• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020

电磁场保鲜对贵州黑山羊品质的影响

李子涵 苏伟 母应春 周荣梅 张定奎

李子涵,苏伟,母应春,等. 电磁场保鲜对贵州黑山羊品质的影响[J]. 食品工业科技,2023,44(11):379−387. doi:  10.13386/j.issn1002-0306.2022070324
引用本文: 李子涵,苏伟,母应春,等. 电磁场保鲜对贵州黑山羊品质的影响[J]. 食品工业科技,2023,44(11):379−387. doi:  10.13386/j.issn1002-0306.2022070324
LI Zihan, SU Wei, MU Yingchun, et al. Effects of Electromagnetic Field Preservation on the Quality of Guizhou Black Goat[J]. Science and Technology of Food Industry, 2023, 44(11): 379−387. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022070324
Citation: LI Zihan, SU Wei, MU Yingchun, et al. Effects of Electromagnetic Field Preservation on the Quality of Guizhou Black Goat[J]. Science and Technology of Food Industry, 2023, 44(11): 379−387. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022070324

电磁场保鲜对贵州黑山羊品质的影响

doi: 10.13386/j.issn1002-0306.2022070324
基金项目: 梅花鹿及黑山羊屠宰分割与产品精深加工技术研究集成(黔科合服企[2020]4009(006));P.acidilacticiR.oryzae协同发酵羊肉香肠降膻机制研究(32160554) ;贵州生态特色肉制品科技创新人才团队-黔科合平台人才[2020]5004 Guizhou Science and Technology Program (QKHPTRC [2020] 5004)。
详细信息
    作者简介:

    李子涵(1998−),女,硕士研究生,研究方向:食品加工与安全,E-mail:2295683470@qq.com

    通讯作者:

    苏伟(1974−)(ORCID: 0000-0002-2355-3527),男,博士,教授,研究方向:食品生物技术,E-mail:suwei1886@163.com

  • 中图分类号: TS251.5+3

Effects of Electromagnetic Field Preservation on the Quality of Guizhou Black Goat

  • 摘要: 本文以贵州黑山羊肉为研究对象,比较研究电磁场保鲜和冷冻贮藏对贵州黑山羊肉品质的影响。在不同贮藏时间(0、15、30、45、60 d)测定贵州黑山羊肉的色差、保水性、pH、剪切力、脂质氧化值(TBARS)、挥发性盐基氮(TVB-N)以及挥发性风味物质的变化。实验结果显示,羊肉经电磁场处理15 d时,L*值显著高于冷冻组,电磁场处理在30 d内可以改善羊肉的a*b*值。两组pH无显著变化(P>0.05),但冷冻组下降较电磁场组快。贮藏45 d内电磁场处理后羊肉的嫩度和持水力较冷冻组显著提高,且显著降低羊肉蒸煮损失率。贮藏45 d内电磁场组与冷冻组羊肉TVB-N值均小于国家安全标准(≤15 mg/100 g)。冷冻组共检出挥发性风味物质48种,电磁场组54种,其中,醛类、酯类和醇类物质的含量增高。电磁场处理后ROAV≥1的关键挥发性风味物质最多,相对含量也较高。综上所述,电磁场保鲜在贮藏45 d内对保存羊肉品质有一定的改善作用,此研究为肉类在电磁场保鲜技术延长货架期提供了一定的理论依据。
  • 图  1  羊肉贮藏期间L*值、a*值、b*值的变化

    Figure  1.  Changes of L* value、a* value and b* value of mutton during storage

    注:下标1表示冷冻组,下标2表示电磁场组;不同大写字母表示同一贮藏时间、不同处理组差异显著(P<0.05);不同小写字母表示不同贮藏时间、同一处理下显著差异(P<0.05),图2~图7同。

    图  2  羊肉贮藏期间pH的变化

    Figure  2.  Changes of pH of mutton during storage

    图  3  羊肉贮藏期间保水性的变化

    Figure  3.  Changes of water holding capacity of mutton during storage

    图  4  羊肉贮藏期间剪切力的变化

    Figure  4.  Change of shear force during mutton storage

    图  5  羊肉贮藏期间 TVB-N的变化

    Figure  5.  Change of TVB-N during mutton storage

    图  6  羊肉贮藏期间TBARS的变化

    Figure  6.  Changes of TBARS during mutton storage

    图  7  羊肉贮藏期间菌落总数的变化

    Figure  7.  Change of total bacterial count during mutton storage

    图  8  羊肉在贮藏期间的风味物质种类分布

    Figure  8.  The distribution of flavor compounds during mutton storage

    图  9  关键挥发性物质与理化指标之间的RDA分析

    Figure  9.  Redundancy analysis between volatile flavor compounds and physicochemical indexes

