Effects of Electromagnetic Field Preservation on the Quality of Guizhou Black Goat
-
摘要: 本文以贵州黑山羊肉为研究对象,比较研究电磁场保鲜和冷冻贮藏对贵州黑山羊肉品质的影响。在不同贮藏时间(0、15、30、45、60 d)测定贵州黑山羊肉的色差、保水性、pH、剪切力、脂质氧化值(TBARS)、挥发性盐基氮(TVB-N)以及挥发性风味物质的变化。实验结果显示,羊肉经电磁场处理15 d时,L*值显著高于冷冻组,电磁场处理在30 d内可以改善羊肉的a*和b*值。两组pH无显著变化(P>0.05),但冷冻组下降较电磁场组快。贮藏45 d内电磁场处理后羊肉的嫩度和持水力较冷冻组显著提高,且显著降低羊肉蒸煮损失率。贮藏45 d内电磁场组与冷冻组羊肉TVB-N值均小于国家安全标准(≤15 mg/100 g)。冷冻组共检出挥发性风味物质48种,电磁场组54种,其中,醛类、酯类和醇类物质的含量增高。电磁场处理后ROAV≥1的关键挥发性风味物质最多,相对含量也较高。综上所述,电磁场保鲜在贮藏45 d内对保存羊肉品质有一定的改善作用,此研究为肉类在电磁场保鲜技术延长货架期提供了一定的理论依据。Abstract: In this study, the effects of electromagnetic field preservation and frozen storage on the preservation quality of Guizhou black goat were studied and compared. The changes of color, water holding capacity, pH, shear force, lipid oxidation value (TBARS), volatile base nitrogen (TVB-N) and volatile flavor substances of Guizhou black goat meat were measured at different storage times (0, 15, 30, 45 and 60 d). The results showed that the L* value of goat after electromagnetic field treatment for 15 d, the L* value was significantly higher than that of the frozen group. Electromagnetic field treatment can improve the a* and b* values of goat within 30 days. There was no significant change in pH between the two groups (P>0.05), but the decrease of pH in the frozen group was faster than that in the electromagnetic field group. Compared with the frozen group, the tenderness and water holding capacity of goat treated by electromagnetic field was significantly improved during 45 d of storage, while the cooking loss rate of frozen group decreased significantly. The TVB-N of goat in the electromagnetic field group and frozen group was less than the national safety standard (≤15 mg/100 g) during 45 d of storage. A total of 48 volatile flavor substances were detected in the freezing group and 54 in the electromagnetic field group, of which the contents of aldehydes, esters and alcohols were significantly increased. The key volatile flavor substances with ROAV≥1 of electromagnetic field storage were the most abundant and had higher relative contents. In conclusion, electromagnetic field preservation has a certain positive impact in preserving the quality and flavor of Guizhou black goat meat within 45 days. This study provides some theoretical basis for extending the shelf life of meat by electromagnetic field preservation technology.
-
表 1 冷冻贮藏过程中羊肉关键挥发性风味物质相对含量、ROAV值及贡献率排序
Table 1. Relative content of different kind of volatile flavor compounds, the ROAV value and the ranking of mutton during frozen storage
中文名 相对含量(μg/kg) 阈值[36]
