀粉,这将为不同品种淀粉的综合利用提供思路。Abstract: Three kinds of debranched recrystallized starches from different sources (common corn starch, tapioca starch and pea starch) were used to investigate the effect of substrate concentration on the morphology, size, crystal structure, thermal properties, gel properties and other functional properties. The results showed that the surface of native starch was smooth without pores, and the integrity of debranched recrystallized starches were all destroyed and not significantly affected by concentration. The particle size increased with the increase of substrate concentration. The relative crystallinity of three types of debranched recrystallized starches decreased and then increased with the increase of substrate concentration. Compared with native starch, the storage modulus (G') of the three modified starches was higher than the loss modulus (G"), the gel strength was enhanced, and the thermal stability and degree of order (DO) all decreased while the degree of double helicity (DD) increased. The modified corn starch and tapioca starch showed weak viscoelasticity at lower substrate concentration (6%, 10%), whereas pea starch showed higher viscoelasticity at medium substrate concentration (10%, 14%). The value of DD decreased with increasing substrate concentration (except for 18% sample with substrate concentration). The thermal stability improved with the increase of substrate concentration but was still lower than that of the native starch. It follows that the ideal debranched recrystallized starches could be obtained selectively by adjusting the substrate concentration, which will provide ideas for the integrated utilization of different kinds of starches.
-
Key words:
- corn starch /
- tapioca starch /
- pea starch /
- pullulanase /
- debranching /
- recrystallization
-
表 1 不同来源淀粉重结晶后D10、D50、D90、(D90-D10)/D50对比
Table 1. Comparison of D10, D50, D90, (D90-D10)/D50 after recrystallization of starch from different sources
种类 D10(µm) D50(µm) D90(µm) (D90-D10)/D50 6%CS 16.01±0.33g 54.36±0.39k 91.89±1.31j 1.39±0.01de 10%CS 37.08±0.39e 94.38±1.10h 177.60±2.68f 1.48±0.02bc 14%CS 36.19±0.42e 105.30±0.14f 213.90±0.84d 1.68±0.01a 18%CS 46.24±0.84c 130.60±0.00c 234.00±0.28b 1.43±0.00cd 6%TS 31.09±0.29f 70.82±0.84j 128.90±1.83i 1.39±0.02de 10%TS 36.71±0.98e 84.23±0.14i 158.60±0.84h 1.44±0.01cd 14%TS 42.80±0.56d 96.40±0.35g 171.10±0.42g 1.33±0.01ef 18%TS 49.32±0.12b 132.60±0.56b 236.60±1.48b 1.41±0.02d 6%PS 46.89±0.34c 114.20±0.14e 194.70±0.07e 1.29±0.00f 10%PS 40.88±0.29d 121.00±0.00d 227.90±0.28c 1.54±0.00b 14%PS 42.82±0.35d 122.20±0.14d 228.70±2.19c 1.52±0.02b 18%PS 56.17±1.71a 155.00±1.52a 263.10±2.58a 1.33±0.05ef 注:同一列不同字母表示差异性显著,P<0.05。 表 2 不同来源淀粉重结晶前后各参数对比
Table 2. Comparison of parameters before and after recrystallization of starch from different sources
