Effect of Ball Milling on the Structure and Properties of Insoluble Dietary Fiber in Jackfruit Peel
-
摘要: 为改善水不溶性膳食纤维(Insoluble dietary fiber,IDF)的口感和功能特性,以菠萝蜜果皮IDF为对象,采用行星球磨对其进行干法粉碎处理。通过表征分析及研究其理化性质的变化,探究不同球磨时间对菠萝蜜果皮IDF的微观形貌、化学结构、晶相结构和比表面积以及功能特性的影响。结果表明,球磨改性使IDF原有的纤维束状结构被破坏,粒径变小,比表面积增大,球磨时间18 h时,IDF的平均粒最小,比表面积最大,球磨改性不影响IDF的化学组成和结晶结构。随球磨时间延长,IDF的持水力、结合水力、溶胀性和阳离子交换能力呈先增大后减小的变化趋势,持油力总体呈下降趋势。球磨时间为18 h时,其持水力、结合水力最高,分别为4.6和4.3 g/g,阳离子交换能力也最强。研究表明球磨对菠萝蜜果皮IDF具有很好的粉碎改性效果并能改善其功能特性。Abstract: To improve the taste and functional properties of water-insoluble dietary fibre (IDF), the IDF of jackfruit peel was dryly ground by planetary ball milling. With characterization and properties analysis, the effect of ball milling time on the morphology, chemical structure, crystalline structure, specific surface area and functional properties of jackfruit peel IDF were investigated. From the results, the original fibre structure of IDF was destroyed, the particle size became smaller and the specific surface area increased after ball milling. With 18 h of ball milling time, there was the smallest average particle size and the largest specific surface area of IDF. Moreover, with ball milling modification, the chemical composition and crystal structure of IDF were not changed. With the ball milling time prolonging, the water holding capacity, binding capacity, swelling ability and cation exchange capacity of IDF increased first and then decreased, and there also existed the declined trend of oil holding capacity. It presented the highest water holding capacity (4.6 g/g), the highest binding capacity (4.3 g/g), and the strongest cation exchange capacity by 18 h milling time. In this study, ball milling exhibited good performance in jackfruit peel IDF grinding and modification, which also improved its functional properties.
-
Key words:
- jackfruit /
- dietary fiber /
- ball milling time /
- superfine grinding
-
图 6 球磨时间对IDF持水力和结合水力的影响
Figure 6. Effect of ball milling time on water holding capacity and binding capacity of IDF
注:图中不同小写字母表示显著差异,P<0.05,图7同。
表 1 不同球磨时间处理的样品比表面积及粒径
Table 1. Specific surface area and particle size of samples treated at different milling time
球磨时间(h) 比表面积(m2/g) 表面积平均粒径(μm) 体积平均粒径(μm) 3 0.201 29.896 153.213 6 0.297 20.186 130.141 9 0.377 15.925 96.361 12 0.457 13.131 54.229 18 0.588 10.201 35.775 24 0.506 11.827 39.435 -
[1] JAYUS, SETIAWAN D, GIYARTO. Physical and chemical characteristics of jackfruit (Artocarpus heterophyllus lamk.) seeds flour produced under fermentation process by Lactobacillus plantarum[J]. Agriculture and Agricultural Science Procedia,2016,9:342−347. doi: 10.1016/j.aaspro.2016.02.148 [2] SUBBURAMU K, SINGARAVELU M, NAZAR A, et al. A study on the utilization of jack fruit waste[J]. Bioresource Technology,1992,40(1):85−86. doi: 10.1016/0960-8524(92)90125-H [3] PREM J V, VAZHACHARICKAL J, MATHEW J, et al. Chemistry and medicinal properties of jackfruit (Artocarpus heterophyllus): A review on current status of knowledge[J]. International Journal of Innovative Research and Review,2015,3(2):83−95. [4] ZHANG L, TU Z C, XIE X, et al. Jackfruit (Artocarpus heterophyllus lam.) peel: A better source of antioxidants and a-glucosidase inhibitors than pulp, flake and seed, and phytochemical profile by HPLC-QTOF-MS/MS[J]. Food Chemistry,2017,234:303. doi: 10.1016/j.foodchem.2017.05.003 [5] WANG L, WEI B, CAI F, et al. Recycling durian shell and jackfruit peel via anaerobic digestion[J]. Bioresource Technology,2022,343:126032. doi: 10.1016/j.biortech.2021.126032 [6] SBK A, SBS B. Recent application of jackfruit waste in food and material engineering: A review[J]. Food Bioscience,2022,48:101740. doi: 10.1016/j.fbio.2022.101740 [7] 邓梦琴, 林晓瑛, 张明, 等. 