    注:hsy-0 d表示羊肉贮藏 0 d 组。

    表  1  冷冻贮藏过程中羊肉关键挥发性风味物质相对含量、ROAV值及贡献率排序

    Table  1.   Relative content of different kind of volatile flavor compounds, the ROAV value and the ranking of mutton during frozen storage

    中文名相对含量(μg/kg)阈值[36]
    (μg/kg)
    相对气味活度值(ROAV)风味贡献率排序
    0 d15 d30 d45 d60 d0 d15 d30 d45 d60 d0 d15 d30 d45 d60 d
    己醛8.65±4.31a2.06±0.58b3.53±0.7b3.19±0.08b5.18±1.81ab4.5011.035.7412.9219.0613.6966777
    壬醛17.43±7.51a7.98±0.59b6.07±0.55b3.72±1.13b8.41±3.95b1.00100.00100.00100.00100.00100.0011231
    癸醛1.69±0.73a0.47±0.09b0.17±0.04b0.12±0.02b0.28±0.18b0.1096.9658.9028.0132.2633.2922545
    庚醛1.3±0.45b0.19±0.05cd0.08±0.14d0.65±0.38c2.05±2.64a3.002.510.790.445.828.131091198
    辛醛3.76±1.42b2.58±0.36b1.29±0.11b0.59±0.56b3.89±2.92a0.7030.8246.1930.3622.6666.0853464
    反-2-辛烯醛1.41±0.7a0.41±0.09b0.2±0.03b0.24±0.06b0.73±0.44b3.002.701.711.102.152.899781110
    反-2-壬烯醛1.14±0.42a0.29±0.07bc0.15±0.02c0.32±0.2bc0.64±0.54b0.0881.7645.4330.89107.5395.1234323
    反-2-癸烯醛0.31±0.29bNDND0.13±0.12b0.5±0.48a0.305.9311.6519.82786
    庚醇0.39±0.39bND0.13±0.12b0.43±0.16b0.85±0.86a3.000.750.713.853.371110109
    1-辛烯-3-醇8.53±3.43a3.02±0.63b6.22±0.22a9.45±1.64a8.24±4.03a1.0048.9437.84102.47254.0397.9845112
    乙酸乙酯0.48±0.3c0.1±0.1d0.94±0.85b1.1±0.76a0.07±0.16d1.002.751.2515.4929.570.83886511
    注:同行不同小写字母表示差异显著(P<0.05);ND表示未检测到;“−”表示无法查询到或无法计算出结果;表2同。
    下载: 导出CSV

    表  2  电磁场保鲜过程中羊肉关键挥发性风味物质相对含量、ROAV值及贡献率排序

    Table  2.   Relative content of different kind of volatile flavor compounds, the ROAV value and the ranking of mutton during field preservation

