• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020

球磨处理对菠萝蜜果皮不溶性膳食纤维结构及性能的影响

黄浩燃 张星启 温辉翠 李育瑶 黄子桐 范振梅 宋贤良

黄浩燃,张星启,温辉翠,等. 球磨处理对菠萝蜜果皮不溶性膳食纤维结构及性能的影响[J]. 食品工业科技,2023,44(11):211−218. doi:  10.13386/j.issn1002-0306.2022070314
引用本文: 黄浩燃,张星启,温辉翠,等. 球磨处理对菠萝蜜果皮不溶性膳食纤维结构及性能的影响[J]. 食品工业科技,2023,44(11):211−218. doi:  10.13386/j.issn1002-0306.2022070314
HUANG Haoran, ZHANG Xingqi, WEN Huicui, et al. Effect of Ball Milling on the Structure and Properties of Insoluble Dietary Fiber in Jackfruit Peel[J]. Science and Technology of Food Industry, 2023, 44(11): 211−218. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022070314
Citation: HUANG Haoran, ZHANG Xingqi, WEN Huicui, et al. Effect of Ball Milling on the Structure and Properties of Insoluble Dietary Fiber in Jackfruit Peel[J]. Science and Technology of Food Industry, 2023, 44(11): 211−218. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022070314

球磨处理对菠萝蜜果皮不溶性膳食纤维结构及性能的影响

doi: 10.13386/j.issn1002-0306.2022070314
基金项目: 广东省自然科学基金项目(2022A1515011756)。
详细信息
    作者简介:

    黄浩燃(1998−),男,硕士研究生,研究方向:食品加工新技术,E-mail:hhr199812@163.com

    通讯作者:

    宋贤良(1969−),男,博士,教授,研究方向:食品加工新技术,E-mail:songxl2000@163.com

  • 中图分类号: TS209

Effect of Ball Milling on the Structure and Properties of Insoluble Dietary Fiber in Jackfruit Peel

  • 摘要: 为改善水不溶性膳食纤维(Insoluble dietary fiber,IDF)的口感和功能特性,以菠萝蜜果皮IDF为对象,采用行星球磨对其进行干法粉碎处理。通过表征分析及研究其理化性质的变化,探究不同球磨时间对菠萝蜜果皮IDF的微观形貌、化学结构、晶相结构和比表面积以及功能特性的影响。结果表明,球磨改性使IDF原有的纤维束状结构被破坏,粒径变小,比表面积增大,球磨时间18 h时,IDF的平均粒最小,比表面积最大,球磨改性不影响IDF的化学组成和结晶结构。随球磨时间延长,IDF的持水力、结合水力、溶胀性和阳离子交换能力呈先增大后减小的变化趋势,持油力总体呈下降趋势。球磨时间为18 h时,其持水力、结合水力最高,分别为4.6和4.3 g/g,阳离子交换能力也最强。研究表明球磨对菠萝蜜果皮IDF具有很好的粉碎改性效果并能改善其功能特性。
  • 图  1  不同球磨时间下菠萝蜜果皮IDF的显微镜图(400×)

    Figure  1.  Micrograph of jackfruit peel IDF under different ball milling time (400×)

    图  2  菠萝蜜果皮IDF经不同球磨时间处理后的扫描电镜图(1000×)

    Figure  2.  SEM of jackfruit peel IDF treated with different ball milling time (1000×)

    图  3  不同球磨时间的菠萝蜜果皮IDF红外光谱图

    Figure  3.  Infrared spectra of jackfruit peel IDF at different ball milling time

    注:图中字母分别为原膳食纤维(a);球磨处理6 h(b);球磨处理18 h(c);球磨处理24 h(d)。

    图  4  不同球磨时间的菠萝蜜果皮IDF粒径分布图

    Figure  4.  Particle size distribution of jackfruit peel IDF with different ball milling time

    图  5  不同球磨时间处理后IDF样品的X射线衍射图

    Figure  5.  X-ray diffraction patterns of IDF samples treated with different milling time

    注:(a):原样品;(b):3 h;(c):9 h;(d):12 h;(e):18 h;(f):24 h。

    图  6  球磨时间对IDF持水力和结合水力的影响

    Figure  6.  Effect of ball milling time on water holding capacity and binding capacity of IDF