种类 DO(R1047/1022) DD(R995/1022) tanδ 起始分解温度(℃) NCS 1.148±0.001a 0.965±0.001e 0.191±0.005c 299.52±0.53a 6%CS 1.126±0.009ab 1.123±0.004a 0.419±0.021b 285.74±0.35e 10%CS 1.094±0.007bc 1.077±0.003b 0.841±0.034a 291.19±0.21d 14%CS 0.992±0.001d 1.009±0.000d 0.106±0.001e 294.69±0.17c 18%CS 1.061±0.049c 1.054±0.004c 0.123±0.004d 296.50±0.21b NTS 1.145±0.000a 0.987±0.014b 0.511±0.024a 301.08±0.11a 6%TS 1.031±0.022c 1.022±0.001a 0.063±0.001d 288.00±0.46c 10%TS 1.034±0.000c 1.021±0.001a 0.293±0.012b 293.00±0.49b 14%TS 1.046±0.014b 1.014±0.001a 0.119±0.001c 293.52±0.62b 18%TS 1.039±0.014c 1.035±0.001a 0.107±0.002c 294.38±0.91b NPS 1.053±0.001a 0.970±0.001b 0.114±0.001d 301.33±0.91a 6%PS 1.012±0.001c 1.030±0.001a 0.652±0.008a 291.27±0.82e 10%PS 1.025±0.000b 1.015±0.014a 0.126±0.002c 296.92±0.86d 14%PS 1.011±0.000c 1.014±0.021a 0.145±0.001b 298.88±0.28c 18%PS 1.010±0.001c 1.017±0.001a 0.101±0.003e 299.29±0.38b 注:同一列同一类淀粉不同字母表示差异性显著,P<0.05。 -
[1] 方玲. 不同氨基酸对马铃薯淀粉特性影响的研究[D]. 武汉: 华中农业大学, 2012FANG L. Effects of different amino acids on potato starch properties[D]. Wuhan: Huazhong Agricultural University, 2012. [2] MARYAM A, MASOUD R, RABI B. Characterization of physical, mechanical, and antibacterial properties of agar-cellulose bionanocomposite films incorporated with savory essential oil[J]. Food Hydrocolloids,2015,45:150−157. doi: 10.1016/j.foodhyd.2014.09.037 [3] LIU W, HONG Y, GU Z B, et al. In structure and in-vitro digestibility of waxy corn starch debranched by pullulanase[J]. Food Hydrocolloids,2017,67:104−110. doi: 10.1016/j.foodhyd.2016.12.036 [4] ISHITA C, POOJA N, NIRMAL M, et al. An insight into the gelatinization properties influencing the modified starches used in food industry: A review[J]. Food and Bioprocess Technology,2022,15:1195−1223. doi: 10.1007/s11947-022-02761-z [5] 杨晓惠. 木薯淀粉的理化性质及其抗性淀粉制备工艺研究[D]. 广州: 暨南大学, 2011YANG X H. Study on physicochemical properties of cassava starch and its preparation process of resistant starch[D]. Guangzhou: Jinan University, 2011. [6] PETER A, MARZIEHOSSADAT S Y, EDMOND L. Starch modification for non-food, industrial applications: Market intelligence and critical review[J]. Carbohydrate Polymers,2022,291:119590. doi: 10.1016/j.carbpol.2022.119590 [7] VHULENDA M M, Henry S, SHINISANI E R, et al. Effects of heat-moisture treatment on the thermal, functional properties and composition of cereal, legume and tuber starches-A review[J]. Journal of Food Science and Technology,2020,58:412−416. [8] LIU G D, GU Z B, HONG Y, et al. Structure, functionality and applications of debranched starch: A review[J]. Trends in Food Science & Technology,2017,63:70−79. [9] MIAO M, JIANG T, ZHANG T. Effect of pullulanase debranching and recrystallization on structure and digestibility of waxy maize starch[J]. Carbohydrate Polymers,2009,76(2):214−221. doi: 10.1016/j.carbpol.2008.10.007 [10] SUREEPORN B, SUNANTA T. Structural transformation of crystallized debranched cassava starch during dual hydrothermal treatment in relation to enzyme digestibility[J]. Carbohydrate Polymers,2018,191:1−7. doi: 10.1016/j.carbpol.2018.03.006 [11] MA Z, YIN X X, CHANG D N, et al. Long- and short-range structural characteristics of pea starch modified by autoclaving, α-amylolysis, and pullulanase debranching[J]. International Journal of Biological Macromolecules,2018,120:650−656. doi: 10.1016/j.ijbiomac.2018.08.132 [12] SUN Q J, LI G H, DAI L, et al. Green preparation and characterisation of waxy maize starch nanoparticles through enzymolysis and recrystallisation[J]. Food Chemistry,2014,162(11):223−228. [13] FLÁVIA V, WILLIAM M, LUIZ A, et al. Effect of amylolysis on the formation, the molecular, crystalline and thermal characteristics and the digestibility of retrograded starches[J]. International Journal of Biological Macromolecules,2020,163:1333−1343. doi: 10.1016/j.ijbiomac.2020.07.181 [14] 王志伟, 王喆, 周中凯. 