Effect of Nitrogen Source on Freeze-dried Resistance of Lactobacillus delbrueckii subsp. bulgaricus B61-3
-
摘要: 本研究针对德氏乳杆菌保加利亚亚种B61-3,分别测定了其对16种氮源的利用情况,筛选出能够提高菌株冻干耐受的氮源种类及添加量,并进一步测定该氮源对菌株冻干粉发酵活力、菌体形态、发酵关键酶活力的影响。结果表明:氮源为30 g/L牛骨蛋白胨时可提高菌株冻干存活率及冻干粉发酵活力,冻干存活率由9.68%提高到18.90%,冻干粉平均发酵活力较对照组提高22.15%;电子显微镜显示,牛骨蛋白胨培养后菌体大小及形态有所改变,对照组发酵菌体表现出不规则、卷曲的形态且菌体较长,而牛骨蛋白胨为氮源时菌体形态呈表面光滑的短杆状,菌体长径比(l/d)和面积体积比(S/V)显著降低(P<0.05),可能与菌株更高的存活率和发酵活力有关。发酵关键酶活力测定结果表明,冷冻干燥显著降低菌株酶活力(P<0.05),牛骨蛋白胨培养菌株冻干后胞内酶活力均显著高于对照组(P<0.05),乳酸脱氢酶、Na+K+-ATP酶及β-半乳糖苷酶分别较对照组提高1.30、1.52及2.75倍,且胞外β-半乳糖苷酶活性低于对照组。结果证实,牛骨蛋白胨培养B61-3菌体能够抵抗冷冻干燥过程对菌体细胞膜造成的损伤,减少酶外泄,从而提高冻干存活率和发酵活力。
-
关键词:
- 德氏乳杆菌保加利亚亚种 /
- 氮源 /
- 冷冻干燥 /
- 发酵活力 /
- 菌体形态
Abstract: In this study, the utilization of 16 nitrogen sources of Lactobacillus delbrueckii subsp. bulgaricus B61-3 were determined, and the types and amounts of nitrogen sources that can improve the freeze-drying tolerance of the strain were screened out. More importantly, the effects of nitrogen source modification on the fermentation performance, cell morphology and enzyme activities of freeze-dried powder of the strain were investigated. The results showed that 30 g/L of bovine bone peptone improved the freeze-drying survival rate from 9.68% to 18.90%, and increased fermentation activity by 22.15% compared with the control group. Changed cell size and morphology of the cultured cells of bovine bone peptone were also observed by electron microscope. Cell cultured in bovine bone peptone medium represented a short rod with smooth surface, and the ratio of length to diameter or area to volume decreased significantly (P<0.05). However, cells in the control group showed irregular, curly shape and longer cells. Freeze-drying significantly reduced the enzyme activity of the strain (P<0.05). Compared with control group, the intracellular activities of these enzymes in the cells cultured in bovine bone peptone significantly increased after freeze-drying (P<0.05), and the activities of lactate dehydrogenase, β-galactosidase and Na+K+-ATPase increased by 1.30 times, 1.52 times and 2.75 times respectively, while the extracellular activities of β-galactosidase decreased. Meanwhile, the results showed that B61-3 cells cultured with bovine bone peptone could resist the damage of cell membrane caused by freeze-drying process, reduce the leakage of enzymes, thus improving the freeze-drying survival rate and fermentation activity. -
图 6 扫描电镜图像
Figure 6. Scanning electron microscope image
注:对照组冻干前(a)、牛骨蛋白胨组冻干前(b)、对照组冻干后(c)、牛骨蛋白胨组冻干后(d);图7同。
表 1 牛骨蛋白胨对菌体冻干的影响
Table 1. Effect of bovine bone peptone on freeze-drying of bacteria
培养基 冻干存活率
(%)冻干菌粉活菌数
(lg CFU/g)乳糖MRS基础培养基(对照组) 9.68±0.56b 9.65±0.41b 牛骨蛋白胨培养基(牛骨蛋白胨组) 18.90±0.76a 10.43±0.20a 注:同列不同字母表示组间具有显著性差异(P<0.05),表2同。 表 2 对照组与牛骨蛋白胨组菌体长度、直径、长径比、面积体积比统计结果
Table 2. Statistical results of bacterial length, diameter, aspect ratio and volume between control group and bovine bone peptone group
组别 菌体长度
(l, μm)菌体直径
(d, μm)长径比
(l/d)面积体积比
(S/V)对照组冻干前 6.85±0.68a 0.68±0.03a 10.07±0.92a 6.69±0.27c 牛骨蛋白胨组冻干前 4.51±1.08b 0.66±0.04a 6.83±0.31b 6.39±0.57c 对照组冻干后 6.24±0.79a 0.60±0.05a 10.42±0.99a 14.55±0.51a 牛骨蛋白胨组冻干后 3.98±0.30b 0.64±0.03a 6.22±1.02b 7.66±0.46b -