    注:图中不同小写字母表示显著差异,P<0.05,图7同。

    图  7  球磨时间对IDF溶胀性和持油力的影响

    Figure  7.  Effect of ball milling time on swelling and oil holding capacity of IDF

    图  8  球磨时间对IDF阳离子交换能力的影响

    Figure  8.  Effect of ball milling time on cation exchange capacity of IDF

    表  1  不同球磨时间处理的样品比表面积及粒径

    Table  1.   Specific surface area and particle size of samples treated at different milling time

    球磨时间(h)比表面积(m2/g)表面积平均粒径(μm)体积平均粒径(μm)
    30.20129.896153.213
    60.29720.186130.141
    90.37715.92596.361
    120.45713.13154.229
    180.58810.20135.775
    240.50611.82739.435
    下载: 导出CSV
  • [1] JAYUS, SETIAWAN D, GIYARTO. Physical and chemical characteristics of jackfruit (Artocarpus heterophyllus lamk.) seeds flour produced under fermentation process by Lactobacillus plantarum[J]. Agriculture and Agricultural Science Procedia,2016,9:342−347. doi:  10.1016/j.aaspro.2016.02.148
    [2] SUBBURAMU K, SINGARAVELU M, NAZAR A, et al. A study on the utilization of jack fruit waste[J]. Bioresource Technology,1992,40(1):85−86. doi:  10.1016/0960-8524(92)90125-H
    [3] PREM J V, VAZHACHARICKAL J, MATHEW J, et al. Chemistry and medicinal properties of jackfruit (Artocarpus heterophyllus): A review on current status of knowledge[J]. International Journal of Innovative Research and Review,2015,3(2):83−95.
    [4] ZHANG L, TU Z C, XIE X, et al. Jackfruit (Artocarpus heterophyllus lam.) peel: A better source of antioxidants and a-glucosidase inhibitors than pulp, flake and seed, and phytochemical profile by HPLC-QTOF-MS/MS[J]. Food Chemistry,2017,234:303. doi:  10.1016/j.foodchem.2017.05.003
    [5] WANG L, WEI B, CAI F, et al. Recycling durian shell and jackfruit peel via anaerobic digestion[J]. Bioresource Technology,2022,343:126032. doi:  10.1016/j.biortech.2021.126032
    [6] SBK A, SBS B. Recent application of jackfruit waste in food and material engineering: A review[J]. Food Bioscience,2022,48:101740. doi:  10.1016/j.fbio.2022.101740
    [7] 邓梦琴, 林晓瑛, 张明, 等. 超声辅助提取菠萝蜜果皮黄酮工艺优化及体外抗氧化活性研究[J]. 食品工业科技,2016,37(24):288−293, 296. [[DENG M Q, LIN X Y, ZHANG M, et al. Study on ultresonic assisted extraction and antioxidant function of flavones from the peels of Artocarpus heterophyllus lam[J]. Science and Technology of Food Industry,2016,37(24):288−293, 296. doi:  10.13386/j.issn1002-0306.2016.24.047
    [8] 涂凌云, 莫文凤, 刘涛, 等. 果蔬副产品膳食纤维提取工艺及在食品工业应用研究进展[J]. 中国调味品,2021,7:176−180, 185. [TU L Y MO W F, LIU T, et al. Research progress on extraction technology of dietary fiber from fruit and vegetable by-products and its application in food industry[J]. China Condiment,2021,7:176−180, 185. doi:  10.3969/j.issn.1000-9973.2021.07.036