超声辅助提取菠萝蜜果皮黄酮工艺优化及体外抗氧化活性研究[J]. 食品工业科技,2016,37(24):288−293, 296. [[DENG M Q, LIN X Y, ZHANG M, et al. Study on ultresonic assisted extraction and antioxidant function of flavones from the peels of Artocarpus heterophyllus lam[J]. Science and Technology of Food Industry,2016,37(24):288−293, 296. doi: 10.13386/j.issn1002-0306.2016.24.047 [8] 涂凌云, 莫文凤, 刘涛, 等. 果蔬副产品膳食纤维提取工艺及在食品工业应用研究进展[J]. 中国调味品,2021,7:176−180, 185. [TU L Y MO W F, LIU T, et al. Research progress on extraction technology of dietary fiber from fruit and vegetable by-products and its application in food industry[J]. China Condiment,2021,7:176−180, 185. doi: 10.3969/j.issn.1000-9973.2021.07.036 [9] MERENKOVA S, ZININA O, STUART M, et al. Effects of dietary fiber on human health: A review[J]. Human Sport Medicine,2020,20(1):106−113. doi: 10.14529/hsm200113 [10] WANG X X, ZHANG L P, QIN L, et al. Physicochemical properties of the soluble dietary fiber from Laminaria japonica and its role in the regulation of type 2 diabetes mice[J]. Nutrients,2022,14(2):329. doi: 10.3390/nu14020329 [11] MEI H, LU J, QU D, et al. Structure, physicochemical properties and adsorption function of insoluble dietary fiber from ginseng residue: A potential functional ingredient[J]. Food Chemistry,2019,286:522−529. doi: 10.1016/j.foodchem.2019.01.114 [12] CCWA B, ZHEN Y, JJXA B, et al. Effects and underlying mechanisms of insoluble dietary fiber and ferulic acid on the crumb structure of steamed bread[J]. Food Hydrocolloids,2021,125:107448. [13] 魏楠, 赵世航. 大豆膳食纤维改性及在烘焙食品中的应用研究[J]. 现代食品,2022,28(1):3. [WEI N, ZHAO S H. Research on modification of soybean dietary fiber and its application in baked food[J]. Modern Food,2022,28(1):3. doi: 10.16736/j.cnki.cn41-1434/ts.2022.01.010 [14] REN F, FENG Y, ZHANG H, et al. Effects of modification methods on microstructural and physicochemical characteristics of defatted rice bran dietary fiber[J]. LWT,2021,151:112161. doi: 10.1016/j.lwt.2021.112161 [15] 王雅怡, 付晓康, 贺便, 等. 不同处理方法对洋蓟膳食纤维结构及理化性质的影响[J]. 食品工业科技,2022,43(22):83−89. [WANG Y Y, FU X K, HE B, et al. Effects of different treatments on the structure and physicochemical properties of artchoke dietary fiber[J]. Science and Technology of Food Industry,2022,43(22):83−89. [16] 徐燕, 谭熙蕾, 周才琼. 膳食纤维的组成、改性及其功能特性研究[J]. 食品研究与开发,2021,42(23):211−218. [XU Y, TAN X L, ZHOU C Q. Composition, modification and functional properties of dietary fiber[J]. Food Research and Development,2021,42(23):211−218. doi: 10.12161/j.issn.1005-6521.2021.23.033 [17] 赵愉涵, 秦畅, 孙斐, 等. 超微粉碎处理对八宝粥粉理化特性及功能特性的影响[J]. 