• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020

构树根皮活性成分乙醇提取工艺优化及其抗氧化活性分析

张敏君 段雪伟 王燕 杨慧文 刘冰 向文静 由天辉

张敏君,段雪伟,王燕,等. 构树根皮活性成分乙醇提取工艺优化及其抗氧化活性分析[J]. 食品工业科技,2023,44(11):196−203. doi:  10.13386/j.issn1002-0306.2022070304
引用本文: 张敏君,段雪伟,王燕,等. 构树根皮活性成分乙醇提取工艺优化及其抗氧化活性分析[J]. 食品工业科技,2023,44(11):196−203. doi:  10.13386/j.issn1002-0306.2022070304
ZHANG Minjun, DUAN Xuewei, WANG Yan, et al. Optimization of Ethanol Extraction Process for Active Components from Broussonetia papyrifera Root Bark and Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2023, 44(11): 196−203. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022070304
Citation: ZHANG Minjun, DUAN Xuewei, WANG Yan, et al. Optimization of Ethanol Extraction Process for Active Components from Broussonetia papyrifera Root Bark and Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2023, 44(11): 196−203. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022070304

构树根皮活性成分乙醇提取工艺优化及其抗氧化活性分析

doi: 10.13386/j.issn1002-0306.2022070304
基金项目: 广东省教育委员会项目(2021KCXTD056)。
详细信息
    作者简介:

    张敏君(1997−),女,硕士研究生,研究方向:天然产物开发与利用,E-mail:896212948@qq.com

    通讯作者:

    由天辉(1973−),女,硕士,教授,研究方向:慢性病护理,E-mail:youth888cn@aliyun.com

  • 中图分类号: TS201.1

Optimization of Ethanol Extraction Process for Active Components from Broussonetia papyrifera Root Bark and Its Antioxidant Activity

  • 摘要: 以构树根皮为原料,通过单因素实验考察不同因素对构树根皮总黄酮和多酚提取量的影响。运用Design-Expert 11软件设计响应面法优化构树根皮乙醇回流提取工艺,并进行工艺验证。最后对提取得到的构树根皮乙醇提取物进行DPPH·、ABTS+·、羟自由基清除能力和总还原能力的测定,评价其抗氧化活性。响应面分析表明,构树根皮总黄酮和多酚的最佳提取工艺为提取温度75 ℃、提取时间117 min、料液比1:16 g/mL、乙醇浓度70%。此条件下,构树根皮总黄酮和多酚提取量分别为23.93±0.30 mg/g和14.69±0.56 mg/g,与预测理论值接近。抗氧化实验表明,构树根皮乙醇提取物对DPPH·、ABTS+·和羟自由基的半数清除浓度(IC50)分别为5.256 μg/mL、0.259 mg/mL和0.310 mg/mL,且清除能力与其浓度呈现一定的量效关系。当提取物浓度为1.0 mg/mL时,总还原能力达到1.484±0.062。此优化实验有效可行,构树根皮乙醇提取物具有较强的抗氧化活性。本研究为构树资源的综合利用提供了一定的理论依据。
  • 图  1  提取温度对构树根皮总黄酮和多酚含量的影响

    Figure  1.  Effect of extraction temperature on flavonoids and polyphenols contents of Broussonetia papyrifera root bark

    注:不同小写字母表示显著性差异(P<0.05),图2~图4图7~图10同。

    图  2  提取时间对构树根皮黄酮和多酚含量的影响

    Figure  2.  Effect of extraction time on flavonoids and polyphenols contents of Broussonetia papyrifera root bark

    图  3  料液比对构树根皮黄酮和多酚含量的影响

    Figure  3.  Effect of solid-liquid ratio on flavonoids and polyphenols contents of Broussonetia papyrifera root bark

    图  4  乙醇浓度对构树根皮黄酮和多酚含量的影响

    Figure  4.  Effect of ethanol concentration on flavonoids and polyphenols contents of Broussonetia papyrifera root bark

    图  5  交互项对总黄酮提取量影响的响应面图

    Figure  5.  Response surface diagram of the effect of interactive items on the yield of total flavonoids

