Optimization of Ethanol Extraction Process for Active Components from Broussonetia papyrifera Root Bark and Its Antioxidant Activity
-
摘要: 以构树根皮为原料,通过单因素实验考察不同因素对构树根皮总黄酮和多酚提取量的影响。运用Design-Expert 11软件设计响应面法优化构树根皮乙醇回流提取工艺,并进行工艺验证。最后对提取得到的构树根皮乙醇提取物进行DPPH·、ABTS+·、羟自由基清除能力和总还原能力的测定,评价其抗氧化活性。响应面分析表明,构树根皮总黄酮和多酚的最佳提取工艺为提取温度75 ℃、提取时间117 min、料液比1:16 g/mL、乙醇浓度70%。此条件下,构树根皮总黄酮和多酚提取量分别为23.93±0.30 mg/g和14.69±0.56 mg/g,与预测理论值接近。抗氧化实验表明,构树根皮乙醇提取物对DPPH·、ABTS+·和羟自由基的半数清除浓度(IC50)分别为5.256 μg/mL、0.259 mg/mL和0.310 mg/mL,且清除能力与其浓度呈现一定的量效关系。当提取物浓度为1.0 mg/mL时,总还原能力达到1.484±0.062。此优化实验有效可行,构树根皮乙醇提取物具有较强的抗氧化活性。本研究为构树资源的综合利用提供了一定的理论依据。Abstract: In this study, single factor experiments were employed to determine the effects of various factors on yields of total flavonoids and polyphenols from Broussonetia papyrifera root bark. Then Box-Behnken design and response surface methodology were used to optimize the ethanol reflux extraction process using the Design-Expert 11 software. Moreover, the antioxidant activity of the ethanol extract of Broussonetia papyrifera root bark was evaluated by determining the scavenging capacity of DPPH·, ABTS+·, and the hydroxyl free radical, as well as the total reducing power. Results showed that the optimal conditions were as follows: Extraction temperature 75 ℃, extraction time 117 min, solid-liquid ratio 1:16 g/mL, and ethanol concentration 70%. Under these conditions, the experimental extraction yield values of total flavonoids and polyphenols from Broussonetia papyrifera root bark were 23.93±0.30 mg/g and 14.69±0.56 mg/g, respectively, which was not significantly different in comparison to predicted values. The IC50 values of scavenging rates on DPPH·, ABTS+·, and the hydroxyl free radical were 5.256 μg/mL, 0.259 mg/mL, and 0.310 mg/mL, respectively, and the scavenging rates showed a certain dose-effect relationship with the sample concentration. In addition, the total reducing power of 1.0 mg/mL ethanol extract of the root bark was 1.484±0.062. These results indicated that this optimization test was effective and feasible, and the ethanol extract of Broussonetia papyrifera root bark had good antioxidant activity in vitro. The present study provides supplement information for the comprehensive utilization of Broussonetia papyrifera in food and medicine ingredients.
