Optimization of Spray Drying Processing of Filtrable Roxburgh rose Juice by Response Surface Analysis
-
摘要: 本研究以刺梨清汁、麦芽糊精为主要原料,通过喷雾干燥技术制备刺梨粉;以刺梨粉中维生素C含量、黄酮含量、多酚含量及感官评价综合评分为指标,通过刺梨清汁喷雾干燥单因素实验和响应面优化试验,研究刺梨清汁喷雾干燥制粉最佳工艺条件。单因素实验结果表明:麦芽糊精最适添加量为15%、最适进风温度为165 ℃、最适进料流量为1.5 L/h。响应面试验结果表明:麦芽糊精最适添加量为15%、最适进风温度为160 ℃、最适进料流量为1.5 L/h,在此条件下制备的刺梨粉品质最佳,其刺梨粉维生素C含量为6722.02 mg/100 g,黄酮含量为1904.02 mg/100 g,多酚含量为8122.43 mg/100 g,感官综合评判总分达到83.22分,刺梨粉组织状态均匀、具有明显的刺梨香气。本研究所制备的刺梨粉成本较低,营养价值较高,且制备方法简单,适合于工业化生产。Abstract: Filtrable Roxburgh rose juice and maltodextrin were selected as the raw materials and Roxburgh rose powder was prepared by the spray drying technology. The amount of vitamin C, flavone and polyphenol and sensory test score were taken as the indicators. The optimal spray drying processing of filtrable Roxburgh rose juice was investigated by the single factor experiment and response surface analysis. The single factor experiment demonstrated that the optimal application amount of maltodextrin was 15%. In addition, the optimal inlet air temperature and flow rate was 165 ℃ and 1.5 L/h, respectively. The response surface analysis proved that the optimal spray drying processing of filtrable Roxburgh rose juice was as followings: the amount of maltodextrin was 15%, the optimal inlet air temperature and flow rate were 160 ℃ and 1.5 L/h, separately. The Roxburgh rose powder, which was produced by the above optimal processing method and recipe, contained 6722.02 mg/100 g of vitamin C, 1904.02 mg/100 g of flavone, 8122.43 mg/100 g of polyphenol. Furthermore, the sensory test score of Roxburgh rose powder was 83.22. The Roxburgh rose powder had uniform texture and strong Roxburgh rose flavor. The Roxburgh rose powder made by the above method had lower cost, higher nutritive value and easier preparation method. And also, it could be suitable for the industrial production.
-
Key words:
- Roxburgh rose /
- spray drying /
- processing optimization /
- response surface analysis /
- sensory test
-
表 1 响应面3因素3水平试验设计
Table 1. Three-factor and three-level response surface experimental design
水平 因素 A麦芽糊精添加量(%) B进风温度(℃) C进料流量(L/h) −1 13 150 1.2 0 15 165 1.5 1 17 180 1.8 表 2 刺梨粉感官综合评判评分细则
Table 2. Sensory grading rules of Roxburgh rose powder
指标及
权重级别 优(100~80) 良(79~60) 中(59~40) 差(39~0) 色泽(20%) 黄白色 黄色 棕黄色 褐黄色 香气(10%) 刺梨特征
香味浓郁刺梨特征
香味清淡刺梨香味不足,带有少许异味 无刺梨香味,
有糊味产生组织状态(40%) 粉末颗粒细小、均匀,挤压分散效果好 粉末颗粒细小、均匀,挤压分
散效果一般粉末颗粒大小不均,挤压易结块 结块、无粉
末颗粒溶解速度(30%) 溶解速度快 溶解速度一般 溶解速度慢、需搅拌溶解 溶解速度慢、需搅拌溶解,搅拌时有粘璧现象 表 3 响应面分析试验设计及结果
Table 3. Response surface analysis test design and results
试验号 A
(%)B
(℃)C
(L/h)Y1
(mg/100 g)Y2
(mg/100 g)Y3