    [9] MERENKOVA S, ZININA O, STUART M, et al. Effects of dietary fiber on human health: A review[J]. Human Sport Medicine,2020,20(1):106−113. doi:  10.14529/hsm200113
    [10] WANG X X, ZHANG L P, QIN L, et al. Physicochemical properties of the soluble dietary fiber from Laminaria japonica and its role in the regulation of type 2 diabetes mice[J]. Nutrients,2022,14(2):329. doi:  10.3390/nu14020329
    [11] MEI H, LU J, QU D, et al. Structure, physicochemical properties and adsorption function of insoluble dietary fiber from ginseng residue: A potential functional ingredient[J]. Food Chemistry,2019,286:522−529. doi:  10.1016/j.foodchem.2019.01.114
    [12] CCWA B, ZHEN Y, JJXA B, et al. Effects and underlying mechanisms of insoluble dietary fiber and ferulic acid on the crumb structure of steamed bread[J]. Food Hydrocolloids,2021,125:107448.
    [13] 魏楠, 赵世航. 大豆膳食纤维改性及在烘焙食品中的应用研究[J]. 现代食品,2022,28(1):3. [WEI N, ZHAO S H. Research on modification of soybean dietary fiber and its application in baked food[J]. Modern Food,2022,28(1):3. doi:  10.16736/j.cnki.cn41-1434/ts.2022.01.010
    [14] REN F, FENG Y, ZHANG H, et al. Effects of modification methods on microstructural and physicochemical characteristics of defatted rice bran dietary fiber[J]. LWT,2021,151:112161. doi:  10.1016/j.lwt.2021.112161
    [15] 王雅怡, 付晓康, 贺便, 等. 不同处理方法对洋蓟膳食纤维结构及理化性质的影响[J]. 食品工业科技,2022,43(22):83−89. [WANG Y Y, FU X K, HE B, et al. Effects of different treatments on the structure and physicochemical properties of artchoke dietary fiber[J]. Science and Technology of Food Industry,2022,43(22):83−89.
    [16] 徐燕, 谭熙蕾, 周才琼. 膳食纤维的组成、改性及其功能特性研究[J]. 食品研究与开发,2021,42(23):211−218. [XU Y, TAN X L, ZHOU C Q. Composition, modification and functional properties of dietary fiber[J]. Food Research and Development,2021,42(23):211−218. doi:  10.12161/j.issn.1005-6521.2021.23.033
    [17] 赵愉涵, 秦畅, 孙斐, 等. 超微粉碎处理对八宝粥粉理化特性及功能特性的影响[J]. 食品工业科技,2022,43(18):21−28. [ZHAO Y H, QIN C, SUN W, et al. Effects of superfine grinding treatment on the ohysicochemical and functional properties of mixed congee powder[J]. Science and Technology of Food Industry,2022,43(18):21−28.
    [18] GAO W, CHEN F, WANG X, et al. Recent advances in processing food powders by using superfine grinding techniques: A review[J]. Comprehensive Reviews in Food Science and Food Safety, 2020, 19(2): 2222-2255.
    [19] CAVALLINI C M, CÉLIA M L. Effect of acid-ethanol treatment followed by ball milling on structural and physicochemical characteristics of cassava starch[J]. Starch-Strke,2010,62(5):236−245. doi:  10.1002/star.200900231
    [20] 樊华, 刘夫国, 王玉堂, 等. 球磨联合碱辅助酶法改善淡竹叶水溶性膳食纤维的物化和功能特性[J/OL]. 食品科学: 1−14 [2022-09-16]. http://kns.cnki.net/kcms/detail/11.2206.TS.20220622.0900.018.html.

