• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020

响应面优化刺梨清汁喷雾干燥制粉工艺

李凯 许粟 常云鹤 费建军 岑顺友 陈大龙 马立志

李凯,许粟,常云鹤,等. 响应面优化刺梨清汁喷雾干燥制粉工艺[J]. 食品工业科技,2023,44(11):204−210. doi:  10.13386/j.issn1002-0306.2022070313
引用本文: 李凯,许粟,常云鹤,等. 响应面优化刺梨清汁喷雾干燥制粉工艺[J]. 食品工业科技,2023,44(11):204−210. doi:  10.13386/j.issn1002-0306.2022070313
LI Kai, XU Su, CHANG Yunhe, et al. Optimization of Spray Drying Processing of Filtrable Roxburgh rose Juice by Response Surface Analysis[J]. Science and Technology of Food Industry, 2023, 44(11): 204−210. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022070313
Citation: LI Kai, XU Su, CHANG Yunhe, et al. Optimization of Spray Drying Processing of Filtrable Roxburgh rose Juice by Response Surface Analysis[J]. Science and Technology of Food Industry, 2023, 44(11): 204−210. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022070313

响应面优化刺梨清汁喷雾干燥制粉工艺

doi: 10.13386/j.issn1002-0306.2022070313
基金项目: 贵州省科技计划定向重点项目(黔科合支撑[2022]重点015号);贵阳市科技计划项目(筑科合同[2022]5-13);六盘水市科技支撑—农业攻关项目(52020—2019—N—02);中央引导地方科技发展资金项目(黔科中引地[2021]4009);贵州省科技计划项目(课题)(黔科合成果[2021]一般046);2021年贵阳学院硕士研究生科研基金项目(GYU-YJS[2021]-48)。
详细信息
    作者简介:

    李凯(1991−),男,硕士,研究方向:食品加工理论及工程化技术,E-mail:1357538161@qq.com

    通讯作者:

    马立志(1964−),男,硕士,教授,研究方向:农产品加工,E-mail:418829419@qq.com

  • 中图分类号: TS255.4

Optimization of Spray Drying Processing of Filtrable Roxburgh rose Juice by Response Surface Analysis

  • 摘要: 本研究以刺梨清汁、麦芽糊精为主要原料,通过喷雾干燥技术制备刺梨粉;以刺梨粉中维生素C含量、黄酮含量、多酚含量及感官评价综合评分为指标,通过刺梨清汁喷雾干燥单因素实验和响应面优化试验,研究刺梨清汁喷雾干燥制粉最佳工艺条件。单因素实验结果表明:麦芽糊精最适添加量为15%、最适进风温度为165 ℃、最适进料流量为1.5 L/h。响应面试验结果表明:麦芽糊精最适添加量为15%、最适进风温度为160 ℃、最适进料流量为1.5 L/h,在此条件下制备的刺梨粉品质最佳,其刺梨粉维生素C含量为6722.02 mg/100 g,黄酮含量为1904.02 mg/100 g,多酚含量为8122.43 mg/100 g,感官综合评判总分达到83.22分,刺梨粉组织状态均匀、具有明显的刺梨香气。本研究所制备的刺梨粉成本较低,营养价值较高,且制备方法简单,适合于工业化生产。
  • 图  1  麦芽糊精添加量对刺梨粉指标的影响

    Figure  1.  Effect of maltodextrin addition on the indicators of Roxburgh rose powder

    注:图中同一指标不同字母表示差异性显著(P<0.05);图2~图3同。

    图  2  进风温度对刺梨粉指标的影响

    Figure  2.  Effect of inlet air temperature on the indicators of Roxburgh rose powder

    图  3  进料流量对刺梨粉指标的影响

    Figure  3.  Effect of feed flow on the indicators of Roxburgh rose powder

    图  4  进风温度与进料流量交互作用的响应面图

    Figure  4.  Interactive response surface diagram of inlet air temperature and flow rate

    表  1  响应面3因素3水平试验设计

    Table  1.   Three-factor and three-level response surface experimental design

    水平因素
    A麦芽糊精添加量(%)B进风温度(℃)C进料流量(L/h)
    −1131501.2
    0151651.5
    1171801.8
    下载: 导出CSV

    表  2  刺梨粉感官综合评判评分细则

    Table  2.   Sensory grading rules of Roxburgh rose powder

    指标及
    权重
    级别
    优(100~80)良(79~60)中(59~40)差(39~0)
    色泽(20%)黄白色黄色棕黄色褐黄色
    香气(10%)刺梨特征
    香味浓郁
    刺梨特征
    香味清淡
    刺梨香味不足,带有少许异味无刺梨香味,
    有糊味产生
    组织状态(40%)粉末颗粒细小、均匀,挤压分散效果好粉末颗粒细小、均匀,挤压分
    散效果一般
    粉末颗粒大小不均,挤压易结块结块、无粉
    末颗粒
    溶解速度(30%)溶解速度快溶解速度一般溶解速度慢、需搅拌溶解溶解速度慢、需搅拌溶解,搅拌时有粘璧现象
    下载: 导出CSV