食品工业科技,2022,43(18):21−28. [ZHAO Y H, QIN C, SUN W, et al. Effects of superfine grinding treatment on the ohysicochemical and functional properties of mixed congee powder[J]. Science and Technology of Food Industry,2022,43(18):21−28. [18] GAO W, CHEN F, WANG X, et al. Recent advances in processing food powders by using superfine grinding techniques: A review[J]. Comprehensive Reviews in Food Science and Food Safety, 2020, 19(2): 2222-2255. [19] CAVALLINI C M, CÉLIA M L. Effect of acid-ethanol treatment followed by ball milling on structural and physicochemical characteristics of cassava starch[J]. Starch-Strke,2010,62(5):236−245. doi: 10.1002/star.200900231 [20] 樊华, 刘夫国, 王玉堂, 等. 球磨联合碱辅助酶法改善淡竹叶水溶性膳食纤维的物化和功能特性[J/OL]. 食品科学: 1−14 [2022-09-16]. http://kns.cnki.net/kcms/detail/11.2206.TS.20220622.0900.018.html.FAN H, LIU F G, WANG Y T, et al. Ball milling with alkaline-assisted enzymatic extraction improves the physicochemical and functional properties of soluble dietary fiber of Herba lophatheri[J/OL]. Food Science: 1−14 [2022-09-16]. http://kns.cnki.net/kcms/detail/11.2206.TS.20220622.0900.018.html. [21] 汤彩碟, 张甫生, 杨金来, 等. 机械球磨处理对方竹笋全粉理化特性及微观结构的影响[J]. 食品与发酵工业,2022,48(12):175−182. [TANG C D, ZHANG P S, YANG J L, et al. Effect of mechanical ball milling treatment on physico-chemical properties and microstructure of Chimonobambusa quadrangularis powder[J]. Food and Fermentation Industries,2022,48(12):175−182. doi: 10.13995/j.cnki.11-1802/ts.028090 [22] 曹琦琦, 黄妮子, 滕建文, 等. 微粉碎对百香果皮纤维粉理化性质及功能活性的影响[J]. 食品工业科技,2021,42(16):28−36. [CAO Q Q, HUANG N Z, TENG J W, et al. Effect of grinding on the physicochemical and functional properties of the passion fruit peel residue[J]. Science and Technology of Food Industry,2021,42(16):28−36. doi: 10.13386/j.issn1002-0306.2020120044 [23] XU S Y, LIU J P, HUANG X, et al. Ultrasonic-microwave assisted extraction, characterization and biological activity of pectin from jackfruit peel[J]. LWT, 2018, 90: 577−582. [24] 彭芍丹, 李积华, 黄晓兵, 等. 菠萝蜜果皮活性成分的纯化与结构鉴定[J]. 食品工业科技,2017,38(17):5−9. [PENG S D, LI J H, HUANG X B, et al. Separation, purification and structural analysis of active compound from jackfruit peel[J]. Science and Technology of Food Industry,2017,38(17):5−9. doi: 10.13386/j.issn1002-0306.2017.17.002 [25] KITTIPONGPATANA O S, KITTIPONGPATANA N. Preparation and physicochemical properties of modified jackfruit starches[J]. Food Science & Technology Zurich,2011,44(8):1766−1733. [26] ANTONY A S, THOTTIAM V R, SRIRAMULU G. Optimized extraction and characterization of pectin from jackfruit (Artocarpus integer) wastes using response surface methodology[J]. International Journal of Biological Macromolecules:Structure, Function and Interactions,2018,106:698−703. [27] 史早, 张甫生, 杨金来, 等. 超微粉碎对方竹笋全粉理化特性及微观结构的影响[J]. 食品工业科技,2021,42(24):40−47. [SHI Z, ZHANG P S, YANG J L, et al. Effect of superfine grinding on physicochemical properties and microstructure of Chimonobambusa quadrangularis shoot power[J]. Science and Technology of Food Industry,2021,42(24):40−47. doi: 10.13386/j.issn1002-0306.2021040079 [28] 李昌文, 张丽华, 胡少帅, 等. 超微粉碎对芹菜渣理化特性的影响[J]. 食品工业,2021,42(7):150−153. [LI C W, ZHANG L H, HU S S, et al. Ultrafine grinding of slag celery physicochemical properties[J]. The Food Industry,2021,42(7):150−153. [29] 激光粒度分析仪说明书[G]. 英国马尔文仪器公司, 2001Instructions for laser particle size analyzer[G]. Malvern, 2001. [30] 任雨离, 刘玉凌, 何翠, 等. 微波和微粉碎改性对方竹笋膳食纤维性能和结构的影响[J]. 食品与发酵工业,2017,43(8):145−150. [REN Y L, LIU Y L, HE C, et al. Changes of fresh chimonobambusa dietary fiber in properties and structure modified by microwave and fine grinding[J]. Food and Fermentation Industries,2017,43(8):145−150. doi: 10.13995/j.cnki.11-1802/ts.013592 [31] 张明, 周萍, 李新胜, 等. 