    FAN H, LIU F G, WANG Y T, et al. Ball milling with alkaline-assisted enzymatic extraction improves the physicochemical and functional properties of soluble dietary fiber of Herba lophatheri[J/OL]. Food Science: 1−14 [2022-09-16]. http://kns.cnki.net/kcms/detail/11.2206.TS.20220622.0900.018.html.
    [21] 汤彩碟, 张甫生, 杨金来, 等. 机械球磨处理对方竹笋全粉理化特性及微观结构的影响[J]. 食品与发酵工业,2022,48(12):175−182. [TANG C D, ZHANG P S, YANG J L, et al. Effect of mechanical ball milling treatment on physico-chemical properties and microstructure of Chimonobambusa quadrangularis powder[J]. Food and Fermentation Industries,2022,48(12):175−182. doi:  10.13995/j.cnki.11-1802/ts.028090
    [22] 曹琦琦, 黄妮子, 滕建文, 等. 微粉碎对百香果皮纤维粉理化性质及功能活性的影响[J]. 食品工业科技,2021,42(16):28−36. [CAO Q Q, HUANG N Z, TENG J W, et al. Effect of grinding on the physicochemical and functional properties of the passion fruit peel residue[J]. Science and Technology of Food Industry,2021,42(16):28−36. doi:  10.13386/j.issn1002-0306.2020120044
    [23] XU S Y, LIU J P, HUANG X, et al. Ultrasonic-microwave assisted extraction, characterization and biological activity of pectin from jackfruit peel[J]. LWT, 2018, 90: 577−582.
    [24] 彭芍丹, 李积华, 黄晓兵, 等. 菠萝蜜果皮活性成分的纯化与结构鉴定[J]. 食品工业科技,2017,38(17):5−9. [PENG S D, LI J H, HUANG X B, et al. Separation, purification and structural analysis of active compound from jackfruit peel[J]. Science and Technology of Food Industry,2017,38(17):5−9. doi:  10.13386/j.issn1002-0306.2017.17.002
    [25] KITTIPONGPATANA O S, KITTIPONGPATANA N. Preparation and physicochemical properties of modified jackfruit starches[J]. Food Science & Technology Zurich,2011,44(8):1766−1733.
    [26] ANTONY A S, THOTTIAM V R, SRIRAMULU G. Optimized extraction and characterization of pectin from jackfruit (Artocarpus integer) wastes using response surface methodology[J]. International Journal of Biological Macromolecules:Structure, Function and Interactions,2018,106:698−703.
    [27] 史早, 张甫生, 杨金来, 等. 超微粉碎对方竹笋全粉理化特性及微观结构的影响[J]. 食品工业科技,2021,42(24):40−47. [SHI Z, ZHANG P S, YANG J L, et al. Effect of superfine grinding on physicochemical properties and microstructure of Chimonobambusa quadrangularis shoot power[J]. Science and Technology of Food Industry,2021,42(24):40−47. doi:  10.13386/j.issn1002-0306.2021040079
    [28] 李昌文, 张丽华, 胡少帅, 等. 超微粉碎对芹菜渣理化特性的影响[J]. 食品工业,2021,42(7):150−153. [LI C W, ZHANG L H, HU S S, et al. Ultrafine grinding of slag celery physicochemical properties[J]. The Food Industry,2021,42(7):150−153.
    [29] 激光粒度分析仪说明书[G]. 英国马尔文仪器公司, 2001