[1] NADIA L A, FRIZZO L S, OUWEHAND A C, et al. Technological characterization of probiotic lactic acid bacteria as starter cultures for dry fermented sausages[J]. Foods,2020,9(5):596. doi: 10.3390/foods9050596 [2] FONSECA F, CENARD S, PASSOT S. Freeze drying of lactic acid bacteria[M]. New York, NY: Springer New York, 2015: 477−488. [3] WANG Y, WU J, LÜ M, et al. Metabolism characteristics of lactic acid bacteria and the expanding applications in food industry[J]. Front Bioeng Biotechnol,2021,9:612285. doi: 10.3389/fbioe.2021.612285 [4] CUI S, HANG F, LIU X, et al. Effect of acids produced from carbohydrate metabolism in cryoprotectants on the viability of freeze-dried lactobacillus and prediction of optimal initial cell concentration[J]. J Biosci Bioeng,2018,125(5):513−518. doi: 10.1016/j.jbiosc.2017.12.009 [5] 孙媛媛. 异型发酵乳杆菌高密度培养及提高其冻干存活率的方法[D]. 无锡: 江南大学, 2021SUN Y Y. High-density cultivation of heterofermentive lactobacillus and methods to improve the freeze-drying survival rate[D]. Wuxi: Jiangnan University, 2021. [6] CARVALHO A S, SILVA J, HO P, et al. Relevant factors for the preparation of freeze-dried lactic acid bacteria[J]. International Dairy Journal,2004,14(10):835−847. doi: 10.1016/j.idairyj.2004.02.001 [7] 李宝磊. 真空冷冻干燥对乳酸菌损伤机制及关键保护技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2011LI B L. Freeze-drying damage mechanism of lactic acid bacteria and the key protection technology research[D]. Harbin: Harbin Institute of Technology, 2011. [8] 于小青. 植物乳杆菌在冷冻干燥过程中生理损伤及保护策略的研究[D]. 上海: 上海理工大学, 2019YU X Q. The study on physiological damage and protection strategies of lactobacillus plantarum during freeze-drying[D]. Shanghai: University of Shanghai for Science and Technology, 2019. [9] 李娜. 植物乳杆菌ZJ316的高密度发酵及高活性菌制剂的初步研究[D]. 南宁: 广西大学, 2020LI N. High-density fermentation of Lactobacillus plantarum ZJ316 and preliminary study on the high activity bacteria agent[D]. Nanning: Guangxi University, 2020. [10] BODZEN A, JOSSIER A, DUPONT S, et al. Design of a new lyoprotectant increasing freeze-dried Lactobacillus strain survival to long-term storage[J]. BMC Biotechnol,2021,21(1):66. doi: 10.1186/s12896-021-00726-2 [11] HAN L, PU T, WANG X, et al. Optimization of a protective medium for enhancing the viability of freeze-dried Bacillus amyloliquefaciens B1408 based on response surface methodology[J]. Cryobiology,2018,81:101−106. doi: 10.1016/j.cryobiol.2018.02.003 [12] WANG G Q, PU J, YU X Q, et al. Influence of freezing temperature before freeze-drying on the viability of various Lactobacillus plantarum strains[J]. J Dairy Sci,2020,103(4):3066−3075. doi: 10.3168/jds.2019-17685 [13] 冯志伟. Pediococcus acidilactici IMAU95219增殖培养基及高密度培养工艺优化[D]. 呼和浩特: 内蒙古农业大学, 2020FENG Z W. Optimization of enrichment medium and high cell density cultivation of Pediococcus acidilactici IMAU95219[D]. Huhehot: Inner Mongolia Agricultural University, 2020. [14] 田良玉. 乳酸菌高密度规模发酵工艺优化[D]. 扬州: 扬州大学, 2018TIAN Y L. Optimization of high-density and large-scale fermentation for lactic acid bacteria[D]. Yangzhou: Yangzhou University, 2018. [15] SANTIVARANGKNA C, HIGL B, FOERST P. Protection mechanisms of sugars during different stages of preparation process of dried lactic acid starter cultures[J]. Food Microbiology,2008,25(3):429−441. doi: 10.1016/j.fm.2007.12.004 [16] SHAO Y, GAO S, GUO H, et al. Influence of culture conditions and preconditioning on survival of Lactobacillus delbrueckii subsp. bulgaricus ND02 during lyophilization[J]. J Dairy Sci,2014,97(3):1270−1280. doi: 10.3168/jds.2013-7536 [17] CHEN Z, E J, MA R, et al. The effect of aspartic acid on the freeze-drying survival rate of Lactobacillus plantarum LIP-1 and its inherent mechanism[J]. LWT,2022,155:112929. doi: 10.1016/j.lwt.2021.112929 [18] WANG C, CUI Y, QU X. Identification of proteins