    表  3  响应面分析试验设计及结果

    Table  3.   Response surface analysis test design and results

    试验号A
    (%)
    B
    (℃)
    C
    (L/h)
    Y1
    (mg/100 g)
    Y2
    (mg/100 g)
    Y3
    (mg/100 g)
    Y4(分)​​​​​​​
    1131501.55862.111521.526885.7974.5
    2171501.55494.441444.826685.9071.1
    3131801.55513.231485.026760.5867.6
    4171801.55048.321400.425933.2364.1
    5131651.25078.561414.786010.3562
    6171651.24600.261372.485497.7658.4
    7131651.85428.481501.576487.5669
    8171651.85278.171460.006207.9267
    9151501.26099.131687.087316.5477.8
    10151801.25866.231622.666954.6364.4
    11151501.86232.771698.057568.2780.4
    12151801.86023.561644.187198.7476.5
    13151651.56527.981805.717801.5782.9
    14151651.56437.981792.817704.0181.8
    15151651.56637.981836.137933.0384.3
    16151651.56614.981829.777905.5484
    17151651.56711.981856.68021.4785.3
    下载: 导出CSV

    表  4  维生素C回归模型方差分析

    Table  4.   Regression model analysis of variance of vitamin C

    变异源平方和自由度均方FP显著性
    模型6404000971160037.36<0.0001**
    A-麦芽糊精266900126690014.010.0072**
    B-进风温度191300119130010.040.0157*
    C-进料流量217400121740011.410.0118*
    AB2363.912363.90.120.735
    AC26894.36126894.361.410.2735
    BC140.31140.30.0073660.934
    A2449200014492000235.83<0.0001**
    B222932.38122932.381.20.3088
    C2879200187920046.160.0003**
    残差133300719046.57
    失拟值88637.22329545.742.640.1854不显著
    纯误差44688.8411172.2
    总和653800016
    R2=0.9796R2adj=0.9534
    注:*表示差异显著P<0.05,**表示差异极显著P<0.01,表5~表7同。
    下载: 导出CSV

    表  5  黄酮回归模型方差分析

    Table  5.   Regression model analysis of variance of flavone

    变异源平方和自由度均方FP显著性
    模型464400951604.5560.32<0.0001**
    A-麦芽糊精7513.5417513.548.780.021*
    B-进风温度4959.5814959.585.80.0469*
    C-进料流量5345.7815345.786.250.041*
    AB15.6115.60.0180.8964
    AC0.1310.130.00015570.9904
    BC27.83127.830.0330.862
    A23628001362800424.02<0.0001**
    B219319.16119319.1622.580.0021**
    C236789.4136789.4430.0003**
    残差5988.617855.52
    失拟值3438.2931146.11.80.2871不显著
    纯误差2550.324637.58
    总和47040016
    R2=0.9873R2adj=0.9709
    下载: 导出CSV

    表  6  多酚回归模型方差分析

    Table  6.   Regression model analysis of variance of polyphenol

    变异源平方和自由度均方FP显著性
    模型96390009107100057.79< 0.0001**
    A-麦芽糊精413800141380022.330.0021**
    B-进风温度323700132370017.470.0041**
    C-进料流量354100135410019.110.0033**
    AB98426.51198426.515.310.0546
    AC13566.43113566.430.730.4205
    BC14.52114.520.00078330.9785
    A2666000016660000359.38< 0.0001**
    B210130.43110130.430.550.4837
    C213420001134200072.41< 0.0001**
    残差129700718532.37
    失拟值69361.01323120.341.530.3362不显著
    纯误差60365.58415091.4
    总和976900016
    R2=0.9867R2adj=0.9696
    下载: 导出CSV

    表  7  感官综合评判总分回归模型方差分析

    Table  7.   Regression model analysis of sensory comprehensive evaluation total score