    Instructions for laser particle size analyzer[G]. Malvern, 2001.
    [30] 任雨离, 刘玉凌, 何翠, 等. 微波和微粉碎改性对方竹笋膳食纤维性能和结构的影响[J]. 食品与发酵工业,2017,43(8):145−150. [REN Y L, LIU Y L, HE C, et al. Changes of fresh chimonobambusa dietary fiber in properties and structure modified by microwave and fine grinding[J]. Food and Fermentation Industries,2017,43(8):145−150. doi:  10.13995/j.cnki.11-1802/ts.013592
    [31] 张明, 周萍, 李新胜, 等. 不同干燥方式对金针菇菇根粉物理性质的影响[J]. 食品工业科技,2016,37(6):100−103, 108. [ZHANG M, ZHOU P, LI X S, et al. Effect of drying methods on powder physical properties of Flammulina velutipes root[J]. Science and Technology of Food Industry,2016,37(6):100−103, 108. doi:  10.13386/j.issn1002-0306.2016.06.011
    [32] 王红, 刘婷婷, 樊红秀, 等. 挤压改性对金针菇膳食纤维理化性质及微观结构的影响[J]. 中国食品学报,2021,21(8):166−174. [WANG H, LIU T T, FAN X H, et al. Effects of extrusion modification on physicochemical properties and microstructure of Flammulina velutipes dietary fiber[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(8):166−174. doi:  10.16429/j.1009-7848.2021.08.016
    [33] 刘宁, 温沐潮, 戴瑞, 等. 双氧水脱色对香蕉皮不溶性膳食纤维品质的影响[J]. 食品科技,2019,44(7):296−301. [LIU N, WEN M C, DAI R, et al. Effect of hydrogen peroxide decolorization on insoluble dietary fiber quality of banana peel[J]. Food Science and Technology,2019,44(7):296−301. doi:  10.13684/j.cnki.spkj.2019.07.048
    [34] 杨芙莲, 王平平, 王艳莉. 超微粉碎对甜荞麦全粉理化特性的影响[J]. 食品科技,2018,43(10):234−238. [YANG F L, WANG P P, WANG Y L. Effect of superfine grinding on the physical properties of sweet whole buckwheat powder[J]. Food Science and Technology,2018,43(10):234−238. doi:  10.13684/j.cnki.spkj.2018.10.040
    [35] 王崇队, 张明, 杨立风, 等. 不同来源膳食纤维品质分析及抗氧化活性研究[J]. 食品科技,2019,44(5):78−83. [WANG C D, ZHANG M, YANG L F, et al. Quality analysis and antioxidant activity of dietary fiber from different sources[J]. Food Science and Technology,2019,44(5):78−83. doi:  10.13684/j.cnki.spkj.2019.05.016
    [36] 杨茉, 王素雅, 曹崇江, 等. 超微粉碎对竹笋壳粉理化性质的影响[J]. 食品工业科技,2019,40(1):34−39. [YANG M, WANG S Y, CAO C J, et al. Effect of ultrafine grinding on physical and chemical properties of bamboo shell powder[J]. Science and Technology of Food Industry,2019,40(1):34−39. doi:  10.13386/j.issn1002-0306.2019.01.007
    [37] 张艳莉, 王颖, 王迪, 等. 芸豆渣膳食纤维超声辅助酶法提取工艺优化及特性研究[J]. 食品与机械,2019,35(10):201−205. [ZHANG Y L, WANG Y, WANG D, et al. Optimization of ultrasonic assisted enzymatic extraction of dietary fiber from light speckled kidney bean[J]. Food & Machinery,2019,35(10):201−205. doi:  10.13652/j.issn.1003-5788.2019.10.041
    [38] 栗俊广, 姜茜, 望运滔, 等. 不同来源膳食纤维的结构和理化性质分析[J]. 食品与机械,2020,36(12):18−23. [LI J G, JIANG Q, WANG Y T, et al. The structure and physicochemical properties of different types of dietary fiber[J]. Food & Machinery,2020,36(12):18−23. doi:  10.13652/j.issn.1003-5788.2020.12.004
    [39] 桑嘉玘, 李璐, 温靖, 等. 蜜柑皮和蜜柑果肉膳食纤维的结构表征、理化和功能性质[J/OL]. 食品与发酵工业: 1−10[2022-09-09]