(μg/kg)相对气味活度值(ROAV) 风味贡献率排序 0 d 15 d 30 d 45 d 60 d 0 d 15 d 30 d 45 d 60 d 0 d 15 d 30 d 45 d 60 d 己醛 8.65±4.31a 2.06±0.58b 3.53±0.7b 3.19±0.08b 5.18±1.81ab 4.50 11.03 5.74 12.92 19.06 13.69 6 6 7 7 7 壬醛 17.43±7.51a 7.98±0.59b 6.07±0.55b 3.72±1.13b 8.41±3.95b 1.00 100.00 100.00 100.00 100.00 100.00 1 1 2 3 1 癸醛 1.69±0.73a 0.47±0.09b 0.17±0.04b 0.12±0.02b 0.28±0.18b 0.10 96.96 58.90 28.01 32.26 33.29 2 2 5 4 5 庚醛 1.3±0.45b 0.19±0.05cd 0.08±0.14d 0.65±0.38c 2.05±2.64a 3.00 2.51 0.79 0.44 5.82 8.13 10 9 11 9 8 辛醛 3.76±1.42b 2.58±0.36b 1.29±0.11b 0.59±0.56b 3.89±2.92a 0.70 30.82 46.19 30.36 22.66 66.08 5 3 4 6 4 反-2-辛烯醛 1.41±0.7a 0.41±0.09b 0.2±0.03b 0.24±0.06b 0.73±0.44b 3.00 2.70 1.71 1.10 2.15 2.89 9 7 8 11 10 反-2-壬烯醛 1.14±0.42a 0.29±0.07bc 0.15±0.02c 0.32±0.2bc 0.64±0.54b 0.08 81.76 45.43 30.89 107.53 95.12 3 4 3 2 3 反-2-癸烯醛 0.31±0.29b ND ND 0.13±0.12b 0.5±0.48a 0.30 5.93 − − 11.65 19.82 7 − − 8 6 庚醇 0.39±0.39b ND 0.13±0.12b 0.43±0.16b 0.85±0.86a 3.00 0.75 − 0.71 3.85 3.37 11 − 10 10 9 1-辛烯-3-醇 8.53±3.43a 3.02±0.63b 6.22±0.22a 9.45±1.64a 8.24±4.03a 1.00 48.94 37.84 102.47 254.03 97.98 4 5 1 1 2 乙酸乙酯 0.48±0.3c 0.1±0.1d 0.94±0.85b 1.1±0.76a 0.07±0.16d 1.00 2.75 1.25 15.49 29.57 0.83 8 8 6 5 11 注:同行不同小写字母表示差异显著(P<0.05);ND表示未检测到;“−”表示无法查询到或无法计算出结果;表2同。 表 2 电磁场保鲜过程中羊肉关键挥发性风味物质相对含量、ROAV值及贡献率排序
Table 2. Relative content of different kind of volatile flavor compounds, the ROAV value and the ranking of mutton during field preservation
中文名 相对含量(μg/kg) 阈值[36]
(μg/kg)相对气味活度值(ROAV) 风味贡献率排序 0 d 15 d 30 d 45 d 60 d 0 d 15 d 30 d 45 d 60 d 0 d 15 d 30 d 45 d 60 d 己醛 8.65±4.31b 0.02±0.01b 3.1±1.47b 3.55±0.65b 27.79±10.27a 4.50 11.03 0.05 16.10 18.74 59.10 6 14 6 9 7 庚醛 1.31±0.45a 0.01±0.01b 1.22±0.9a 1±0.87ab ND 3.00 2.51 0.04 9.50 7.92 − 10 15 7 10 − 辛醛 3.76±1.42a 3.74±1.25a 1.39±0.56b 1.53±0.79b 4.36±1.05a 0.70 30.82 58.26 46.40 51.92 59.60 5 2 2 4 5 (Z)-癸-2-烯醛 ND ND ND 0.66±0.09b 1.86±0.22a 0.30 − − − 52.26 59.33 − − − 3 6 苯乙醛 ND ND 0.24±0.07c 6.36±0.43a 1.78±0.17b 4.00 − − 1.40 37.77 4.26 − − 9 6 11 反-2-辛烯醛 1.41±0.7a 0.46±0.25b 0.07±0.05b 0.42±0.1b 1.87±0.13a 3.00 2.70 1.67 0.55 3.33 5.96 9 7 10 11 10 壬醛 17.43±7.51a 9.17±3b 4.28±1.22b 4.21±1.15b 10.45±3.01ab 1.00 100.00 100.00 100.00 100.00 100.00 1 1 1 2 3 反式-2-壬烯醛 1.14±0.42a 0.41±0.2b 0.08±0.03b 0.14±0.07b 0.96±0.13a 0.08 81.76 55.89 23.36 41.57 114.83 3 3 5 5 2 癸醛 1.69±0.73a 0.43±0.15b 0.12±0.02b 0.12±0.03b 0.71±0.44b 0.10 96.96 46.89 28.04 28.50 67.94 2 4 4 7 4 反式-2-癸烯醛 0.31±0.29b 0.19±0.1b ND ND 0.79±0.25a 0.30 5.93 6.91 − − 25.20 7 6 − − 8 苯乙醛 ND ND 0.24±0.07c 6.36±0.43a 1.78±0.17b 4.00 − − 1.40 37.77 4.26 − − 9 6 − 1-辛烯-3-醇 8.53±3.43b 2.55±1.11c 1.95±0.91c 9.38±2.39b 30.1±2.54a 1.00 48.94 27.81 45.56 222.80 288.04 4 5 3 1 1 反式-2-辛烯-1-醇 3.15±1.23b 0.7±0.29c 0.39±0.15c 3.21±0.55b 14.02±0.49a 40.00 0.45 0.19 0.23 1.91 3.35 11 10 13 12 13 苯乙醇 ND 0.5±0.18ab ND 0.14±0.02b 1.41±1.15a 3.70 − 1.47 − 0.90 3.65 − 8 − 13 12 乙酸乙酯 0.48±0.3bc 0.1±0.03c 0.22±0.03c 0.92±0.15b 1.73±0.69a 1.00 2.75 1.09 5.14 21.85 16.56 8 9 8 8 9 -