不同支链比例玉米淀粉脱支重结晶后的组分变化[J]. 食品工业科技,2019,40(20):66−70, 81. [WANG Z W, WANG Z, ZHOU Z K. Component changes of corn starch with different branching ratio after debranching and recrystallization[J]. Food Industry Science and Technology,2019,40(20):66−70, 81. [15] REDDY C K, LEE D J, LIM S T, et al. Enzymatic debranching of starches from different botanical sources for complex formation with stearic acid[J]. Food Hydrocolloids,2019,89:856−863. doi: 10.1016/j.foodhyd.2018.11.059 [16] XIE A J, LEE D J, LIM S T. Characterization of resistant waxy maize dextrins prepared by simultaneous debraching and crystallization followed by acidic or enzymatic hydrolysis[J]. Food Hydrocolloids,2021,121:106942. doi: 10.1016/j.foodhyd.2021.106942 [17] LIU Y Q, LIU J G, KONG J, et al. Citrate esterification of debranched waxy maize starch: Structural, physicochemical and amylolysis properties[J]. Food Hydrocolloids,2020,104:105704. doi: 10.1016/j.foodhyd.2020.105704 [18] 郭瑾. 不完全糊化淀粉的流变特性及凝胶特性的研究[D]. 西安: 陕西科技大学, 2019GUO J. Study on rheological properties and gel properties of incomplete gelatinized starch[D]. Xi’an: Shaanxi University of Science and Technology, 2019. [19] 展海军, 张佳佳, 徐飞, 等. 用热重分析法同时测定大豆中主要成分含量[J]. 粮食与饲料工业,2016,11:56−61. [ZHAN H Z, ZHANG J J, XU F, et al. Simultaneous determination of main components in soybean by thermogravimetry[J]. Cereal and Feed Industry,2016,11:56−61. [20] ZHOU D, MA Z, YIN X, et al. Structural characteristics and physicochemical properties of field pea starch modified by physical, enzymatic, and acid treatments[J]. Food Hydrocolloids,2019,93:386−394. doi: 10.1016/j.foodhyd.2019.02.048 [21] LI L, YUAN T Z, AI Y. Development, structure and in vitro digestibility of type 3 resistant starch from acid-thinned and debranched pea and normal maize starches[J]. Food Chemistry,2020,318:126485. doi: 10.1016/j.foodchem.2020.126485 [22] SHI J, MICHAEL C, SHI Y. Structure, birefringence and digestibility of spherulites produced from debranched waxy maize starch[J]. International Journal of Biological Macromolecules,2021,183:1486−1494. doi: 10.1016/j.ijbiomac.2021.05.127 [23] DONG J, JUN M, SEUNG T. Characterization of resistant waxy maize dextrins prepared by simultaneous debranching and crystallization[J]. Food Hydrocolloids,2021,112:106315. doi: 10.1016/j.foodhyd.2020.106315 [24] MA Z, MA M, ZHOU D, et al. The retrogradation characteristics of pullulanase debranched field pea starch: Effects of storage time and temperature[J]. International Journal of Biological Macromolecules,2019,134:984−992. doi: 10.1016/j.ijbiomac.2019.05.064 [25] ZENG S X, WU X T, LIN S, et al. Structural characteristics and physicochemical properties of lotus seed resistant starch prepared by different methods[J]. Food Chemistry,2015,186:213−222. doi: 10.1016/j.foodchem.2015.03.143 [26] NING Y, CUI B, YUAN C, et al. Effects of konjac glucomannan on the rheological, microstructure