(mg/100 g)Y4(分) 1 13 150 1.5 5862.11 1521.52 6885.79 74.5 2 17 150 1.5 5494.44 1444.82 6685.90 71.1 3 13 180 1.5 5513.23 1485.02 6760.58 67.6 4 17 180 1.5 5048.32 1400.42 5933.23 64.1 5 13 165 1.2 5078.56 1414.78 6010.35 62 6 17 165 1.2 4600.26 1372.48 5497.76 58.4 7 13 165 1.8 5428.48 1501.57 6487.56 69 8 17 165 1.8 5278.17 1460.00 6207.92 67 9 15 150 1.2 6099.13 1687.08 7316.54 77.8 10 15 180 1.2 5866.23 1622.66 6954.63 64.4 11 15 150 1.8 6232.77 1698.05 7568.27 80.4 12 15 180 1.8 6023.56 1644.18 7198.74 76.5 13 15 165 1.5 6527.98 1805.71 7801.57 82.9 14 15 165 1.5 6437.98 1792.81 7704.01 81.8 15 15 165 1.5 6637.98 1836.13 7933.03 84.3 16 15 165 1.5 6614.98 1829.77 7905.54 84 17 15 165 1.5 6711.98 1856.6 8021.47 85.3 表 4 维生素C回归模型方差分析
Table 4. Regression model analysis of variance of vitamin C
变异源 平方和 自由度 均方 F 值 P 值 显著性 模型 6404000 9 711600 37.36 <0.0001 ** A-麦芽糊精 266900 1 266900 14.01 0.0072 ** B-进风温度 191300 1 191300 10.04 0.0157 * C-进料流量 217400 1 217400 11.41 0.0118 * AB 2363.9 1 2363.9 0.12 0.735 AC 26894.36 1 26894.36 1.41 0.2735 BC 140.3 1 140.3 0.007366 0.934 A2 4492000 1 4492000 235.83 <0.0001 ** B2 22932.38 1 22932.38 1.2 0.3088 C2 879200 1 879200 46.16 0.0003 ** 残差 133300 7 19046.57 失拟值 88637.22 3 29545.74 2.64 0.1854 不显著 纯误差 44688.8 4 11172.2 总和 6538000 16 R2=0.9796 R2adj=0.9534 注:*表示差异显著P<0.05,**表示差异极显著P<0.01,表5~表7同。 表 5 黄酮回归模型方差分析
Table 5. Regression model analysis of variance of flavone
变异源 平方和 自由度 均方 F 值 P 值 显著性 模型 464400 9 51604.55 60.32 <0.0001 ** A-麦芽糊精 7513.54 1 7513.54 8.78 0.021 * B-进风温度 4959.58 1 4959.58 5.8 0.0469 * C-进料流量 5345.78 1 5345.78 6.25 0.041 * AB 15.6 1 15.6 0.018 0.8964 AC 0.13 1 0.13 0.0001557 0.9904 BC 27.83 1 27.83 0.033 0.862 A2 362800 1 362800 424.02 <0.0001 ** B2 19319.16 1 19319.16 22.58 0.0021 ** C2 36789.4 1 36789.4 43 0.0003 ** 残差 5988.61 7 855.52 失拟值 3438.29 3 1146.1 1.8 0.2871 不显著 纯误差 2550.32 4 637.58 总和 470400 16 R2=0.9873 R2adj=0.9709 表 6 多酚回归模型方差分析
Table 6. Regression model analysis of variance of polyphenol
变异源 平方和 自由度 均方 F 值 P 值 显著性 模型 9639000 9 1071000 57.79 < 0.0001 ** A-麦芽糊精 413800 1 413800 22.33 0.0021 ** B-进风温度 323700 1 323700 17.47 0.0041 ** C-进料流量 354100 1 354100 19.11 0.0033 ** AB 98426.51 1 98426.51 5.31 0.0546 AC 13566.43 1 13566.43 0.73 0.4205 BC 14.52 1 14.52 0.0007833 0.9785 A2 6660000 1 6660000 359.38 < 0.0001 ** B2 10130.43 1 10130.43 0.55 0.4837 C2 1342000 1 1342000 72.41 < 0.0001 ** 残差 129700 7 18532.37 失拟值 69361.01 3 23120.34 1.53 0.3362 不显著 纯误差 60365.58 4 15091.4 总和 9769000 16 R2=0.9867 R2adj=0.9696 表 7 感官综合评判总分回归模型方差分析
Table 7. Regression model analysis of sensory comprehensive evaluation total score
变异源 平方和 自由度 均方 F 值 P 值 显著性 模型 1224.82 9 136.09 105.74 <0.0001 ** A-麦芽糊精 19.53 1 19.53 15.17 0.0059 ** B-进风温度 121.68 1 121.68 94.54 <0.0001 ** C-进料流量 114.76 1 114.76 89.16 <0.0001 ** AB 0.0025 1 0.0025 0.001942 0.9661 AC 0.64 1 0.64 0.5 0.5035 BC 22.56 1 22.56 17.53 0.0041 ** A2 658.42 1 658.42 511.57 <0.0001 ** B2 14.1 1 14.1 10.96 0.0129 * C2 209.57 1 209.57 162.83 <0.0001 ** 残差 9.01 7 1.29 失拟值 1.76 3 0.59 0.32 0.8098 不显著 纯误差 7.25 4 1.81 总和 1233.83 16 R2=0.9927 R2adj=0.9833 -
