• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020

MnO2/ZnO/GCE电化学传感器的构建及对蜂蜜中磺胺甲恶唑的检测

马永强 张丝瑶 遇世友 王鑫 黎晨晨

马永强,张丝瑶,遇世友,等. MnO2/ZnO/GCE电化学传感器的构建及对蜂蜜中磺胺甲恶唑的检测[J]. 食品工业科技,2023,44(11):306−314. doi:  10.13386/j.issn1002-0306.2022070271
引用本文: 马永强,张丝瑶,遇世友,等. MnO2/ZnO/GCE电化学传感器的构建及对蜂蜜中磺胺甲恶唑的检测[J]. 食品工业科技,2023,44(11):306−314. doi:  10.13386/j.issn1002-0306.2022070271
MA Yongqiang, ZHANG Siyao, YU Shiyou, et al. Construction of MnO2/ZnO/GCE Electrochemical Sensor and the Detection of Sulfamethoxazole in Honey[J]. Science and Technology of Food Industry, 2023, 44(11): 306−314. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022070271
Citation: MA Yongqiang, ZHANG Siyao, YU Shiyou, et al. Construction of MnO2/ZnO/GCE Electrochemical Sensor and the Detection of Sulfamethoxazole in Honey[J]. Science and Technology of Food Industry, 2023, 44(11): 306−314. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022070271

MnO2/ZnO/GCE电化学传感器的构建及对蜂蜜中磺胺甲恶唑的检测

doi: 10.13386/j.issn1002-0306.2022070271
基金项目: 黑龙江省普通本科高等学校青年创新人才培养计划(UNPYSCT-2018136)。
详细信息
    作者简介:

    马永强(1963−),男,硕士,教授,研究方向:食品化学,E-mail:qyma126@163.com

    通讯作者:

    遇世友(1984−),男,博士,讲师,研究方向:食品分析与检测,E-mail:davidyuhit@163.com

  • 中图分类号: S896.1

Construction of MnO2/ZnO/GCE Electrochemical Sensor and the Detection of Sulfamethoxazole in Honey

  • 摘要: 为快速检测蜂蜜中磺胺甲恶唑(sulfamethoxazole,SMZ)的残留,将水热法制备的氧化锌(ZnO)及共沉淀法制备的二氧化锰(MnO2)材料复合于玻碳电极(GCE)上,构建了MnO2/ZnO/GCE电化学传感器用于检测SMZ。采用扫描电镜(SEM)及红外光谱(FT-IR)对复合材料的形貌、结构进行表征。利用差分脉冲伏安法(DPV)对复合材料的比例、修饰量进行探究,从而对传感器的构建条件进行优化。并采用差分脉冲伏安法(DPV)及循环伏安法(CV)对缓冲溶液pH、扫描速率等检测条件进行考察。结果表明,当m(ZnO):m(MnO2)质量比为1:0.6、MnO2/ZnO复合材料修饰量为1.7×10−3 mg/mm2、缓冲溶液pH为8、扫描速率为30 mV/s时,该传感器对SMZ具有良好的检测效果。在0.3~100 μmol/L范围内,峰电流与SMZ浓度呈良好的线性关系,其线性方程为Ip=0.0843 c+4.5168(R2=0.9916),检测限为0.39 μmol/L,定量限为1.30 μmol/L。将传感器用于蜂蜜样品的检测,加标回收率为95.5%~102.6%,相对标准偏差(RSD)为0.68%~2.55%。表明该传感器能够实现对SMZ含量的准确检测,对于蜂蜜样品SMZ残留量的检测方面具有一定的应用价值。
  • 图  1  MnO2/ZnO/GCE对SMZ的检测示意图

    Figure  1.  The detection schematic diagram of SMZ by MnO2/ZnO/GCE

    图  2  ZnO(a)和MnO2/ZnO(b)的扫描电镜图

    Figure  2.  SEM images of ZnO (a) and MnO2/ZnO (b)