    图  6  交互项对多酚提取量影响的响应面图

    Figure  6.  Response surface diagram of the effect of interactive items on the yield of polyphenols

    图  7  构树根皮提取物对DPPH自由基的清除率

    Figure  7.  DPPH free radical scavenging rate of Broussonetia papyrifera root bark extract

    图  8  构树根皮提取物对ABTS阳离子自由基的清除率

    Figure  8.  ABTS+ free radical scavenging rate of Broussonetia papyrifera root bark extract

    图  9  构树根皮提取物对羟自由基的清除率

    Figure  9.  Hydroxyl free radical scavenging rate of Broussonetia papyrifera root bark extract

    图  10  构树根皮提取物的总还原能力

    Figure  10.  Total reducing ability of Broussonetia papyrifera root bark extract

    表  1  Box-Behnken试验因素和水平

    Table  1.   Test factors and levels of Box-Behnken

    水平因素
    A温度(°C )B时间(min)C料液比(g/mL)D乙醇浓度(%)
    −165601:1065
    075901:1575
    1851201:2085
    下载: 导出CSV

    表  2  响应面试验设计与结果

    Table  2.   Design and results of response surface experiment

    试验号因素总黄酮提取量(mg/g)多酚提取量(mg/g)
    A温度B时间C料液比D乙醇浓度
    1−1−10013.7213.50
    21−10017.0012.86
    3−110019.9512.82
    4110017.2713.34
    500−1−113.8311.66
    6001−119.6312.29
    700−1114.8912.28
    8001114.9613.69
    9−100−114.2012.23
    10100−119.2412.85
    11−100118.0713.42
    12100117.7913.31
    130−1−1011.5011.54
    1401−1017.2212.77
    150−11016.2412.61
    16011017.2713.48
    17−10−1012.1111.88
    1810−1011.9611.34
    19−101013.8813.26
    20101014.9912.29
    210−10−119.8711.29
    22010−123.5514.64
    230−10120.5114.21
    24010123.5813.02
    25000022.3514.23
    26000023.6514.70
    27000022.6714.64
    28000021.6714.07
    29000022.5114.43
    下载: 导出CSV

    表  3  总黄酮回归模型方差分析

    Table  3.   Analysis of variance of the regression model of flavonoids

    方差来源平方和自由度均方FP显著性
    模型382.751427.3423.06<0.0001**
    A温度3.3313.332.810.1158
    B时间33.33133.3328.120.0001**
    C料液比19.88119.8816.770.0011**
    D乙醇浓度0.022210.02220.01870.8931
    AB8.8818.887.490.0160*
    AC0.401310.40130.33860.5699
    AD7.0717.075.960.0285*
    BC5.4815.484.620.0496*
    BD0.092910.09290.07830.7836
    CD8.2218.226.930.0197*
    120.751120.75101.87<0.001**
    4.9814.984.20.0597
    216.41216.4182.57<0.001**
    2.1112.111.780.2033
    残差16.59141.19
    失拟项14.55101.462.850.1621不显著
    纯误差2.0440.5102
    总方差399.3428
    注:** P<0.01,表示差异性极显著;* P<0.05,表示差异性显著,表4同。
    下载: 导出CSV