[1] WANG Ruimin, HE Ruiping, LI Zhaohui, et al. HPLC-Q-Orbitrap-MS/MS phenolic profiles and biological activities of extracts from Roxburgh rose (Rosa roxburghii Tratt) leaves[J]. Arabian Journal of Chemistry,2021,14(8):103257. doi: 10.1016/j.arabjc.2021.103257 [2] CHEN Y, LIU Z J, LIU J, et al. Inhibition of metastasis and invasion of ovarian cancer cells by crude polysaccharides from Rosa roxburghii Tratt in vitro[J]. Asian Pacific Journal of Cancer Prevention,2014,15(23):10351−10354. [3] 张春妮, 周毓, 汪俊军. 刺梨药理研究的新进展[J]. 医学研究生学报,2005(11):93−95. [ZHANG Chunni, ZHOU Yu, WANG Junjun. Progress in the studies of pharmacology of Rosa roxbughii Tratt[J]. Journal of Medical Postgraduates,2005(11):93−95. doi: 10.3969/j.issn.1008-8199.2005.11.028 [4] PAN Hongyi, NIE Siming, KOU Ping, et al. An enhanced extraction and enrichment phytochemicals from rosa Roxburghii tratt leaves with ultrasound-assist CO2-based switchable-solvent and extraction mechanism study[J]. Journal of Molecular Liquids,2021,337:116591. doi: 10.1016/j.molliq.2021.116591 [5] WANG Lei, ZHANG Pan, LI Chao, et al. Antioxidant and digestion properties of polysaccharides from Rosa roxburghii Tratt fruit and polysacchride-iron (III) complex[J]. Journal of Food Processing and Preservation,2021,45(7):15617. [6] WANG L, LI C, HUANG Q, et al. Polysaccharide from Rosa roxburghii Tratt fruit attenuates hyperglycemia and hyperlipidemia and regulates colon microbiota in diabetic db/db mice[J]. Journal of Agricultural and Food Chemistry,2020,68(1):147−159. doi: 10.1021/acs.jafc.9b06247 [7] LIU Xiaozhu, LI Yinfeng, ZHAO Hubing, et al. Oenological property analysis of selected hanseniaspora uvarum isolated from Rosa roxburghii tratt[J]. International Journal of Food Engineering,2020,17(6):445−454. doi: 10.1515/ijfe-2020-0331 [8] WANG Litao, LÜ Mujie, AN Juanyan, et al. Botanical characteristics, phytochemistry and related biological activities of Rosa roxburghii Tratt fruit, and its potential use in functional foods: A review[J]. Food & Function,2021,12(4):1432−1451. [9] LIU Xiaozhu, LI Yinfeng, YU Zhihai, et al. Screening and characterisation of β-glucosidase production strains from Rosa roxburghii Tratt[J]. International Journal of Food Engineering,2021,17(1):1−9. doi: 10.1515/ijfe-2020-0152 [10] LI M, LI W, ZHANG G, et al. Rosa roxburghii Tratt extracts improves performance, enhances immune function and reduces oxidative stress in geese under heat stress[J]. Journal of Animal Science,2018,96(3):333−334. [11] WANG L, LI C, HUANG Q, et al. In vitro digestibility and prebiotic potential of a novel polysaccharide from Rosa roxburghii Tratt fruit[J]. Journal of Functional Foods,2019,52:408−417. doi: 10.1016/j.jff.2018.11.021 [12] 施伽, 范志平, 陆雅丽, 等. 刺梨果汁饮料的贮藏稳定性及其货架期预测[J]. 食品安全质量检测学报,2021,12(20):8076−8083. [SHI Jia, FAN Zhiping, LU Yali, et al. Storage stability and shelf-life prediction of Rosa roxburghii Tratt juice beverage[J]. Journal of Food Safety and Quality,2021,12(20):8076−8083. [13] 李小红, 阳如诗, 魏韶, 等. 响应面法优化刺梨果醋的发酵条件[J]. 中国调味品,2018,43(3):63−67,74. [LI Xiaohong, YANG Rushi, WEI Shao, et al. Optimization of fermentation conditions for Rosa roxbunghii vinegar by response surface methodology[J]. China Condiment,2018,43(3):63−67,74. doi: 10.3969/j.issn.1000-9973.2018.03.013 [14] 王宏, 李登, 黄星源, 等. 