    SANG J Q, LI L, WEN J, et al. Physicochemical properties, functional and structural characterization of dietary fiber of mandarin orange peel and pulp[J/OL]. Food and Fermentation Industries: 1−10[2022-09-09].
    [40] 刘成梅, 刘伟, 林向阳, 等. Microfluidizer对膳食纤维微粒粒度分布的影响[J]. 食品科学,2004,25(1):52−55. [LIU C M, LIU W, LIN X Y, et al. Particle size distribution analysis of particle in microfluidizer treated dietary fiber[J]. Food Science,2004,25(1):52−55. doi:  10.3321/j.issn:1002-6630.2004.01.007
    [41] 邱玉桂, 孙凌虹. Soda—AQ法苇浆氧气漂白[J]. 中国造纸,1998,17(3):33−36. [QIU Y G, SUN L H. Oxygen bleaching of reed pulp by soda AQ process[J]. China Pulp and Paper,1998,17(3):33−36.
    [42] 宋云禹. 毛葱膳食纤维改性工艺优化及其结构与性质的研究[D]. 长春: 吉林农业大学, 2018

    [SONG Y Y. Optimization of modification process and research on structure and property of the tillering onion dietary fiber[D]. Changchun: Jilin Agricultural University, 2018.
    [43] ZHANG M, ZHANG C J, SHRESTHA S. Study on the preparation technology of superfine ground powder of agrocybe chaxingu huang[J]. Journal of Food Engineering,2005,67(3):333−337. doi:  10.1016/j.jfoodeng.2004.04.036
    [44] 李焕霞, 王华, 刘树立. 粒度不同对膳食纤维品质影响研究[J]. 食品与发酵科技,2007,43(3):35−37. [LI H X, WANG H, LIU S L. The impact of different granularity to character of dietary fiber[J]. Sichuan Food and Fermentation,2007,43(3):35−37. doi:  10.3969/j.issn.1674-506X.2007.03.009
    [45] 赵萌萌, 党斌, 张文刚, 等. 超微粉碎对青稞麸皮粉微观结构及功能特性的影响[J]. 农业工程学报,2020,36(8):278−286. [ZHAO M M, DANG B, ZHANG W G, et al. Effects of ultrafine crushing on microstructure and functional properties of highland barley bran powder[J]. Transactions of the Chinese Society of Agricultural Engineering,2020,36(8):278−286. doi:  10.11975/j.issn.1002-6819.2020.08.034
    [46] 乔小全, 任广跃, 段续, 等. 超微粉碎辅助提取黑豆皮水溶性膳食纤维及其特性研究[J]. 中国粮油学报,2018,33(11):92−98, 104. [QIAO X Q, REN G Y, DUAN X, et al. Extraction of water-soluble dietary fiber from black soybean hull by superfine grinding-assister enzymatic hydrolysis and its characteristics[J]. Journal of the Chinese Cereals and Oils Association,2018,33(11):92−98, 104. doi:  10.3969/j.issn.1003-0174.2018.11.016
    [47] 李安平, 谢碧霞, 钟秋平, 等. 不同粒度竹笋膳食纤维功能特性研究[J]. 食品工业科技,2008(3):3. [LI A P, XIE B X, ZHONG Q P, et al. Effect of particle sizes on functional properties of dietary fiber prepared from bamboo shoots[J]. Science and Technology of Food Industry,2008(3):3. doi:  10.13386/j.issn1002-0306.2008.03.028
    [48] 高宇萍, 韩育梅, 李周永, 等. 超声波处理对水不溶性膳食纤维膨胀力及持水力的影响[J]. 食品工业科技,2012,33(16):299−301. [GAO Y P, HAN Y M, LI Z Y, et al. Effect of ultrasonic treatment on expansive force and water-holding capacity of insoluble dietary fiber[J]. Science and Technology of Food Industry,2012,33(16):299−301. doi:  10.13386/j.issn1002-0306.2012.16.092
    [49] 夏晓霞, 寇福兵, 薛艾莲, 等. 超微粉碎对枣粉理化性质、功能特性及结构特征的影响[J/OL]. 食品与发酵工业: 1−14 [2022-05-26]

    XIA X X, KOU F B, XUE A L, et al. Effect of superfine grinding on physicochemical properties, functional and structure characteristics of jujube power[J/OL]. Food and Fermentation Industries: 1−14 [2022-05-26].
    [50] 王博, 姚轶俊, 李枝芳, 等. 超微粉碎对4种杂粮粉理化性质及功能特性的影响[J]. 食品科学,2020,41(19):111−117. [WANG B, YAO Y J, LI Z F, et al. Effect of superfine grinding on physicochemical properties and functional properties of four kinds coarse cereals[J]. Food Science,2020,41(19):111−117. doi:  10.7506/spkx1002-6630-20190912-150
    [51] 张明, 马超, 王崇队, 等. 不同粉碎粒度对大麦苗粉体品质和加工特性的影响[J]. 食品科技,2019,44(7):224−228. [ZHANG M, MA C, WANG C D, et al. Effects of different crushing granularity on powder quality and processing characteristics of barley seedlings powder[J]. Food Science and Technology,2019,44(7):224−228. doi:  10.13684/j.cnki.spkj.2019.07.035
    [52] 刘静, 刘雪, 刘少伟, 等. 不同处理方法对裙带菜膳食纤维性质的影响[J]. 食品工业,2020,41(4):39−43. [LIU J, LIU X, LIU S W, et al. Effects of different treatments on the properties of dietary fiber from Undaria pinnatifida[J]. The Food Industry,2020,41(4):39−43.
    [53] 王大为, 宋云禹, 刘阳, 等. 毛葱膳食纤维性质及结构分析[J]. 食品科学,2018,39(2):53−57. [WANG D W, SONG Y Y, LIU Y, et al. Properties and structure of dietary fiber from tillering onion[J]. Food Science,2018,39(2):53−57. doi:  10.7506/spkx1002-6630-201802009
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  118
  • HTML全文浏览量:  45
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-02
  • 网络出版日期:  2023-04-20
  • 刊出日期:  2023-06-01

目录

    /

    返回文章
    返回