    图  3  MnO2、ZnO和MnO2/ZnO的红外光谱图

    Figure  3.  FT-IR spectra of MnO2, ZnO and MnO2/ZnO

    图  4  GCE、ZnO/GCE及MnO2/ZnO/GCE的Nyquist图

    Figure  4.  Nyquist plots of GCE, ZnO/GCE and MnO2/ZnO/GCE

    图  5  SMZ的氧化机理示意图

    Figure  5.  Schematic diagram of oxidation mechanism of SMZ

    图  6  SMZ在不同电极上的DPV图

    Figure  6.  DPV curves of different elctrodes with SMZ

    图  7  ZnO和MnO2比例对电极检测SMZ的影响

    Figure  7.  Effects of the ratio of ZnO to MnO2 on the electrode detection of SMZ

    注:不同小写字母表示差异显著(P<0.05);图8~图9同。

    图  8  复合材料修饰量对检测SMZ的影响

    Figure  8.  Effects of composite material modification on the detection of SMZ

    图  9  pH对检测SMZ的影响

    Figure  9.  Effects of pH on the detection of SMZ

    注:b-1为电流;b-2为电位。

    图  10  扫描速率对检测SMZ的影响

    Figure  10.  Effects of scanning rate on the detection of SMZ

    图  11  不同浓度下SMZ的DPV曲线及标准曲线

    Figure  11.  DPV curves and standard curves of SMZ at different concentrations

    图  12  干扰物对MnO2/ZnO/GCE检测SMZ的影响

    Figure  12.  Effects of interference on SMZ detection by MnO2/ZnO/GCE

    表  1  不同修饰电极检测磺胺甲恶唑的性能对比(n=3)

    Table  1.   Comparison of the performance of different chemically modified electrodes for detecting SMZ (n=3)

    修饰电极线性范围(μmol/L)检测限(μmol/L)参考文献
    GR-ZnO/GCE1~2200.4[23]
    MWCNT/GCE50~100010[42]
    TYR-AuNPs-SPCEs20~20022.6±2.1[43]
    GC/rGO-AgNP1~100.6[44]
    MnO2/ZnO/GCE0.3~1000.39本文
    下载: 导出CSV

    表  2  磺胺甲恶唑的加标回收率及相对标准偏差

    Table  2.   Spiked recoveries and RSD of SMZ

    检测物加标量(μmol/L)测得量(μmol/L)回收率(%)相对标准偏差(%)
    54.9098.10.85
    SMZ109.5395.32.48
    1514.3395.52.72
    下载: 导出CSV

    表  3  实际样品中不同浓度磺胺甲恶唑的加标回收率及相对标准偏差

    Table  3.   Spiked recoveries and RSD of real sample on different concentration of SMZ