响应面法优化刺梨果酒发酵工艺研究[J]. 中国酿造,2021,40(6):124−128. [WANG Hong, LI Deng, HUANG Xingyuan, et al. Optimization fermentation technique of Rosa roxburghii fruit wine by response surface methodology[J]. China Brewing,2021,40(6):124−128. [15] 李小鑫, 郑文宇, 王晓芸, 等. 刺梨果渣软糖配方工艺优化研究[J]. 食品科技,2013,38(10):145−150. [LI Xiaoxin, ZHENG Wenyu, WANG Xiaoyun, et al. Optimazation of preparation processing of soft sweet with Roxburgh pomace[J]. Food Science and Technology,2013,38(10):145−150. [16] 许粟, 姚绍炉, 刘宇泽, 等. 响应面优化淀粉型刺梨凝胶软糖配方工艺[J]. 食品工业科技,2022,43(17):240−247. [XU Su, YAO Shaolu, LIU Yuze, et al. Optimization of preparation processing of starchy Roxburgh rose gel soft sweet by response surface analysis[J]. Science and Technology of Food Industry,2022,43(17):240−247. [17] 任亚梅, 袁春龙, 叶淑瑶, 等. 野刺梨果渣超微粉加工技术研究[J]. 西北农林科技大学学报(自然科学版),2017,45(4):134−139. [REN Yamei, YUAN Chunlong, YE Shuyao, et al. Processing technology of ultrafine powder from wild roxburgh slag[J]. Journal of Northwest A& F University (Nat Sci Ed),2017,45(4):134−139. [18] MARTA F Z, VANESSA M DA S, ANGELISE D, et al. Production of mango powder by spray drying and cast-tape drying[J]. Powder Technology, 2017, 305. [19] 李聪, 周沫, 毕金峰, 等. 麦芽糊精对喷雾干燥桃全粉物理性质的影响[J]. 中国食品学报,2019,19(5):155−163. [LI Cong, ZHOU Mo, BI Jinfeng, et al. Effect of maltodextrin on the physical properties of spray-dried peach power[J]. Journal of Chinese Institute of Food Science and Technology,2019,19(5):155−163. [20] 张婉迎, 杨俊杰, 杨松, 等. 响应面法优化蓝莓喷雾干燥工艺[J]. 食品工业,2019,40(4):105−109. [ZHANG Wanying, YANG Junjie, YANG Song, et al. Response surface methodology to optimize blueberry spray drying process[J]. The Food Industry,2019,40(4):105−109. [21] 叶双双, 楚文靖, 姜薇, 等. 响应面法优化猕猴桃胡萝卜复合果蔬粉喷雾干燥工艺[J]. 食品工业,2020,41(5):20−23. [YE Shuangshuang, CHU Wenjing, JIANG Wei, et al. Optimization spray drying of kiwi fruit and carrot compound powder by response surface methodology[J]. The Food Industry,2020,41(5):20−23. [22] 张厅, 陈思奇, 丁筑红, 等. 刺梨果汁喷雾干燥制粉工艺优化[J]. 现代食品科技,2020,36(12):168−179, 203. [ZHANG Ting, CHEN Siqi, DING Zhuhong, et al. Optimization of the spray-drying and pulverizing process of Rosa roxburghii Tratt juice[J]. Modern Food Science and Technology,2020,36(12):168−179, 203. [23] 蒋纬, 谭书明, 胡颖, 等. 刺梨果粉喷雾干燥工艺研究[J]. 食品工业,2013,34(10):25−28. [JIANG Wei, TANG Shuming, HU Ying, et al. Spray drying processing technology of Roxburgh rose powder[J]. The Food Industry,2013,34(10):25−28. [24] 邱旭, 杨宗玲, 李晗, 等. 无籽刺梨粉喷雾干燥工艺优化[J]. 食品工业,2019,40(9):36−39. [QIU Xu, YANG Zongling, LI Han, et al. Optimization of spray drying process of Rosa sterilis powder[J]. The Food Industry,2019,40(9):36−39. [25] 赵剪, 方婷, 陈梅英, 等. 模糊数学在不同处理橙汁感官评定中的应用[J]. 河南工业大学学报(自然科学版),2008(1):72−75. [ZHAO Jian, FANG Ting, CHEN Meiying, et al. Application of fuzzy mathematics on sensory evaluation of different processed orange juice[J]. Journal of Henan University of Technology (Natural Science Edition),2008(1):72−75. -