不同干燥方式对金针菇菇根粉物理性质的影响[J]. 食品工业科技,2016,37(6):100−103, 108. [ZHANG M, ZHOU P, LI X S, et al. Effect of drying methods on powder physical properties of Flammulina velutipes root[J]. Science and Technology of Food Industry,2016,37(6):100−103, 108. doi: 10.13386/j.issn1002-0306.2016.06.011 [32] 王红, 刘婷婷, 樊红秀, 等. 挤压改性对金针菇膳食纤维理化性质及微观结构的影响[J]. 中国食品学报,2021,21(8):166−174. [WANG H, LIU T T, FAN X H, et al. Effects of extrusion modification on physicochemical properties and microstructure of Flammulina velutipes dietary fiber[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(8):166−174. doi: 10.16429/j.1009-7848.2021.08.016 [33] 刘宁, 温沐潮, 戴瑞, 等. 双氧水脱色对香蕉皮不溶性膳食纤维品质的影响[J]. 食品科技,2019,44(7):296−301. [LIU N, WEN M C, DAI R, et al. Effect of hydrogen peroxide decolorization on insoluble dietary fiber quality of banana peel[J]. Food Science and Technology,2019,44(7):296−301. doi: 10.13684/j.cnki.spkj.2019.07.048 [34] 杨芙莲, 王平平, 王艳莉. 超微粉碎对甜荞麦全粉理化特性的影响[J]. 食品科技,2018,43(10):234−238. [YANG F L, WANG P P, WANG Y L. Effect of superfine grinding on the physical properties of sweet whole buckwheat powder[J]. Food Science and Technology,2018,43(10):234−238. doi: 10.13684/j.cnki.spkj.2018.10.040 [35] 王崇队, 张明, 杨立风, 等. 不同来源膳食纤维品质分析及抗氧化活性研究[J]. 食品科技,2019,44(5):78−83. [WANG C D, ZHANG M, YANG L F, et al. Quality analysis and antioxidant activity of dietary fiber from different sources[J]. Food Science and Technology,2019,44(5):78−83. doi: 10.13684/j.cnki.spkj.2019.05.016 [36] 杨茉, 王素雅, 曹崇江, 等. 超微粉碎对竹笋壳粉理化性质的影响[J]. 食品工业科技,2019,40(1):34−39. [YANG M, WANG S Y, CAO C J, et al. Effect of ultrafine grinding on physical and chemical properties of bamboo shell powder[J]. Science and Technology of Food Industry,2019,40(1):34−39. doi: 10.13386/j.issn1002-0306.2019.01.007 [37] 张艳莉, 王颖, 王迪, 等. 芸豆渣膳食纤维超声辅助酶法提取工艺优化及特性研究[J]. 食品与机械,2019,35(10):201−205. [ZHANG Y L, WANG Y, WANG D, et al. Optimization of ultrasonic assisted enzymatic extraction of dietary fiber from light speckled kidney bean[J]. Food & Machinery,2019,35(10):201−205. doi: 10.13652/j.issn.1003-5788.2019.10.041 [38] 栗俊广, 姜茜, 望运滔, 等. 不同来源膳食纤维的结构和理化性质分析[J]. 食品与机械,2020,36(12):18−23. [LI J G, JIANG Q, WANG Y T, et al. The structure and physicochemical properties of different types of dietary fiber[J]. Food & Machinery,2020,36(12):18−23. doi: 10.13652/j.issn.1003-5788.2020.12.004 [39] 桑嘉玘, 李璐, 温靖, 等. 蜜柑皮和蜜柑果肉膳食纤维的结构表征、理化和功能性质[J/OL]. 食品与发酵工业: 1−10[2022-09-09]SANG J Q, LI L, WEN J, et al. Physicochemical properties, functional and structural characterization of dietary fiber of mandarin orange peel and pulp[J/OL]. Food and Fermentation Industries: 1−10[2022-09-09]. [40] 刘成梅, 刘伟, 林向阳, 等. Microfluidizer对膳食纤维微粒粒度分布的影响[J]. 食品科学,2004,25(1):52−55. [LIU C M, LIU W, LIN X Y, et al. Particle size distribution analysis of particle in microfluidizer treated dietary fiber[J]. Food Science,2004,25(1):52−55. doi: 10.3321/j.issn:1002-6630.2004.01.007 [41] 邱玉桂, 孙凌虹. Soda—AQ法苇浆氧气漂白[J]. 中国造纸,1998,17(3):33−36. [QIU Y G, SUN L H. Oxygen bleaching of reed pulp by soda AQ process[J]. China Pulp and Paper,1998,17(3):33−36. [42] 宋云禹. 毛葱膳食纤维改性工艺优化及其结构与性质的研究[D]. 