    表  4  多酚回归模型方差分析

    Table  4.   Analysis of variance of the regression model of polyphenols

    方差来源平方和自由度均方FP显著性
    模型27.24141.9514.74<0.0001**
    A温度0.105110.10510.79620.3873
    B时间1.3711.3710.420.0061**
    C料液比3.1513.1523.90.0002**
    D乙醇浓度2.0612.0615.640.0014**
    AB0.338110.33812.560.1318
    AC0.046610.04660.35290.5620
    AD0.135710.13571.030.3278
    BC0.033910.03390.2570.6201
    BD5.1715.1739.21<0.0001**
    CD0.154210.15421.170.2981
    4.6114.6134.94<0.0001**
    1.4411.4410.920.0052
    11.77111.7789.14<0.0001**
    2.512.518.930.0007**
    残差1.85140.132
    失拟项1.57100.15672.230.2283不显著
    纯误差0.280940.0702
    总方差29.0928
    下载: 导出CSV
  • [1] 彭献军, 沈世华. 构树: 一种新型木本模式植物[J]. 植物学报,2018,53(3):372−381. [PENG Xianjun, SHEN Shihua. The paper mulberry: A novel model system for woody plant research[J]. Chinese Bulletin of Botany,2018,53(3):372−381.
    [2] 路博文, 姜雯, 申文强, 等. 构树的营养价值及其饲用技术研究进展[J]. 饲料研究,2021,44(17):109−113. [LU Bowen, JIANG Wen, SHEN Wenqiang, et al. Nutritional value of paper mulberry and its progress on forage technology[J]. Feed Research,2021,44(17):109−113. doi:  10.13557/j.cnki.issn1002-2813.2021.17.026
    [3] 何连芳, 白淑云, 刘秉钺. 不同树龄杂交构树的纤维特性及制浆性能研究[J]. 中国造纸学报,2009,24(1):1−5. [HE Lianfang, BAI Shuyun, LIU Bingyu. Study on the fiber characteristics and pilping properties of hybrid paper mulberry at different ages[J]. Transactions of China Pulp and Paper,2009,24(1):1−5. doi:  10.3321/j.issn:1000-6842.2009.01.001
    [4] 陈谭星, 孙慧军, 曹力凡, 等. 不同植物生长调节剂对构树营养品质的影响[J]. 饲料研究,2022(11):97−101. [CHEN Tanxing, SUN Huijun, CAO Lifan, et al. Effect of different plant growth regulators on nutritional quality of paper mulberry[J]. Feed Research,2022(11):97−101. doi:  10.13557/j.cnki.issn1002-2813.2022.11.021
    [5] KO H H, CHANG W L, LU T M. Antityrosinase and antioxidant effects of ent-kaurane diterpenes from leaves of Broussonetia papyrifera[J]. Journal of Natural Products,2008,71(11):1930−1933. doi:  10.1021/np800564z
    [6] HAN Q, WU Z, HUANG B, et al. Extraction, antioxidant and antibacterial activities of Broussonetia papyrifera fruits polysaccharides[J]. International Journal of Biological Macromolecules,2016,92:116−124. doi:  10.1016/j.ijbiomac.2016.06.087
    [7] LEE H, LI H, JEONG J H, et al. Kazinol B from Broussonetia kazinoki improves insulin sensitivity via Akt and AMPK activation in 3T3-L1 adipocytes[J]. Fitoterapia,2016,112:90−96. doi:  10.1016/j.fitote.2016.05.006
    [8] GUO Fujiang, LI Feng, HUANG Cheng, et al. Prenylflavone derivatives from Broussonetia papyrifera inhibit the growth of breast cancer cells in vitro and in vivo[J]. Phytochemistry Letters,2013,6(3):331−336. doi:  10.1016/j.phytol.2013.03.017
    [9] YANG Xinrong, FU Bingyi, SUN Fang, et al. Encyclopedic reference of traditional Chinese medicine, [M]. Springer-Verlag, Berlin Heidelberg, 2003.
    [10] 杨晨悦, 王晓玲. 构树皮中的酚性化合物研究[J]. 中药材,2018,41(1):111−114. [YANG Chenyue, WANG Xiaoling. Phenolic constituents from the barks of Broussonetia papyrifera[J]. Journal of Chinese Medicinal Materials,2018,41(1):111−114. doi:  10.13863/j.issn1001-4454.2018.01.023
    [11] SON K H, KWON S J, CHANG H W, et al. Papyriflavonol A, a new prenylated flavonol from Broussonetia papyrifera[J]. Fitoterapia,2001,72(4):456−458. doi:  10.1016/S0367-326X(00)00329-4