-
表 1 Box-Behnken试验因素和水平
Table 1. Test factors and levels of Box-Behnken
水平 因素 A温度(°C ) B时间(min) C料液比(g/mL) D乙醇浓度(%) −1 65 60 1:10 65 0 75 90 1:15 75 1 85 120 1:20 85 表 2 响应面试验设计与结果
Table 2. Design and results of response surface experiment
试验号 因素 总黄酮提取量(mg/g) 多酚提取量(mg/g) A温度 B时间 C料液比 D乙醇浓度 1 −1 −1 0 0 13.72 13.50 2 1 −1 0 0 17.00 12.86 3 −1 1 0 0 19.95 12.82 4 1 1 0 0 17.27 13.34 5 0 0 −1 −1 13.83 11.66 6 0 0 1 −1 19.63 12.29 7 0 0 −1 1 14.89 12.28 8 0 0 1 1 14.96 13.69 9 −1 0 0 −1 14.20 12.23 10 1 0 0 −1 19.24 12.85 11 −1 0 0 1 18.07 13.42 12 1 0 0 1 17.79 13.31 13 0 −1 −1 0 11.50 11.54 14 0 1 −1 0 17.22 12.77 15 0 −1 1 0 16.24 12.61 16 0 1 1 0 17.27 13.48 17 −1 0 −1 0 12.11 11.88 18 1 0 −1 0 11.96 11.34 19 −1 0 1 0 13.88 13.26 20 1 0 1 0 14.99 12.29 21 0 −1 0 −1 19.87 11.29 22 0 1 0 −1 23.55 14.64 23 0 −1 0 1 20.51 14.21 24 0 1 0 1 23.58 13.02 25 0 0 0 0 22.35 14.23 26 0 0 0 0 23.65 14.70 27 0 0 0 0 22.67 14.64 28 0 0 0 0 21.67 14.07 29 0 0 0 0 22.51 14.43 表 3 总黄酮回归模型方差分析
Table 3. Analysis of variance of the regression model of flavonoids
方差来源 平方和 自由度 均方 F值 P值 显著性 模型 382.75 14 27.34 23.06 <0.0001 ** A温度 3.33 1 3.33 2.81 0.1158 B时间 33.33 1 33.33 28.12 0.0001 ** C料液比 19.88 1 19.88 16.77 0.0011 ** D乙醇浓度 0.0222 1 0.0222 0.0187 0.8931 AB 8.88 1 8.88 7.49 0.0160 * AC 0.4013 1 0.4013 0.3386 0.5699 AD 7.07 1 7.07 5.96 0.0285 * BC 5.48 1 5.48 4.62 0.0496 * BD 0.0929 1 0.0929 0.0783 0.7836 CD 8.22 1 8.22 6.93 0.0197 * A² 120.75 1 120.75 101.87 <0.001 ** B² 4.98 1 4.98 4.2 0.0597 C² 216.4 1 216.4 182.57 <0.001 ** D² 2.11 1 2.11 1.78 0.2033 残差 16.59 14 1.19 失拟项 14.55 10 1.46 2.85 0.1621 不显著 纯误差 2.04 4 0.5102 总方差 399.34 28 注:** P<0.01,表示差异性极显著;* P<0.05,表示差异性显著,表4同。 表 4 多酚回归模型方差分析
Table 4. Analysis of variance of the regression model of polyphenols
方差来源 平方和 自由度 均方 F值 P值 显著性 模型 27.24 14 1.95 14.74 <0.0001 ** A温度 0.1051 1 0.1051 0.7962 0.3873 B时间 1.37 1 1.37 10.42 0.0061 ** C料液比 3.15 1 3.15 23.9 0.0002 ** D乙醇浓度 2.06 1 2.06 15.64 0.0014 ** AB 0.3381 1 0.3381 2.56 0.1318 AC 0.0466 1 0.0466 0.3529 0.5620 AD 0.1357 1 0.1357 1.03 0.3278 BC 0.0339 1 0.0339 0.257 0.6201 BD 5.17 1 5.17 39.21 <0.0001 ** CD 0.1542 1 0.1542 1.17 0.2981 A² 4.61 1 4.61 34.94 <0.0001 ** B² 1.44 1 1.44 10.92 0.0052 C² 11.77 1 11.77 89.14 <0.0001 ** D² 2.5 1 2.5 18.93 0.0007 ** 残差 1.85 14 0.132 失拟项 1.57 10 0.1567 2.23 0.2283 不显著 纯误差 0.2809 4 0.0702 总方差 29.09 28 -