[1] 刘瑶. 我国羊肉产业现状及未来发展趋势[J]. 中国饲料,2019(17):112−117. [LIU Y. Present situation and future development trend of mutton industry in China[J]. China Feed,2019(17):112−117. doi: 10.15906/j.cnki.cn11-2975/s.20191725 [2] 刘章忠, 曹娟, 向程举, 等. 贵州黑山羊肉质营养特性与氨基酸模型研究[J]. 黑龙江畜牧兽医,2013(23):70−72. [LIU Z Z, CAO J, XIANG C J, et al. Studies on the meat nutritional properties and amino acid model for Guizhou black goat[J]. Heilongjiang Animal Science and Veterinary Medicine,2013(23):70−72. doi: 10.13881/j.cnki.hljxmsy.2013.23.034 [3] 宋德荣, 周大荣, 彭华, 等. 贵州黑山羊肉营养成分分析[J]. 养殖与饲料,2022,21(3):21−23. [SONG D R, ZHOU D R, PENG H, et al. Nutritional composition analysis of Guizhou black mutton[J]. Animals Breeding and Feed,2022,21(3):21−23. doi: 10.3969/j.issn.1671-427X.2022.03.007 [4] JEONG J Y, KIM G D, YANG H S, et al. Effect of freeze-thaw cycles on physicochemical properties and color stability of beef semimembranous muscle[J]. Food Research International,2011,44(10):3222−3228. doi: 10.1016/j.foodres.2011.08.023 [5] AROEIR C N, FILHO R, FONTES P R, et al. Freezing, thawing and aging effects on beef tenderness fromBos indicus and Bos taurus cattle[J]. Meat Science,2016,116(6):118−125. [6] CHENG L J, LIU G S, HE J G, et al. Development of a novel quantitative function between spectral value and metmyoglobin content in Tan mutton[J]. Food Chemistry,2020,342(20):128351. [7] 谢灵扬. 冷鲜肉冷链流通过程中单增李斯特菌活性影响的研究[D]. 杭州: 浙江工业大学, 2018XIE L Y. Study on the effect of Listeria monocytogenes' activity of cold meat in cold chain circulation[D]. Hangzhou: Zhejiang University of Technology, 2018. [8] 孙斌. 冷鲜羊肉保鲜及其保藏过程中的理化变化[D]. 西安: 陕西科技大学, 2012SUN B. Keeping fresh of mutton and it is storage quality changes[D]. Xi'an: Shanxi University of Science and Technology, 2012. [9] DALVI-ISFAHA M, HAMDAMI N, LE-BAIL A. Effect of freezing under electrostatic field on the quality of lamb meat[J]. Innovative Food Science & Emerging Technologies,2016,37:68−73. [10] QIAN S, LI X, WANG H, et al. Effects of low voltage electrostatic field thawing on the changes in physicochemical properties of myofibrillar proteins of bovine longissimus dorsi muscle[J]. Journal of Food Engineering,2019,261(11):140−149. [11] ZHANG B, HAO J, YIN H, et al. Effects of dietary nicotinic acid supplementation on meat quality, carcass characteristics, lipid metabolism, and tibia parameters of Wulong geese[J]. Poultry Science,2021,100(11):101430. doi: 10.1016/j.psj.2021.101430 [12] MARTIN N P, SCHREURS N M, MORRIS S T, et al. Meat quality of beef-cross-dairy cattle from Angus or Hereford sires: A case study in a pasture-based system in New Zealand[J]. Meat Science, 2022, 190. [13] 田海勇, 苏伟, 母应春, 等. 传统与强化发酵羊肉香肠微生物多样性及代谢物差异研究[J]. 食品科学,2022,43(24):154−163. [TIAN H Y, SU W, MU Y C, et al. Microbial diversity and metabolites difference of traditional and enhanced[J]. Food Science,2022,43(24):154−163. doi: 10.7506/spkx1002-6630-20211221-247 [14] 刘登勇, 周光宏, 徐幸莲. 确定食品关键风味化合物的一种新方法: “ROAV”法[J]. 