长春: 吉林农业大学, 2018[SONG Y Y. Optimization of modification process and research on structure and property of the tillering onion dietary fiber[D]. Changchun: Jilin Agricultural University, 2018. [43] ZHANG M, ZHANG C J, SHRESTHA S. Study on the preparation technology of superfine ground powder of agrocybe chaxingu huang[J]. Journal of Food Engineering,2005,67(3):333−337. doi: 10.1016/j.jfoodeng.2004.04.036 [44] 李焕霞, 王华, 刘树立. 粒度不同对膳食纤维品质影响研究[J]. 食品与发酵科技,2007,43(3):35−37. [LI H X, WANG H, LIU S L. The impact of different granularity to character of dietary fiber[J]. Sichuan Food and Fermentation,2007,43(3):35−37. doi: 10.3969/j.issn.1674-506X.2007.03.009 [45] 赵萌萌, 党斌, 张文刚, 等. 超微粉碎对青稞麸皮粉微观结构及功能特性的影响[J]. 农业工程学报,2020,36(8):278−286. [ZHAO M M, DANG B, ZHANG W G, et al. Effects of ultrafine crushing on microstructure and functional properties of highland barley bran powder[J]. Transactions of the Chinese Society of Agricultural Engineering,2020,36(8):278−286. doi: 10.11975/j.issn.1002-6819.2020.08.034 [46] 乔小全, 任广跃, 段续, 等. 超微粉碎辅助提取黑豆皮水溶性膳食纤维及其特性研究[J]. 中国粮油学报,2018,33(11):92−98, 104. [QIAO X Q, REN G Y, DUAN X, et al. Extraction of water-soluble dietary fiber from black soybean hull by superfine grinding-assister enzymatic hydrolysis and its characteristics[J]. Journal of the Chinese Cereals and Oils Association,2018,33(11):92−98, 104. doi: 10.3969/j.issn.1003-0174.2018.11.016 [47] 李安平, 谢碧霞, 钟秋平, 等. 不同粒度竹笋膳食纤维功能特性研究[J]. 食品工业科技,2008(3):3. [LI A P, XIE B X, ZHONG Q P, et al. Effect of particle sizes on functional properties of dietary fiber prepared from bamboo shoots[J]. Science and Technology of Food Industry,2008(3):3. doi: 10.13386/j.issn1002-0306.2008.03.028 [48] 高宇萍, 韩育梅, 李周永, 等. 超声波处理对水不溶性膳食纤维膨胀力及持水力的影响[J]. 食品工业科技,2012,33(16):299−301. [GAO Y P, HAN Y M, LI Z Y, et al. Effect of ultrasonic treatment on expansive force and water-holding capacity of insoluble dietary fiber[J]. Science and Technology of Food Industry,2012,33(16):299−301. doi: 10.13386/j.issn1002-0306.2012.16.092 [49] 夏晓霞, 寇福兵, 薛艾莲, 等. 超微粉碎对枣粉理化性质、功能特性及结构特征的影响[J/OL]. 食品与发酵工业: 1−14 [2022-05-26]XIA X X, KOU F B, XUE A L, et al. Effect of superfine grinding on physicochemical properties, functional and structure characteristics of jujube power[J/OL]. Food and Fermentation Industries: 1−14 [2022-05-26]. [50] 王博, 姚轶俊, 李枝芳, 等. 超微粉碎对4种杂粮粉理化性质及功能特性的影响[J]. 食品科学,2020,41(19):111−117. [WANG B, YAO Y J, LI Z F, et al. Effect of superfine grinding on physicochemical properties and functional properties of four kinds coarse cereals[J]. Food Science,2020,41(19):111−117. doi: 10.7506/spkx1002-6630-20190912-150 [51] 张明, 马超, 王崇队, 等. 不同粉碎粒度对大麦苗粉体品质和加工特性的影响[J]. 食品科技,2019,44(7):224−228. [ZHANG M, MA C, WANG C D, et al. Effects of different crushing granularity on powder quality and processing characteristics of barley seedlings powder[J]. Food Science and Technology,2019,44(7):224−228. doi: 10.13684/j.cnki.spkj.2019.07.035 [52] 刘静, 刘雪, 刘少伟, 等. 不同处理方法对裙带菜膳食纤维性质的影响[J]. 食品工业,2020,41(4):39−43. [LIU J, LIU X, LIU S W, et al. Effects of different treatments on the properties of dietary fiber from Undaria pinnatifida[J]. The Food Industry,2020,41(4):39−43. [53] 王大为, 宋云禹, 刘阳, 等. 毛葱膳食纤维性质及结构分析[J]. 食品科学,2018,39(2):53−57. [WANG D W, SONG Y Y, LIU Y, et al. Properties and structure of dietary fiber from tillering onion[J]. Food Science,2018,39(2):53−57. doi: 10.7506/spkx1002-6630-201802009 -