[1] 彭献军, 沈世华. 构树: 一种新型木本模式植物[J]. 植物学报,2018,53(3):372−381. [PENG Xianjun, SHEN Shihua. The paper mulberry: A novel model system for woody plant research[J]. Chinese Bulletin of Botany,2018,53(3):372−381. [2] 路博文, 姜雯, 申文强, 等. 构树的营养价值及其饲用技术研究进展[J]. 饲料研究,2021,44(17):109−113. [LU Bowen, JIANG Wen, SHEN Wenqiang, et al. Nutritional value of paper mulberry and its progress on forage technology[J]. Feed Research,2021,44(17):109−113. doi: 10.13557/j.cnki.issn1002-2813.2021.17.026 [3] 何连芳, 白淑云, 刘秉钺. 不同树龄杂交构树的纤维特性及制浆性能研究[J]. 中国造纸学报,2009,24(1):1−5. [HE Lianfang, BAI Shuyun, LIU Bingyu. Study on the fiber characteristics and pilping properties of hybrid paper mulberry at different ages[J]. Transactions of China Pulp and Paper,2009,24(1):1−5. doi: 10.3321/j.issn:1000-6842.2009.01.001 [4] 陈谭星, 孙慧军, 曹力凡, 等. 不同植物生长调节剂对构树营养品质的影响[J]. 饲料研究,2022(11):97−101. [CHEN Tanxing, SUN Huijun, CAO Lifan, et al. Effect of different plant growth regulators on nutritional quality of paper mulberry[J]. Feed Research,2022(11):97−101. doi: 10.13557/j.cnki.issn1002-2813.2022.11.021 [5] KO H H, CHANG W L, LU T M. Antityrosinase and antioxidant effects of ent-kaurane diterpenes from leaves of Broussonetia papyrifera[J]. Journal of Natural Products,2008,71(11):1930−1933. doi: 10.1021/np800564z [6] HAN Q, WU Z, HUANG B, et al. Extraction, antioxidant and antibacterial activities of Broussonetia papyrifera fruits polysaccharides[J]. International Journal of Biological Macromolecules,2016,92:116−124. doi: 10.1016/j.ijbiomac.2016.06.087 [7] LEE H, LI H, JEONG J H, et al. Kazinol B from Broussonetia kazinoki improves insulin sensitivity via Akt and AMPK activation in 3T3-L1 adipocytes[J]. Fitoterapia,2016,112:90−96. doi: 10.1016/j.fitote.2016.05.006 [8] GUO Fujiang, LI Feng, HUANG Cheng, et al. Prenylflavone derivatives from Broussonetia papyrifera inhibit the growth of breast cancer cells in vitro and in vivo[J]. Phytochemistry Letters,2013,6(3):331−336. doi: 10.1016/j.phytol.2013.03.017 [9] YANG Xinrong, FU Bingyi, SUN Fang, et al. Encyclopedic reference of traditional Chinese medicine, [M]. Springer-Verlag, Berlin Heidelberg, 2003. [10] 杨晨悦, 王晓玲. 构树皮中的酚性化合物研究[J]. 中药材,2018,41(1):111−114. [YANG Chenyue, WANG Xiaoling. Phenolic constituents from the barks of Broussonetia papyrifera[J]. Journal of Chinese Medicinal Materials,2018,41(1):111−114. doi: 10.13863/j.issn1001-4454.2018.01.023 [11] SON K H, KWON S J, CHANG H W, et al. Papyriflavonol A, a new prenylated flavonol from Broussonetia papyrifera[J]. Fitoterapia,2001,72(4):456−458. doi: 10.1016/S0367-326X(00)00329-4 [12] RYU H W, LEE B W, CURTIS-LONG M J, et al. Polyphenols from Broussonetia papyrifera displaying potent alpha-glucosidase inhibition[J]. Journal of Agricultural and Food Chemistry, 2010, 58: 202–208. [13] RYU H W, LEE J H, KANG J E, et al. Inhibition of xanthine oxidase by phenolic phytochemicals from Broussonetia papyrifera[J]. Journal of the Korean Society for Applied Biological Chemistry,2012,55:587−594. doi: 10.1007/s13765-012-2143-0 [14] TIAN J L, LIU T L, XUE J J, et al. Flavanoids derivatives from the root bark of Broussonetia papyrifera as a tyrosinase inhibitor[J]. Industrial Crops and Products,2019,138:111445. doi: 10.1016/j.indcrop.2019.06.008 [15] PARK M H, JUNG S, YUK H J, et al. Rapid identification of isoprenylated flavonoids constituents with inhibitory activity on bacterial neuraminidase from root barks of paper mulberry (Broussonetia papyrifera)[J]. International Journal of Biological Macromolecules,2021,174:61−68. doi: 10.1016/j.ijbiomac.2021.01.140 [16] 张意笠, 胡培豪, 黄真, 等. 