    中文名相对含量(μg/kg)阈值[36]
    (μg/kg)
    相对气味活度值(ROAV)风味贡献率排序
    0 d15 d30 d45 d60 d0 d15 d30 d45 d60 d0 d15 d30 d45 d60 d
    己醛8.65±4.31b0.02±0.01b3.1±1.47b3.55±0.65b27.79±10.27a4.5011.030.0516.1018.7459.10614697
    庚醛1.31±0.45a0.01±0.01b1.22±0.9a1±0.87abND3.002.510.049.507.921015710
    辛醛3.76±1.42a3.74±1.25a1.39±0.56b1.53±0.79b4.36±1.05a0.7030.8258.2646.4051.9259.6052245
    (Z)-癸-2-烯醛NDNDND0.66±0.09b1.86±0.22a0.3052.2659.3336
    苯乙醛NDND0.24±0.07c6.36±0.43a1.78±0.17b4.001.4037.774.269611
    反-2-辛烯醛1.41±0.7a0.46±0.25b0.07±0.05b0.42±0.1b1.87±0.13a3.002.701.670.553.335.9697101110
    壬醛17.43±7.51a9.17±3b4.28±1.22b4.21±1.15b10.45±3.01ab1.00100.00100.00100.00100.00100.0011123
    反式-2-壬烯醛1.14±0.42a0.41±0.2b0.08±0.03b0.14±0.07b0.96±0.13a0.0881.7655.8923.3641.57114.8333552
    癸醛1.69±0.73a0.43±0.15b0.12±0.02b0.12±0.03b0.71±0.44b0.1096.9646.8928.0428.5067.9424474
    反式-2-癸烯醛0.31±0.29b0.19±0.1bNDND0.79±0.25a0.305.936.9125.20768
    苯乙醛NDND0.24±0.07c6.36±0.43a1.78±0.17b4.001.4037.774.2696
    1-辛烯-3-醇8.53±3.43b2.55±1.11c1.95±0.91c9.38±2.39b30.1±2.54a1.0048.9427.8145.56222.80288.0445311
    反式-2-辛烯-1-醇3.15±1.23b0.7±0.29c0.39±0.15c3.21±0.55b14.02±0.49a40.000.450.190.231.913.351110131213
    苯乙醇ND0.5±0.18abND0.14±0.02b1.41±1.15a3.701.470.903.6581312
    乙酸乙酯0.48±0.3bc0.1±0.03c0.22±0.03c0.92±0.15b1.73±0.69a1.002.751.095.1421.8516.5689889
    下载: 导出CSV
  • [1] 刘瑶. 我国羊肉产业现状及未来发展趋势[J]. 中国饲料,2019(17):112−117. [LIU Y. Present situation and future development trend of mutton industry in China[J]. China Feed,2019(17):112−117. doi:  10.15906/j.cnki.cn11-2975/s.20191725
    [2] 刘章忠, 曹娟, 向程举, 等. 贵州黑山羊肉质营养特性与氨基酸模型研究[J]. 黑龙江畜牧兽医,2013(23):70−72. [LIU Z Z, CAO J, XIANG C J, et al. Studies on the meat nutritional properties and amino acid model for Guizhou black goat[J]. Heilongjiang Animal Science and Veterinary Medicine,2013(23):70−72. doi:  10.13881/j.cnki.hljxmsy.2013.23.034
    [3] 宋德荣, 周大荣, 彭华, 等. 贵州黑山羊肉营养成分分析[J]. 养殖与饲料,2022,21(3):21−23. [SONG D R, ZHOU D R, PENG H, et al. Nutritional composition analysis of Guizhou black mutton[J]. Animals Breeding and Feed,2022,21(3):21−23. doi:  10.3969/j.issn.1671-427X.2022.03.007
    [4] JEONG J Y, KIM G D, YANG H S, et al. Effect of freeze-thaw cycles on physicochemical properties and color stability of beef semimembranous muscle[J]. Food Research International,2011,44(10):3222−3228. doi:  10.1016/j.foodres.2011.08.023
    [5] AROEIR C N, FILHO R, FONTES P R, et al. Freezing, thawing and aging effects on beef tenderness fromBos indicus and Bos taurus cattle[J]. Meat Science,2016,116(6):118−125.
    [6] CHENG L J, LIU G S, HE J G, et al. Development of a novel quantitative function between spectral value and metmyoglobin content in Tan mutton[J]. Food Chemistry,2020,342(20):128351.
    [7] 谢灵扬. 冷鲜肉冷链流通过程中单增李斯特菌活性影响的研究[D]. 杭州: 浙江工业大学, 2018

    XIE L Y. Study on the effect of Listeria monocytogenes' activity of cold meat in cold chain circulation[D]. Hangzhou: Zhejiang University of Technology, 2018.
    [8] 孙斌. 冷鲜羊肉保鲜及其保藏过程中的理化变化[D]. 西安: 陕西科技大学, 2012