    变异源平方和自由度均方FP显著性
    模型1224.829136.09105.74<0.0001**
    A-麦芽糊精19.53119.5315.170.0059**
    B-进风温度121.681121.6894.54<0.0001**
    C-进料流量114.761114.7689.16<0.0001**
    AB0.002510.00250.0019420.9661
    AC0.6410.640.50.5035
    BC22.56122.5617.530.0041**
    A2658.421658.42511.57<0.0001**
    B214.1114.110.960.0129*
    C2209.571209.57162.83<0.0001**
    残差9.0171.29
    失拟值1.7630.590.320.8098不显著
    纯误差7.2541.81
    总和1233.8316
    R2=0.9927R2adj=0.9833
    下载: 导出CSV
  • [1] WANG Ruimin, HE Ruiping, LI Zhaohui, et al. HPLC-Q-Orbitrap-MS/MS phenolic profiles and biological activities of extracts from Roxburgh rose (Rosa roxburghii Tratt) leaves[J]. Arabian Journal of Chemistry,2021,14(8):103257. doi:  10.1016/j.arabjc.2021.103257
    [2] CHEN Y, LIU Z J, LIU J, et al. Inhibition of metastasis and invasion of ovarian cancer cells by crude polysaccharides from Rosa roxburghii Tratt in vitro[J]. Asian Pacific Journal of Cancer Prevention,2014,15(23):10351−10354.
    [3] 张春妮, 周毓, 汪俊军. 刺梨药理研究的新进展[J]. 医学研究生学报,2005(11):93−95. [ZHANG Chunni, ZHOU Yu, WANG Junjun. Progress in the studies of pharmacology of Rosa roxbughii Tratt[J]. Journal of Medical Postgraduates,2005(11):93−95. doi:  10.3969/j.issn.1008-8199.2005.11.028
    [4] PAN Hongyi, NIE Siming, KOU Ping, et al. An enhanced extraction and enrichment phytochemicals from rosa Roxburghii tratt leaves with ultrasound-assist CO2-based switchable-solvent and extraction mechanism study[J]. Journal of Molecular Liquids,2021,337:116591. doi:  10.1016/j.molliq.2021.116591
    [5] WANG Lei, ZHANG Pan, LI Chao, et al. Antioxidant and digestion properties of polysaccharides from Rosa roxburghii Tratt fruit and polysacchride-iron (III) complex[J]. Journal of Food Processing and Preservation,2021,45(7):15617.
    [6] WANG L, LI C, HUANG Q, et al. Polysaccharide from Rosa roxburghii Tratt fruit attenuates hyperglycemia and hyperlipidemia and regulates colon microbiota in diabetic db/db mice[J]. Journal of Agricultural and Food Chemistry,2020,68(1):147−159. doi:  10.1021/acs.jafc.9b06247
    [7] LIU Xiaozhu, LI Yinfeng, ZHAO Hubing, et al. Oenological property analysis of selected hanseniaspora uvarum isolated from Rosa roxburghii tratt[J]. International Journal of Food Engineering,2020,17(6):445−454. doi:  10.1515/ijfe-2020-0331
    [8] WANG Litao, LÜ Mujie, AN Juanyan, et al. Botanical characteristics, phytochemistry and related biological activities of Rosa roxburghii Tratt fruit, and its potential use in functional foods: A review[J]. Food & Function,2021,12(4):1432−1451.
    [9] LIU Xiaozhu, LI Yinfeng, YU Zhihai, et al. Screening and characterisation of β-glucosidase production strains from Rosa roxburghii Tratt[J]. International Journal of Food Engineering,2021,17(1):1−9. doi:  10.1515/ijfe-2020-0152
    [10] LI M, LI W, ZHANG G, et al. Rosa roxburghii Tratt extracts improves performance, enhances immune function and reduces oxidative stress in geese under heat stress[J]. Journal of Animal Science,2018,96(3):333−334.
    [11] WANG L, LI C, HUANG Q, et al. In vitro digestibility and prebiotic potential of a novel polysaccharide from Rosa roxburghii Tratt fruit[J]. Journal of Functional Foods,2019,52:408−417. doi:  10.1016/j.jff.2018.11.021
    [12] 施伽, 范志平, 陆雅丽, 等. 刺梨果汁饮料的贮藏稳定性及其货架期预测[J]. 食品安全质量检测学报,2021,12(20):8076−8083. [SHI Jia, FAN Zhiping, LU Yali, et al. Storage stability and shelf-life prediction of Rosa roxburghii Tratt juice beverage[J]. Journal of Food Safety and Quality,2021,12(20):8076−8083.