小构树总黄酮提取工艺优化及其抗氧化、美白活性[J]. 中成药,2020,42(4):842−848. [ZHANG Yili, HU Peihao, HUANG Zhen, et al. Extraction process optimization and anti-oxidant, whitening activities of total flavonoids from Broussonetia kazinoki[J]. Chinese Traditional Patent Medicine,2020,42(4):842−848. doi: 10.3969/j.issn.1001-1528.2020.04.004 [17] LEE J M, CHOI S S, PARK M H, et al. Broussonetia papyrifera root bark extract exhibits anti-inflammatory effects on adipose tissue and improves insulin sensitivity potentially via AMPK activation[J]. Nutrients,2020,12(3):773. doi: 10.3390/nu12030773 [18] 张兴荣, 张学林, 贺连智, 等. 构树叶总黄酮提取工艺优化及成分分析[J]. 现代食品科技,2021,37(2):213−220. [ZHANG Xingrong, ZHANG Xuelin, HE Lianzhi, et al. Optimization of extraction process and component analysis of the flavonoids from Broussonetia papyrifera leaves[J]. Modern Food Science and Technology,2021,37(2):213−220. [19] 徐梦宇, 咸淑慧, 王荣镇, 等. 杂交枸树根黄酮类物质的提取及其抑菌活性研究[J]. 食品科技,2011,36(4):194−196. [XU Mengyu, XIAN Shuhui, WANG Rongzhen, et al. Extraction and antibacterial activity of flavonoids in roots of the Broussonetia papyrifera (L.) vent[J]. Food Science and Technology,2011,36(4):194−196. doi: 10.13684/j.cnki.spkj.2011.04.011 [20] 张富坤, 孙媛, 高艺菲, 等. 表面活性剂辅助超声提取柿叶总黄酮工艺优化[J]. 食品工业科技,2022,43(5):224−229. [ZHANG Fukun, SUN Yuan, GAO Yifei, et al. Optimization of surfactant-assisted ultrasonic extraction of flavonoids from Persimmon leaves[J]. Science and Technology of Food Industry,2022,43(5):224−229. doi: 10.13386/j.issn1002-0306.2021070146 [21] YAP J Y, HII C L, ONG S P, et al. Effects of drying on total polyphenols content and antioxidant properties of Carica papaya leaves[J]. Journal of the Science of Food and Agriculture,2020,100(7):2932−2937. doi: 10.1002/jsfa.10320 [22] CHEUNG L M, CHEUNG P C K, OOI V E C. Antioxidant activity and total phenolics of edible mushroom extracts[J]. Food Chemistry,2003,81(2):249−255. doi: 10.1016/S0308-8146(02)00419-3 [23] SOONG Y Y, BARLOW P J. Antioxidant activity and phenolic content of selected fruit seeds[J]. Food Chemistry,2004,88(3):411−417. doi: 10.1016/j.foodchem.2004.02.003 [24] LI L, THAKUR K, LIAO B Y, et al. Antioxidant and antimicrobial potential of polysaccharides sequentially extracted from Polygonatum cyrtonema Hua[J]. International Journal of Biological Macromolecules,2018,114:317−323. doi: 10.1016/j.ijbiomac.2018.03.121 [25] 磨正遵, 商飞飞, 潘中田, 等. 