食品科学,2008(7):370−374. [LIU D Y, ZHANG G H, XU X L. “ROAV” method: A new method for determining key odor compounds of Rugao ham[J]. Food Science,2008(7):370−374. doi: 10.3321/j.issn:1002-6630.2008.07.082 [15] LI D D, PENG Y L, ZHANG H H, et al. Relationship between quality changes of post-rigor tan mutton and myofibrillar protein following high-pressure treatment[J]. CYTA-Journal of Food,2021,19(1):378−388. doi: 10.1080/19476337.2020.1863476 [16] 张春晖, 李侠, 李银, 等. 低温高湿变温解冻提高羊肉的品质[J]. 农业工程学报,2013,29(6):267−273. [ZHANG C H, LI X, LI Y, et al. Low-variable temperature and high humidity thawing improves lamb quality[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2013,29(6):267−273. [17] 李斯琦. 等离子电场中羊肉冰温保鲜及冷冻解冻实验研究[D]. 呼和浩特: 内蒙古农业大学, 2020LI S Q. Study on the effect of plasma electric field on mutton preservation at ice temperature and freezing thawing[D]. Huhehot: Inner Mongolia Agricultural University, 2020. [18] POLATI R, MENINI M, ROBOTTI E, et al. Proteomic changes involved in tenderization of bovine longissimus dorsi muscle during prolonged ageing[J]. Food Chemistry,2012,135(3):2052−2069. doi: 10.1016/j.foodchem.2012.06.093 [19] YL-AJOS M, RUUSUNEN M, PUOLANNE E. The significance of the activity of glycogen debranching enzyme in glycolysis in porcine and bovine muscles[J]. Meat Science,2006,72(3):532−538. doi: 10.1016/j.meatsci.2005.09.004 [20] 张玉斌, 刘金鑫, 杜晓甜, 等. 冷却藏羊肉贮藏过程中物性特征与品质劣变相关性研究[J]. 食品与发酵科技,2017,53(4):49−54. [ZHANG Y B, LIU J X, DU X T, et al. Study on the correlation between physical properties and quality deterioration of stored mutton during storage[J]. Food and Fermentation Science & Technology,2017,53(4):49−54. [21] 王薇, 罗瑞明, 李俊丽, 等. 不同贮藏温度下滩羊肉的保水性与色泽变化特性[J]. 食品与机械,2015,31(3):140−144. [WANG W, LUO R M, LI J L, et al. Characteristic of water holding capacity and color changes of Tan sheep at different storage temperatures[J]. Food & Machinery,2015,31(3):140−144. doi: 10.13652/j.issn.1003-5788.2015.03.033 [22] LI D, JIA S, ZHANG L, et al. Post-thawing quality changes of common carp (Cyprinus carpio) cubes treated by high voltage electrostatic field (HVEF) during chilled storage[J]. Innovative Food Science & Emerging Technologies,2017,42:25−32. [23] 刘佳东. 宰后牦牛肉成熟机理及肉用品质变化研究[D]. 兰州: 甘肃农业大学, 2011LIU J D. Research on yak meat maturation mechanism and meat quality after slaughter[D]. Lanzhou: Gansu Agricultural University, 2011. [24] 柳银强, 徐嘉宾, 年芳, 等. 不同贮藏温度对湖羊羊肉品质特性的影响[J]. 甘肃农业大学学报,2021,56(6):159−168. [LIU Y Q, XU J B, NIAN F, et al. The effect of different storage temperatures on the quality characteristics of Hu sheep mutton[J]. Journal of Gansu Agricultural University,2021,56(6):159−168. doi: 10.13432/j.cnki.jgsau.2021.06.021 [25] 高海燕, 张彦斌, 腾克, 等. 乌珠穆沁成羊及羔羊肉理化组成及感官品质对比分析[J]. 肉类工业,2022(6):12−21. [GAO H Y, ZHANG Y B, TENG K, et al. Comparative analysis of physicochemical properties and sensory quality of Ujumqin adult mutton and lamb[J]. Meat Industry,2022(6):12−21. doi: 10.3969/j.issn.1008-5467.2022.06.003 [26] BEKHIT A E A, HOLMAN B W B, GITERU S G, et al. Total volatile basic nitrogen (TVB-N) and its role in meat spoilage: A review[J]. Trends in Food Science & Technology,2021,109:280−302. [27] 苑闪闪, 卢素芳, 雷跃磊, 等. 