    SUN B. Keeping fresh of mutton and it is storage quality changes[D]. Xi'an: Shanxi University of Science and Technology, 2012.
    [9] DALVI-ISFAHA M, HAMDAMI N, LE-BAIL A. Effect of freezing under electrostatic field on the quality of lamb meat[J]. Innovative Food Science & Emerging Technologies,2016,37:68−73.
    [10] QIAN S, LI X, WANG H, et al. Effects of low voltage electrostatic field thawing on the changes in physicochemical properties of myofibrillar proteins of bovine longissimus dorsi muscle[J]. Journal of Food Engineering,2019,261(11):140−149.
    [11] ZHANG B, HAO J, YIN H, et al. Effects of dietary nicotinic acid supplementation on meat quality, carcass characteristics, lipid metabolism, and tibia parameters of Wulong geese[J]. Poultry Science,2021,100(11):101430. doi:  10.1016/j.psj.2021.101430
    [12] MARTIN N P, SCHREURS N M, MORRIS S T, et al. Meat quality of beef-cross-dairy cattle from Angus or Hereford sires: A case study in a pasture-based system in New Zealand[J]. Meat Science, 2022, 190.
    [13] 田海勇, 苏伟, 母应春, 等. 传统与强化发酵羊肉香肠微生物多样性及代谢物差异研究[J]. 食品科学,2022,43(24):154−163. [TIAN H Y, SU W, MU Y C, et al. Microbial diversity and metabolites difference of traditional and enhanced[J]. Food Science,2022,43(24):154−163. doi:  10.7506/spkx1002-6630-20211221-247
    [14] 刘登勇, 周光宏, 徐幸莲. 确定食品关键风味化合物的一种新方法: “ROAV”法[J]. 食品科学,2008(7):370−374. [LIU D Y, ZHANG G H, XU X L. “ROAV” method: A new method for determining key odor compounds of Rugao ham[J]. Food Science,2008(7):370−374. doi:  10.3321/j.issn:1002-6630.2008.07.082
    [15] LI D D, PENG Y L, ZHANG H H, et al. Relationship between quality changes of post-rigor tan mutton and myofibrillar protein following high-pressure treatment[J]. CYTA-Journal of Food,2021,19(1):378−388. doi:  10.1080/19476337.2020.1863476
    [16] 张春晖, 李侠, 李银, 等. 低温高湿变温解冻提高羊肉的品质[J]. 农业工程学报,2013,29(6):267−273. [ZHANG C H, LI X, LI Y, et al. Low-variable temperature and high humidity thawing improves lamb quality[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2013,29(6):267−273.
    [17] 李斯琦. 等离子电场中羊肉冰温保鲜及冷冻解冻实验研究[D]. 呼和浩特: 内蒙古农业大学, 2020

    LI S Q. Study on the effect of plasma electric field on mutton preservation at ice temperature and freezing thawing[D]. Huhehot: Inner Mongolia Agricultural University, 2020.
    [18] POLATI R, MENINI M, ROBOTTI E, et al. Proteomic changes involved in tenderization of bovine longissimus dorsi muscle during prolonged ageing[J]. Food Chemistry,2012,135(3):2052−2069. doi:  10.1016/j.foodchem.2012.06.093
    [19] YL-AJOS M, RUUSUNEN M, PUOLANNE E. The significance of the activity of glycogen debranching enzyme in glycolysis in porcine and bovine muscles[J]. Meat Science,2006,72(3):532−538. doi:  10.1016/j.meatsci.2005.09.004
    [20] 张玉斌, 刘金鑫, 杜晓甜, 等. 冷却藏羊肉贮藏过程中物性特征与品质劣变相关性研究[J]. 食品与发酵科技,2017,53(4):49−54. [ZHANG Y B, LIU J X, DU X T, et al. Study on the correlation between physical properties and quality deterioration of stored mutton during storage[J]. Food and Fermentation Science & Technology,2017,53(4):49−54.
    [21] 王薇, 罗瑞明, 李俊丽, 等. 不同贮藏温度下滩羊肉的保水性与色泽变化特性[J]. 食品与机械,2015,31(3):140−144. [WANG W, LUO R M, LI J L, et al. Characteristic of water holding capacity and color changes of Tan sheep at different storage temperatures[J]. Food & Machinery,2015,31(3):140−144. doi:  10.13652/j.issn.1003-5788.2015.03.033
    [22] LI D, JIA S, ZHANG L, et al. Post-thawing quality changes of common carp (Cyprinus carpio) cubes treated by high voltage electrostatic field (HVEF) during chilled storage[J]. Innovative Food Science & Emerging Technologies,2017,42:25−32.
    [23] 刘佳东. 宰后牦牛肉成熟机理及肉用品质变化研究[D]. 兰州: 甘肃农业大学, 2011