响应面法优化超声波辅助提取广西大果山楂叶总黄酮工艺[J]. 南方农业学报,2018,49(5):986−992. [MO Zhengzun, SHANG Feifei, PAN Zhongtian, et al. Optimization of ultrasonic-assisted extraction of total flavonoids from Guangxi hawthorn leaves with response surface methodology[J]. Journal of Southern Agricultural Sciences,2018,49(5):986−992. [26] WANG Q Z, LIU Y Y, CUI J, et al. Optimization of ultrasonic-assisted extraction for herbicidal activity of chicory root extracts[J]. Industrial Crops & Products,2011,34(3):1429−1438. [27] 时羽杰, 肖徐, 李晶晶, 等. 核桃内种皮总黄酮的提取工艺优化及抗氧化性研究[J]. 食品工业科技,2021,42(2):192−198,209. [SHI Yujie, XIAO Xu, LI Jingjing, et al. Optimization of extraction process and antioxidant activity of total flavonoids in walnut inner seed coat[J]. Science and Technology of Food Industry,2021,42(2):192−198,209. [28] 张静, 陶俊葓, 刘银, 等. 响应曲面法优化超声辅助提取芒果叶中多酚和黄酮工艺及抗氧化活性研究[J]. 云南民族大学学报(自然科学版),2020,29(6):527−534. [ZHANG Jing, TAO Junping, LIU Yin, et al. Optimization of ultrasonic-assisted extraction process and antioxidant activity of total polyphenols and total flavonoids from mango leaves using response surface methodology[J]. Journal of Yunnan University for Nationalities (Natural Science Edition),2020,29(6):527−534. doi: 10.3969/j.issn.1672-8513.2020.06.001 [29] 殷海洋, 刘振春, 张世康, 等. 响应面优化超声波辅助酶法提取油莎豆ACE抑制肽的工艺[J]. 食品工业科技,2021,42(14):182−187. [YIN Haiyang, LIU Zhenchun, ZHANG Shikang, et al. Optimization of ultrasonic-assisted enzymatic extraction of ACE inhibitory peptides from Cyperus esculentus by response surface method[J]. Science and Technology of Food Industry,2021,42(14):182−187. [30] 莫一凡, 姚凌云, 冯涛, 等. 无花果总黄酮闪式提取工艺优化及其抗氧化活性[J]. 食品工业科技,2020,41(12):186−191, 220. [MO Yifan, YAO Lingyun, FENG Tao, et al. Optimization of flash extraction process of total flavonoids from fig( Ficus carica L.) and its antioxidant activities[J]. Science and Technology of Food Industry,2020,41(12):186−191, 220. [31] 黄秋萍, 郑燕菲, 赵汉民, 等. 薛荔藤多酚提取工艺优化及其抗氧化活性[J]. 食品研究与开发,2022,43(4):70−75. [HUANG Qiuping, ZHENG Yanfei, ZHAO Hanmin, et al. Optimized extraction technology and antioxidant activities of polyphenols from Ficus pumila Cane[J]. Food Research and Development,2022,43(4):70−75. doi: 10.12161/j.issn.1005-6521.2022.04.011 [32] SOUHILA M, MUSTAPHA K, ABDERAHIM B, et al. Phenolic and flavonoid contents, antioxidant and antimicrobial activities of leaf extracts from ten Algerian Ficus carica L. varieties[J]. Asian Pacific Journal of Tropical Biomedicine,2016,6(3):239−245. doi: 10.1016/j.apjtb.2015.12.010 [33] 冯艳钰, 臧延青. 三种小麦麸皮总黄酮的体外抗氧化活性[J]. 食品与发酵工业,2021,47(9):16−24. [FENG Yanyu, ZANG Yanqing. Study on the antioxidant activity of total flavonoids from three wheat brans in vitro[J]. Food and Fermentation Industries,2021,47(9):16−24. doi: 10.13995/j.cnki.11-1802/ts.025886 -