    [12] RYU H W, LEE B W, CURTIS-LONG M J, et al. Polyphenols from Broussonetia papyrifera displaying potent alpha-glucosidase inhibition[J]. Journal of Agricultural and Food Chemistry, 2010, 58: 202–208.
    [13] RYU H W, LEE J H, KANG J E, et al. Inhibition of xanthine oxidase by phenolic phytochemicals from Broussonetia papyrifera[J]. Journal of the Korean Society for Applied Biological Chemistry,2012,55:587−594. doi:  10.1007/s13765-012-2143-0
    [14] TIAN J L, LIU T L, XUE J J, et al. Flavanoids derivatives from the root bark of Broussonetia papyrifera as a tyrosinase inhibitor[J]. Industrial Crops and Products,2019,138:111445. doi:  10.1016/j.indcrop.2019.06.008
    [15] PARK M H, JUNG S, YUK H J, et al. Rapid identification of isoprenylated flavonoids constituents with inhibitory activity on bacterial neuraminidase from root barks of paper mulberry (Broussonetia papyrifera)[J]. International Journal of Biological Macromolecules,2021,174:61−68. doi:  10.1016/j.ijbiomac.2021.01.140
    [16] 张意笠, 胡培豪, 黄真, 等. 小构树总黄酮提取工艺优化及其抗氧化、美白活性[J]. 中成药,2020,42(4):842−848. [ZHANG Yili, HU Peihao, HUANG Zhen, et al. Extraction process optimization and anti-oxidant, whitening activities of total flavonoids from Broussonetia kazinoki[J]. Chinese Traditional Patent Medicine,2020,42(4):842−848. doi:  10.3969/j.issn.1001-1528.2020.04.004
    [17] LEE J M, CHOI S S, PARK M H, et al. Broussonetia papyrifera root bark extract exhibits anti-inflammatory effects on adipose tissue and improves insulin sensitivity potentially via AMPK activation[J]. Nutrients,2020,12(3):773. doi:  10.3390/nu12030773
    [18] 张兴荣, 张学林, 贺连智, 等. 构树叶总黄酮提取工艺优化及成分分析[J]. 现代食品科技,2021,37(2):213−220. [ZHANG Xingrong, ZHANG Xuelin, HE Lianzhi, et al. Optimization of extraction process and component analysis of the flavonoids from Broussonetia papyrifera leaves[J]. Modern Food Science and Technology,2021,37(2):213−220.
    [19] 徐梦宇, 咸淑慧, 王荣镇, 等. 杂交枸树根黄酮类物质的提取及其抑菌活性研究[J]. 食品科技,2011,36(4):194−196. [XU Mengyu, XIAN Shuhui, WANG Rongzhen, et al. Extraction and antibacterial activity of flavonoids in roots of the Broussonetia papyrifera (L.) vent[J]. Food Science and Technology,2011,36(4):194−196. doi:  10.13684/j.cnki.spkj.2011.04.011
    [20] 张富坤, 孙媛, 高艺菲, 等. 表面活性剂辅助超声提取柿叶总黄酮工艺优化[J]. 食品工业科技,2022,43(5):224−229. [ZHANG Fukun, SUN Yuan, GAO Yifei, et al. Optimization of surfactant-assisted ultrasonic extraction of flavonoids from Persimmon leaves[J]. Science and Technology of Food Industry,2022,43(5):224−229. doi:  10.13386/j.issn1002-0306.2021070146
    [21] YAP J Y, HII C L, ONG S P, et al. Effects of drying on total polyphenols content and antioxidant properties of Carica papaya leaves[J]. Journal of the Science of Food and Agriculture,2020,100(7):2932−2937. doi:  10.1002/jsfa.10320
    [22] CHEUNG L M, CHEUNG P C K, OOI V E C. Antioxidant activity and total phenolics of edible mushroom extracts[J]. Food Chemistry,2003,81(2):249−255. doi:  10.1016/S0308-8146(02)00419-3
    [23] SOONG Y Y, BARLOW P J. Antioxidant activity and phenolic content of selected fruit seeds[J]. Food Chemistry,2004,88(3):411−417. doi:  10.1016/j.foodchem.2004.02.003