    LIU J D. Research on yak meat maturation mechanism and meat quality after slaughter[D]. Lanzhou: Gansu Agricultural University, 2011.
    [24] 柳银强, 徐嘉宾, 年芳, 等. 不同贮藏温度对湖羊羊肉品质特性的影响[J]. 甘肃农业大学学报,2021,56(6):159−168. [LIU Y Q, XU J B, NIAN F, et al. The effect of different storage temperatures on the quality characteristics of Hu sheep mutton[J]. Journal of Gansu Agricultural University,2021,56(6):159−168. doi:  10.13432/j.cnki.jgsau.2021.06.021
    [25] 高海燕, 张彦斌, 腾克, 等. 乌珠穆沁成羊及羔羊肉理化组成及感官品质对比分析[J]. 肉类工业,2022(6):12−21. [GAO H Y, ZHANG Y B, TENG K, et al. Comparative analysis of physicochemical properties and sensory quality of Ujumqin adult mutton and lamb[J]. Meat Industry,2022(6):12−21. doi:  10.3969/j.issn.1008-5467.2022.06.003
    [26] BEKHIT A E A, HOLMAN B W B, GITERU S G, et al. Total volatile basic nitrogen (TVB-N) and its role in meat spoilage: A review[J]. Trends in Food Science & Technology,2021,109:280−302.
    [27] 苑闪闪, 卢素芳, 雷跃磊, 等. 不同贮藏温度鳜鱼片品质变化规律[J]. 肉类研究,2023,37(1):26−30. [YUAN S S, LU S F, LEI Y L, et al. Quality changes of Mandarin fish under different temperature storage conditions[J]. Meat Research,2023,37(1):26−30.
    [28] 马天兰, 王松磊, 贺晓光, 等. 低场NMR对羊肉贮藏过程中pH值和TVB-N的预测及验证[J]. 核农学报,2017,31(6):1110−1118. [MA T L, WANG S L, HE X G, et al. Study on the detection of mutton freshness by LF-NMR relaxation characteristics[J]. Journal of Nuclear Agricultural Sciences,2017,31(6):1110−1118. doi:  10.11869/j.issn.100-8551.2017.06.1110
    [29] FAN N, MA X, LIU G, et al. Rapid determination of TBARS content by hyperspectral imaging for evaluating lipid oxidation in mutton[J]. Journal of Food Composition and Analysis, 2021, 103.
    [30] KO W, YANG S, CHANG C, et al. Effects of adjustable parallel high voltage electrostatic field on the freshness of tilapia (Orechromis niloticus) during refrigeration[J]. LWT-Food Science and Technology,2016,66:151−157. doi:  10.1016/j.lwt.2015.10.019
    [31] CHOUHAN A, KAUR B P, RAO P S. Effect of high pressure processing and thermal treatment on quality of hilsa (Tenualosa ilisha) fillets during refrigerated storage[J]. Innovative Food Science & Emerging Technologies, 2015, 29.
    [32] 周琰冰, 艾启俊, 张德权. 4 ℃贮藏期内冷鲜羊肉表面菌相变化分析[J]. 食品科学,2015,36(6):242−245. [ZHOU Y B, AI Q J, ZHANG D Q. Changes in microflora on fresh mutton during chilled storage[J]. Food Science,2015,36(6):242−245. doi:  10.7506/spkx1002-6630-201506046
    [33] MOTTRAM D S. Flavour formation in meat and meat products: A review[J]. Food Chemistry,1998,62(4):415−424. doi:  10.1016/S0308-8146(98)00076-4
    [34] WANG F, GAO Y, WANG H, et al. Analysis of volatile compounds and flavor fingerprint in Jingyuan lamb of different ages using gas chromatography–ion mobility spectrometry (GC–IMS)[J]. Meat Science,2021,175(1):108449.
    [35] LOTFY S N, FADEL H, EL-GHORAB A H, et al. Stability of encapsulated beef-like flavourings prepared from enzymatically hydrolysed mushroom proteins with other precursors under conventional and microwave heating[J]. Food Chemistry,2015,187(15):7−13.
    [36] 肖雄, 张德权, 李铮, 等. 宰后僵直和解僵过程羊肉风味品质分析[J]. 现代食品科技,2019,35(6):287−294. [XIAO X, ZHANG D Q, LI Z, et al. Analysis of flavor quality of pre- and post- rigor lamb[J]. Modern Food Science and Technology,2019,35(6):287−294. doi:  10.13982/j.mfst.1673-9078.2019.6.038
    [37] MARIUTTI L, BRAGAGNOLO N. Influence of salt on lipid oxidation in meat and seafood products: A review[J]. Food Research International,2017,94(APR.):90−100.
    [38] ZHANG M C, XIA X F, LIU Q, et al. Changes in microstructure, quality and water distribution of porcine longissimus muscles subjected to ultrasound-assisted immersion freezing during frozen storage[J]. Meat Science,2019,151:24−32. doi:  10.1016/j.meatsci.2019.01.002
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  65
  • HTML全文浏览量:  23
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-02
  • 网络出版日期:  2023-05-06
  • 刊出日期:  2023-06-01

目录

    /

    返回文章
    返回