不同贮藏温度鳜鱼片品质变化规律[J]. 肉类研究,2023,37(1):26−30. [YUAN S S, LU S F, LEI Y L, et al. Quality changes of Mandarin fish under different temperature storage conditions[J]. Meat Research,2023,37(1):26−30. [28] 马天兰, 王松磊, 贺晓光, 等. 低场NMR对羊肉贮藏过程中pH值和TVB-N的预测及验证[J]. 核农学报,2017,31(6):1110−1118. [MA T L, WANG S L, HE X G, et al. Study on the detection of mutton freshness by LF-NMR relaxation characteristics[J]. Journal of Nuclear Agricultural Sciences,2017,31(6):1110−1118. doi: 10.11869/j.issn.100-8551.2017.06.1110 [29] FAN N, MA X, LIU G, et al. Rapid determination of TBARS content by hyperspectral imaging for evaluating lipid oxidation in mutton[J]. Journal of Food Composition and Analysis, 2021, 103. [30] KO W, YANG S, CHANG C, et al. Effects of adjustable parallel high voltage electrostatic field on the freshness of tilapia (Orechromis niloticus) during refrigeration[J]. LWT-Food Science and Technology,2016,66:151−157. doi: 10.1016/j.lwt.2015.10.019 [31] CHOUHAN A, KAUR B P, RAO P S. Effect of high pressure processing and thermal treatment on quality of hilsa (Tenualosa ilisha) fillets during refrigerated storage[J]. Innovative Food Science & Emerging Technologies, 2015, 29. [32] 周琰冰, 艾启俊, 张德权. 4 ℃贮藏期内冷鲜羊肉表面菌相变化分析[J]. 食品科学,2015,36(6):242−245. [ZHOU Y B, AI Q J, ZHANG D Q. Changes in microflora on fresh mutton during chilled storage[J]. Food Science,2015,36(6):242−245. doi: 10.7506/spkx1002-6630-201506046 [33] MOTTRAM D S. Flavour formation in meat and meat products: A review[J]. Food Chemistry,1998,62(4):415−424. doi: 10.1016/S0308-8146(98)00076-4 [34] WANG F, GAO Y, WANG H, et al. Analysis of volatile compounds and flavor fingerprint in Jingyuan lamb of different ages using gas chromatography–ion mobility spectrometry (GC–IMS)[J]. Meat Science,2021,175(1):108449. [35] LOTFY S N, FADEL H, EL-GHORAB A H, et al. Stability of encapsulated beef-like flavourings prepared from enzymatically hydrolysed mushroom proteins with other precursors under conventional and microwave heating[J]. Food Chemistry,2015,187(15):7−13. [36] 肖雄, 张德权, 李铮, 等. 宰后僵直和解僵过程羊肉风味品质分析[J]. 现代食品科技,2019,35(6):287−294. [XIAO X, ZHANG D Q, LI Z, et al. Analysis of flavor quality of pre- and post- rigor lamb[J]. Modern Food Science and Technology,2019,35(6):287−294. doi: 10.13982/j.mfst.1673-9078.2019.6.038 [37] MARIUTTI L, BRAGAGNOLO N. Influence of salt on lipid oxidation in meat and seafood products: A review[J]. Food Research International,2017,94(APR.):90−100. [38] ZHANG M C, XIA X F, LIU Q, et al. Changes in microstructure, quality and water distribution of porcine longissimus muscles subjected to ultrasound-assisted immersion freezing during frozen storage[J]. Meat Science,2019,151:24−32. doi: 10.1016/j.meatsci.2019.01.002 -