    [13] 李小红, 阳如诗, 魏韶, 等. 响应面法优化刺梨果醋的发酵条件[J]. 中国调味品,2018,43(3):63−67,74. [LI Xiaohong, YANG Rushi, WEI Shao, et al. Optimization of fermentation conditions for Rosa roxbunghii vinegar by response surface methodology[J]. China Condiment,2018,43(3):63−67,74. doi:  10.3969/j.issn.1000-9973.2018.03.013
    [14] 王宏, 李登, 黄星源, 等. 响应面法优化刺梨果酒发酵工艺研究[J]. 中国酿造,2021,40(6):124−128. [WANG Hong, LI Deng, HUANG Xingyuan, et al. Optimization fermentation technique of Rosa roxburghii fruit wine by response surface methodology[J]. China Brewing,2021,40(6):124−128.
    [15] 李小鑫, 郑文宇, 王晓芸, 等. 刺梨果渣软糖配方工艺优化研究[J]. 食品科技,2013,38(10):145−150. [LI Xiaoxin, ZHENG Wenyu, WANG Xiaoyun, et al. Optimazation of preparation processing of soft sweet with Roxburgh pomace[J]. Food Science and Technology,2013,38(10):145−150.
    [16] 许粟, 姚绍炉, 刘宇泽, 等. 响应面优化淀粉型刺梨凝胶软糖配方工艺[J]. 食品工业科技,2022,43(17):240−247. [XU Su, YAO Shaolu, LIU Yuze, et al. Optimization of preparation processing of starchy Roxburgh rose gel soft sweet by response surface analysis[J]. Science and Technology of Food Industry,2022,43(17):240−247.
    [17] 任亚梅, 袁春龙, 叶淑瑶, 等. 野刺梨果渣超微粉加工技术研究[J]. 西北农林科技大学学报(自然科学版),2017,45(4):134−139. [REN Yamei, YUAN Chunlong, YE Shuyao, et al. Processing technology of ultrafine powder from wild roxburgh slag[J]. Journal of Northwest A& F University (Nat Sci Ed),2017,45(4):134−139.
    [18] MARTA F Z, VANESSA M DA S, ANGELISE D, et al. Production of mango powder by spray drying and cast-tape drying[J]. Powder Technology, 2017, 305.
    [19] 李聪, 周沫, 毕金峰, 等. 麦芽糊精对喷雾干燥桃全粉物理性质的影响[J]. 中国食品学报,2019,19(5):155−163. [LI Cong, ZHOU Mo, BI Jinfeng, et al. Effect of maltodextrin on the physical properties of spray-dried peach power[J]. Journal of Chinese Institute of Food Science and Technology,2019,19(5):155−163.
    [20] 张婉迎, 杨俊杰, 杨松, 等. 响应面法优化蓝莓喷雾干燥工艺[J]. 食品工业,2019,40(4):105−109. [ZHANG Wanying, YANG Junjie, YANG Song, et al. Response surface methodology to optimize blueberry spray drying process[J]. The Food Industry,2019,40(4):105−109.
    [21] 叶双双, 楚文靖, 姜薇, 等. 响应面法优化猕猴桃胡萝卜复合果蔬粉喷雾干燥工艺[J]. 食品工业,2020,41(5):20−23. [YE Shuangshuang, CHU Wenjing, JIANG Wei, et al. Optimization spray drying of kiwi fruit and carrot compound powder by response surface methodology[J]. The Food Industry,2020,41(5):20−23.
    [22] 张厅, 陈思奇, 丁筑红, 等. 刺梨果汁喷雾干燥制粉工艺优化[J]. 现代食品科技,2020,36(12):168−179, 203. [ZHANG Ting, CHEN Siqi, DING Zhuhong, et al. Optimization of the spray-drying and pulverizing process of Rosa roxburghii Tratt juice[J]. Modern Food Science and Technology,2020,36(12):168−179, 203.
    [23] 蒋纬, 谭书明, 胡颖, 等. 刺梨果粉喷雾干燥工艺研究[J]. 食品工业,2013,34(10):25−28. [JIANG Wei, TANG Shuming, HU Ying, et al. Spray drying processing technology of Roxburgh rose powder[J]. The Food Industry,2013,34(10):25−28.
    [24] 邱旭, 杨宗玲, 李晗, 等. 无籽刺梨粉喷雾干燥工艺优化[J]. 食品工业,2019,40(9):36−39. [QIU Xu, YANG Zongling, LI Han, et al. Optimization of spray drying process of Rosa sterilis powder[J]. The Food Industry,2019,40(9):36−39.
    [25] 赵剪, 方婷, 陈梅英, 等. 模糊数学在不同处理橙汁感官评定中的应用[J]. 河南工业大学学报(自然科学版),2008(1):72−75. [ZHAO Jian, FANG Ting, CHEN Meiying, et al. Application of fuzzy mathematics on sensory evaluation of different processed orange juice[J]. Journal of Henan University of Technology (Natural Science Edition),2008(1):72−75.
  • 加载中
图(4) / 表(7)
计量
  • 文章访问数:  111
  • HTML全文浏览量:  12
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-02
  • 网络出版日期:  2023-04-20
  • 刊出日期:  2023-06-01

目录

    /

    返回文章
    返回