    [24] LI L, THAKUR K, LIAO B Y, et al. Antioxidant and antimicrobial potential of polysaccharides sequentially extracted from Polygonatum cyrtonema Hua[J]. International Journal of Biological Macromolecules,2018,114:317−323. doi:  10.1016/j.ijbiomac.2018.03.121
    [25] 磨正遵, 商飞飞, 潘中田, 等. 响应面法优化超声波辅助提取广西大果山楂叶总黄酮工艺[J]. 南方农业学报,2018,49(5):986−992. [MO Zhengzun, SHANG Feifei, PAN Zhongtian, et al. Optimization of ultrasonic-assisted extraction of total flavonoids from Guangxi hawthorn leaves with response surface methodology[J]. Journal of Southern Agricultural Sciences,2018,49(5):986−992.
    [26] WANG Q Z, LIU Y Y, CUI J, et al. Optimization of ultrasonic-assisted extraction for herbicidal activity of chicory root extracts[J]. Industrial Crops & Products,2011,34(3):1429−1438.
    [27] 时羽杰, 肖徐, 李晶晶, 等. 核桃内种皮总黄酮的提取工艺优化及抗氧化性研究[J]. 食品工业科技,2021,42(2):192−198,209. [SHI Yujie, XIAO Xu, LI Jingjing, et al. Optimization of extraction process and antioxidant activity of total flavonoids in walnut inner seed coat[J]. Science and Technology of Food Industry,2021,42(2):192−198,209.
    [28] 张静, 陶俊葓, 刘银, 等. 响应曲面法优化超声辅助提取芒果叶中多酚和黄酮工艺及抗氧化活性研究[J]. 云南民族大学学报(自然科学版),2020,29(6):527−534. [ZHANG Jing, TAO Junping, LIU Yin, et al. Optimization of ultrasonic-assisted extraction process and antioxidant activity of total polyphenols and total flavonoids from mango leaves using response surface methodology[J]. Journal of Yunnan University for Nationalities (Natural Science Edition),2020,29(6):527−534. doi:  10.3969/j.issn.1672-8513.2020.06.001
    [29] 殷海洋, 刘振春, 张世康, 等. 响应面优化超声波辅助酶法提取油莎豆ACE抑制肽的工艺[J]. 食品工业科技,2021,42(14):182−187. [YIN Haiyang, LIU Zhenchun, ZHANG Shikang, et al. Optimization of ultrasonic-assisted enzymatic extraction of ACE inhibitory peptides from Cyperus esculentus by response surface method[J]. Science and Technology of Food Industry,2021,42(14):182−187.
    [30] 莫一凡, 姚凌云, 冯涛, 等. 无花果总黄酮闪式提取工艺优化及其抗氧化活性[J]. 食品工业科技,2020,41(12):186−191, 220. [MO Yifan, YAO Lingyun, FENG Tao, et al. Optimization of flash extraction process of total flavonoids from fig( Ficus carica L.) and its antioxidant activities[J]. Science and Technology of Food Industry,2020,41(12):186−191, 220.
    [31] 黄秋萍, 郑燕菲, 赵汉民, 等. 薛荔藤多酚提取工艺优化及其抗氧化活性[J]. 食品研究与开发,2022,43(4):70−75. [HUANG Qiuping, ZHENG Yanfei, ZHAO Hanmin, et al. Optimized extraction technology and antioxidant activities of polyphenols from Ficus pumila Cane[J]. Food Research and Development,2022,43(4):70−75. doi:  10.12161/j.issn.1005-6521.2022.04.011
    [32] SOUHILA M, MUSTAPHA K, ABDERAHIM B, et al. Phenolic and flavonoid contents, antioxidant and antimicrobial activities of leaf extracts from ten Algerian Ficus carica L. varieties[J]. Asian Pacific Journal of Tropical Biomedicine,2016,6(3):239−245. doi:  10.1016/j.apjtb.2015.12.010
    [33] 冯艳钰, 臧延青. 三种小麦麸皮总黄酮的体外抗氧化活性[J]. 食品与发酵工业,2021,47(9):16−24. [FENG Yanyu, ZANG Yanqing. Study on the antioxidant activity of total flavonoids from three wheat brans in vitro[J]. Food and Fermentation Industries,2021,47(9):16−24. doi:  10.13995/j.cnki.11-1802/ts.025886
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  89
  • HTML全文浏览量:  12
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-01
  • 网络出版日期:  2023-04-20
  • 刊出日期:  2023-06-01

目录

    /

    返回文章
    返回