    样品加标量
    (μmol/L)
    测得量
    (μmol/L)
    回收率
    (%)
    相对标准偏差
    (%)
    市售蜂蜜21.9396.50.79
    54.8997.80.82
    109.5595.52.22
    散装蜂蜜21.9798.52.55
    55.13102.61.03
    1010.13101.30.68
    下载: 导出CSV
  • [1] LUO B, HUANG G H, YAO Y, et al. Investigation into the influencing factors and adsorption characteristics in the removal of sulfonamide antibiotics by carbonaceous materials[J]. Journal of Cleaner Production,2021,319(15):128692.
    [2] LI X H, YANG Y Q, MIAO J J, et al. Determination of sulfa antibiotic residues in river and particulate matter by field-amplified sample injection-capillary zone electrophoresis[J]. Electrophoresis,2020,41(18-19):1584−1591. doi:  10.1002/elps.202000122
    [3] LIU Y C, LIU Y J, LIU Z M, et al. Ultra-durable, multi-template molecularly imprinted polymers for ultrasensitive monitoring and multicomponent quantification of trace sulfa antibiotics[J]. Journal of Materials Chemistry: B,2021,9(14):3192−3199. doi:  10.1039/D1TB00091H
    [4] LI L, ZHU Y, ZHANG F Y, et al. Rapid detection of sulfamethoxazole in plasma and food samples with in-syringe membrane SPE coupled with solid-phase fluorescence spectrometry[J]. Food Chemistry,2020,320(1):126612.
    [5] KURC O, TURKMEN D. Molecularly imprinted polymers based surface plasmon resonance sensor for sulfamethoxazole detection[J]. Photonic Sensors,2022,12(4):1−15.
    [6] SONG R, CHEN Q C, YAN L L, et al. Response surface optimization of an extraction method for the simultaneous detection of sulfamethoxazole and 17 β-estradiol in soil[J]. Molecules,2020,25(6):1415. doi:  10.3390/molecules25061415
    [7] SANDRA D I B, LENKA K, LENKA V, et al. Sulfonamide residues: Honey quality in the czech market[J]. Journal of Food Quality,2018,2018(1):1−7.
    [8] TURCO A, CORVAGLIA S, MAZZOTTA E, et al. Preparation and characterization of molecularly imprinted mussel inspired film as antifouling and selective layer for electrochemical detection of sulfamethoxazole[J]. Sensors and Actuators: B Chemical,2018,255(3):3374−3383.
    [9] HUANG W H, SI H J, QING Y J, et al. A magnetic, core-shell structured, pH-responsive molecularly imprinted polymers for the selective detection of sulfamethoxazole[J]. Journal of Inorganic and Organometallic Polymers and Materials,2021,31(5):2054−2062. doi:  10.1007/s10904-021-01893-7
    [10] JIN Y, ZHANG J Z, ZHAO W, et al. Development and validation of a multiclass method for the quantification of veterinary drug residues in honey and royal jelly by liquid chromatography-tandem mass spectrometry[J]. Food Chemistry,2017,221(15):1298−1307.
    [11] 中华人民共和国国家质量监督检验检疫总局. GB/T 18932.17-2003 蜂蜜中16种磺胺残留量的测定方法液相色谱-串联质谱法[S]. 北京: 中国标准出版社, 2003.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB/T 18932.17-2003 Method for the determination of sixteen sulfonamides residues in honey-LC-MS-MS method[S]. Beijing: National Standards Press, 2003.
    [12] 蔡亮亮, 林昕, 倪荣华, 等. HPLC法同时测定磺胺止咳口服液中4个成分的含量[J]. 药学与临床研究,2022,30(3):217−220. [CAI L L, LIN X, NI R H, et al. Simultaneous determination of four components in sulfanilamide cough oral suspensions by HPLC[J]. Pharmaceutical and Clinical Research,2022,30(3):217−220. doi:  10.11881/j.issn.1673-7806.2022.3.jsyxylcyj202203005
    [13] ERRAYESS S A, LAHCEN A A, IDRISSI L, et al. A sensitive method for the determination of sulfonamides in seawater samples by solid phase extraction and UV-Visible spectrophotometry[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2017,181(15):276−285.