and digestibility properties of debranched corn starch[J]. Food Hydrocolloids,2019,100:105342. [27] MUTUNGI C, PASSAUER L, ONYANGO C, et al. Debranched cassava starch crystallinity determination by Raman spectroscopy: Correlation of features in Raman spectra with X-ray diffraction and 13C CP/MAS NMR spectroscopy[J]. Carbohydrate Polymers,2012,87:598−606. doi: 10.1016/j.carbpol.2011.08.032 [28] CAI L M, BAI Y J, SHI Y C. Study on melting and crystallization of short-linear chains from debranched waxy starches by in situ synchrotron wide-angle X-ray diffraction[J]. Journal of Cereal Science,2012,55(3):373−379. doi: 10.1016/j.jcs.2012.01.013 [29] 徐兵, 刘洁, 刘亚伟. 普鲁兰酶脱支对淀粉结构及热稳定性的影响[J]. 食品科技,2020,45(7):255−261. [XU B, LIU J, LIU Y W. Effect of pullulanase debranching on starch structure and thermal stability[J]. Food Science and Technology,2020,45(7):255−261. [30] 常然然. 重结晶型抗性淀粉制备、消化过程及酵解规律研究[D]. 无锡: 江南大学, 2021CHANG R R. Study on the preparation, digestion and fermentation of recrystallized resistant starch[D]. Wuxi: Jiangnan University, 2021 [31] WANG K, SUI J, GAO W, et al. Effects of xanthan gum and sodium alginate on gelatinization and gels structure of debranched pea starch by pullulanase[J]. Food Hydrocolloids,2022,130:107733. doi: 10.1016/j.foodhyd.2022.107733 [32] SUN Y J, LI F, LUAN Y J, et al. Gelatinization, pasting, and rheological properties of pea starch in alcohol solution[J]. Food Hydrocolloids,2021,112:106331. doi: 10.1016/j.foodhyd.2020.106331 [33] PO C, LIH S. In vitro starch digestibility, rheological, and physicochemical properties of water caltrop starch modified with cycled heat-moisture treatment[J]. Foods,2021,10(8):1687. doi: 10.3390/foods10081687 [34] SUTHSIRI P, DUDSADEE U, LEONARD M. Linear and nonlinear rheological behavior of native and debranched waxy rice starch gels[J]. Food Hydrocolloids,2018,85:1−9. doi: 10.1016/j.foodhyd.2018.06.050 [35] LIU G D, JI N, GU Z B, et al. Molecular interactions in debranched waxy starch and their effects on digestibility and hydrogel properties[J]. Food Hydrocolloids,2018,84:166−172. doi: 10.1016/j.foodhyd.2018.05.057 [36] LIU Y, YANG L T, MA C P, et al. Thermal behavior of sweet potato starch by non-isothermal thermogravimetric analysis[J]. Materials,2019,12(5):699. doi: 10.3390/ma12050699 [37] LIU X X, YU L, XIE F W, et al. Kinetics and mechanism of thermal decomposition of cornstarches with different amylose/amylopectin ratios[J]. Starch,2010,62(3-4):139−146. doi: 10.1002/star.200900202 [38] 宋哲, 汪兰, 何会, 等. 不同生长期莲藕淀粉的凝胶特性、热重与核磁共振测定[J]. 食品科学,2009,30(23):105−109. [SONG Z, WANG L, HE H, et al. Determination of gel properties, thermogravimetry and nuclear magnetic resonance of lotus root starch at different growth stages[J]. Food Science,2009,30(23):105−109. [39] TIAN Y Q, LI Y, XU X M, et al. Starch retrogradation studied by thermogravimetric analysis (TGA)[J]. Carbohydrate Polymers,2011,84(3):1165−1168. doi: 10.1016/j.carbpol.2011.01.006 [40] QIU C, YANG J, GE S J, et al. Preparation and characterization of size-controlled starch nanoparticles based on short linear chains from debranched waxy corn starch[J]. LWT-Food Science and Technology,2016,74:303−310. doi: 10.1016/j.lwt.2016.07.062 -