    [14] ISLAS G, RODRIGUEZ J A, HERNANDEZ M E P, et al. Dispersive solid-phase extraction based on butylamide silica for the determination of sulfamethoxazole in milk samples by capillary electrophoresis[J]. Journal of Liquid Chromatography & Related Technologies,2016,39(14):658−665.
    [15] 赵玲钰, 秦思楠, 高林, 等. 磺胺嘧啶分子印迹电化学传感器的制备及其快速检测食品中磺胺嘧啶药物残留[J]. 食品科学,2018,39(22):319−327. [ZHAO L Y, QIN S N, GAO L, et al. Preparation and application of molecularly imprinted electrochemical sensor for rapid detection of sulfadiazine residues in foods[J]. Food Science,2018,39(22):319−327. doi:  10.7506/spkx1002-6630-201822048
    [16] 徐军军, 吴甜甜, 席慧婷, 等. 一种新型过氧化氢传感器的构建及其在牛奶中的应用[J]. 食品工业科技,2020,41(22):253−259. [XU J J, WU T T, XI H T, et al. Construction of a novel hydrogen peroxide sensor and its application in milk[J]. Science and Technology of Food Industry,2020,41(22):253−259. doi:  10.13386/j.issn1002-0306.2020020082
    [17] GUO S F, CHEN X Y, WANG P, et al. Preparation of molecularly imprinted composites initiated by hemin/graphene hybrid nanosheets and its application in detection of sulfamethoxazole[J]. Current Medical Science,2019,39(1):159−165. doi:  10.1007/s11596-019-2014-6
    [18] MOHAMMED M R. Efficient formaldehyde sensor development based on Cu-codoped ZnO nanomaterial by an electrochemical approach[J]. Sensors and Actuators: B Chemical,2020,305(3):127541.
    [19] MAMBO M, LEHUTSO R F, JONATHAN O O. Improved electro-oxidation of triclosan at nano-zinc oxide-multiwalled carbon nanotube modified glassy carbon electrode[J]. Sensors & Actuators: B Chemical,2015,209(3):898−905.
    [20] CAO M C, ZHENG L T, GU Y F, et al. Electrostatic self-assembly to fabricate ZnO nanoparticles/reduced graphene oxide composites for hypersensitivity detection of dopamine[J]. Microchemical Journal,2020,159(7):105465.
    [21] ZHENG R J, ZHAO C H, ZHONG J H, et al. Determination of epinephrine using a novel sensitive electrochemiluminescence sensor based on ZnO nanoparticles modified pencil graphite electrode[J]. International Journal of Electrochemical Science,2019,14(9):9380−9390.
    [22] JANDAGHI N, JAHANI S, FOROUGHI M M, et al. Cerium-doped flower-shaped ZnO nano-crystallites as a sensing component for simultaneous electrochemical determination of epirubicin and methotrexate[J]. Mikrochimica Acta,2019,187(1):24.
    [23] YUE X Z, LI Z Y, ZHAO S. A new electrochemical sensor for simultaneous detection of sulfamethoxazole and trimethoprim antibiotics based on graphene and ZnO nanorods modified glassy carbon electrode[J]. Microchemical Journal,2020,159(2):105440.
    [24] ANSARI S, ANSARI M S, SOAMI P S, et al. Bi2O3/ZnO nanocomposite: Synthesis, characterizations and its application in electrochemical detection of balofloxacin as an antibiotic drug[J]. Journal of Pharmaceutical Analysis,2021,11(1):57−67. doi:  10.1016/j.jpha.2020.03.013
    [25] HE Q G, LIU J, LIU X P, et al. Manganese dioxide nanorods/electrochemically reduced graphene oxide nanocomposites modified electrodes for cost-effective and ultrasensitive detection of Amaranth[J]. Colloids and Surfaces B: Biointerfaces,2018,172(1):565−572.
    [26] ZHANG L, YUAN S M, YANG L M, et al. An enzymatic glucose biosensor based on a glassy carbon electrode modified with manganese dioxide nanowires[J]. Mikrochimica Acta: An International Journal for Physical and Chemical Methods of Analysis,2013,180(7-8):627−633.
    [27] 贾丽芳, 李梅, 王国平. 二氧化锰修饰电极在甲硝唑检测中的应用[J]. 山东化工, 2021, 50(2): 105−107.

    JIA L F, LI M, WANG G P. Application of manganese dioxide modified electrode in metronidazole detection[J]. Shandong Chemical Industry 2021, 50(2): 105−107.
    [28] 韩哲, 俞天寿, 柳宛彤, 等. 不同晶型二氧化锰的制备、表征及甲醛降解性能研究[J]. 中国计量大学学报,2021,32(1):124−131. [HAN Z, YU T S, LIU W T, et al. Preparation, characterization and catalytic degradation performance of formaldehyde of different manganese dioxide[J]. Journal of China University of Metrology,2021,32(1):124−131. doi:  10.3969/j.issn.2096-2835.2021.01.017
    [29] ZHONG L L, SAMAL M, YUN K. Synthesis, characterization and electrochemical properties of different morphological ZnO anchored on graphene oxide sheets[J]. Materials Chemistry and Physics,2018,204(2):315−322.
    [30] AIBITER E, MERLANO A S, ROJAS E, et al. Synthesis, characterization, and photocatalytic performance of ZnO-Graphene nanocomposites: A review[J]. Journal of Composites Science,2020,5(1):4. doi:  10.3390/jcs5010004
    [31] 刘美琪, 陈学青, 王志彦, 等. 铁、钴掺杂氧化锌纳米材料及其红外吸波性能研究[J]. 人工晶体学报,2016,45(12):2785−2789. [LIU M Q, CHEN X Q, WANG Z Y, et al. Preparation and infrared wave absorbing properties of Fe, Co-doped nano-ZnO material[J]. Journal of Synthetic Crystals,2016,45(12):2785−2789. doi:  10.3969/j.issn.1000-985X.2016.12.008
    [32] HAMID H H, MOHAMED H E, ELSHAER A M, et al. Electrochemical preparation and electrical characterization of polyaniline as a sensitive biosensor[J]. Microsystem Technologies,2018,24(4):1775−1781. doi:  10.1007/s00542-018-3793-6
    [33] HENRIQUE M J, ROCHA C J, GABRIEL O G, et al. Disposable electrochemical sensor based on shellac and graphite for sulfamethoxazole detection[J]. Microchemical Journal,2021,170(5):106701.
    [34] TASHKHOURIAN J, HEMMATEENEJAD B, BEIGIZADEH H, et al. ZnO nanoparticles and multiwalled carbon nanotubes modified carbon paste electrode for determination of naproxen using electrochemical techniques[J]. Journal of Electroanalytical Chemistry,2014,174(1):103−108.
    [35] 常凤霞, 尚宗毅, 董清, 等. 纳米氧化铜-碳纳米管修饰玻碳电极同时检测邻、对苯二酚[J]. 应用化学,2020,37(10):1195−1202. [CHANG F X, SHANG Z Y, DONG Q, et al. Simultaneous determination of catechol and hydroquinone by copper oxide nanoparticles and carbon nanotubes modified glassy carbon electrode[J]. Chinese Journal of Applied Chemistry,2020,37(10):1195−1202. doi:  10.11944/j.issn.1000-0518.2020.10.200048
    [36] YI W W, LI Z P, DONG C, et al. Electrochemical detection of chloramphenicol using palladium nanoparticles decorated reduced graphene oxide[J]. Microchemical Journal,2019,148(3):774−783.
    [37] TURCO A, CORVAGLIA S, POMAP P P, et al. An innovative and simple all electrochemical approach to functionalize electrodes with a carbon nanotubes/polypyrrole molecularly imprinted nanocomposite and its application for sulfamethoxazole analysis[J]. Journal of Colloid and Interface Science,2021,599(1):676−685.
    [38] BALASUBRAMANIAN P, SETTU R, CHEN S M, et al. Voltammetric sensing of sulfamethoxazole using a glassy carbon electrode modified with a graphitic carbon nitride and zinc oxide nanocomposite[J]. Microchimica Acta,2018,185(8):1−9.
    [39] KOKULNATHAN T, KUAMR E A, WANG T J, et al. Strontium tungstate-modified disposable strip for electrochemical detection of sulfadiazine in environmental samples[J]. Ecotoxicology and Environmental Safety,2021,208(3):111516−111516.
    [40] ARVAND M, ANSARI R, HEYDARI L. Electrocatalytic oxidation and differential pulse voltammetric determination of sulfamethoxazole using carbon nanotube paste electrode[J]. Materials Science & Engineering C,2011,31(8):1819−1825.
    [41] 贺全国, 李广利, 刘军, 等. 纳米Cu2O-还原石墨烯复合修饰玻碳电极用于多巴胺的检测[J]. 食品科学,2018,39(20):308−314. [HE Q G, LI G L, LIU J, et al. Preparation of Cu2O-reduced graphene nanocomposite-modified electrodes and their application in detection of dopamine[J]. Food Science,2018,39(20):308−314. doi:  10.7506/spkx1002-6630-201820044
    [42] ISSAC S, GIRISH K K. Voltammetric determination of sulfamethoxazole at a multiwalled carbon nanotube modified glassy carbon sensor and its application studies[J]. Drug Testing and Analysis,2009,1(7):350−354. doi:  10.1002/dta.69
    [43] LORENA T R, ASUNCION M A L, OLGA D R, et al. Tyrosinase based biosensor for the electrochemical determination of sulfamethoxazole[J]. Sensors and Actuators: B Chemical,2016,227(1):48−53.
    [44] DIEGO L C, GOLINELLI, SERGIO A S, et al. Synthesis of silver nanoparticle graphene composites for electroanalysis applications using chemical and electrochemical methods[J]. Electroanalysis,2017,29(4):1014−1021. doi:  10.1002/elan.201600669
    [45] 国家市场监督管理总局, 国家卫生健康委员会, 农业农村部. GB 31650-2019 食品安全国家标准食品中兽药最大残留限量[S]. 北京: 中国标准出版社, 2019.

    State Administration for Market Regulation, National Health Commission, Ministry of Agriculture and Rural Affairs Announcement. GB 31650-2019 Naional food safety standard maximum residue limits for veterinary drugs in foods[S]. Beijing: National Standards Press, 2019.
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  82
  • HTML全文浏览量:  9
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-21
  • 网络出版日期:  2023-04-20
  • 刊出日期:  2023-06-01

目录

    /

    返回文章
    返回