regulated by acid adaptation related two component system HPK1/RR1 in Lactobacillus delbrueckii subsp. bulgaricus[J]. Arch Microbiol,2018,200(9):1381−1393. doi: 10.1007/s00203-018-1552-9 [19] LIU E, ZHENG H, SHI T, et al. Relationship between Lactobacillus bulgaricus and Streptococcus thermophilus under whey conditions: Focus on amino acid formation[J]. International Dairy Journal,2016,56:141−150. doi: 10.1016/j.idairyj.2016.01.019 [20] YAMAMOTO E, WATANABE R, ICHIMURA T, et al. Effect of lactose hydrolysis on the milk-fermenting properties of Lactobacillus delbrueckii subsp. bulgaricus 2038 and Streptococcus thermophilus 1131[J]. J Dairy Sci,2021,104(2):1454−1464. doi: 10.3168/jds.2020-19244 [21] 汪文丽. 双歧杆菌氮源利用的选择性及特征分析[D]. 无锡: 江南大学, 2021WANG W L. Selectivity and characteristic analysis of nitrogen source utilization by Bifidobacteria[D]. Wuxi: Jiangnan University, 2021. [22] 陈琪, 张亚敏, 赵颖, 等. 表达外源谷氨酸脱羧酶基因对重组乳酸乳球菌胁迫抗性的影响[J]. 食品科学,2018,39(20):132−139. [CHEN Q, ZHANG Y M, ZHAO Y, et al. Effect of overexpression of glutamic acid decarboxylase(CsGAD) gene from Camellia sinensis on stress tolerance in Lactococcus lactis[J]. Food Science,2018,39(20):132−139. doi: 10.7506/spkx1002-6630-201820020 [23] CHEN H, HUANG J, SHI X, et al. Effects of six substances on the growth and freeze-drying of Lactobacillus delbrueckii subsp. bulgaricus[J]. Acta Sci Pol Technol Aliment,2017,16(4):403−412. [24] 李子叶. 不同酸奶发酵剂的发酵性能及其产品功能活性的研究[D]. 哈尔滨: 东北农业大学, 2019LI Z Y. Study on fermentation performance of different starter culture and evaluation of its functional bioactivity in yogurt[D]. Harbin: Northeaster Agricultural University, 2019. [25] 冯镇, 张兰威. 变温培养对乳酸菌高密度培养的影响[J]. 中国乳品工业,2009,37(7):4−7. [FENG Z, ZHANG L W. Effect temperature-shift strategy on high density culture of lactic acid bacteria[J]. China Dairy Industry,2009,37(7):4−7. doi: 10.3969/j.issn.1001-2230.2009.07.001 [26] 中华人民共和国国家卫生和计划生育委员会. GB 5009.239-2016 食品安全国家标准 食品酸度的测定[S]. 北京: 中国标准出版社, 2016National Health and Family Planning Commission of the People's Republic of China. GB 5009.239-2016 National food safety standard-determination of acidity of food[S]. Beijing: Standards Press of China, 2016. [27] 钱志浩. 通过调节细胞膜组成提高乳杆菌冻干存活率的研究[D]. 无锡: 江南大学, 2021QIAN Z H. Study on improving the lyophilization survival rate of Lactobacillus beijerinck. by regulating the composition of cell membrane[D]. Wuxi: Jiangnan University, 2021. [28] 臧凯丽, 王泳, 赵林森, 等. 球磨-CTAB法提取嗜酸乳杆菌基因组DNA条件优化[J]. 生物技术,2018,28(3):236−241. [ZANG K L, WANG Y, ZHAO L S, et al. Conditions research on beadbeater-CTAB extraction of Lactobacillus acidophilus genome DNA[J]. Biotechnology,2018,28(3):236−241. [29] 刘晓永, 王强, 胡永金. 用微珠涡流法破壁酵母细胞[J]. 吉首大学学报(自然科学版),2006(6):110−113. [LIU X Y, WANG Q, HU Y J. Disruption of the yeast cell walls by vortex-mini-bead disruption method[J]. Journal of Jishou University (Natural Science Edition),2006(6):110−113. doi: 10.3969/j.issn.1007-2985.2006.06.029 [30] PALMFELDT J, RADSTROM P, HAHN H B. Optimisation of initial cell concentration enhances freeze-drying tolerance of Pseudomonas chlororaphis[J]. Cryobiology,2003,47(1):21−29. doi: 10.1016/S0011-2240(03)00065-8 [31] 丛美楠. 保加利亚乳杆菌的低成本培养、保藏及初步应用研究[D]. 厦门: 集美大学, 2017CONG M N. Low cost culture, preservation and preliminary application study of Lactobacillus delbrueckii subsp. bulgaricus[D]. Xiamen: Jimei University, 2017. [32] 高姝冉. 德氏乳杆菌保加利亚亚种IMAU80319高密度发酵和真空冷冻干燥工艺的研究[D]. 呼和浩特: 内蒙古农业大学, 2015GAO S R. Study on high cell density culture and vacuum freeze-drying of Lactobacillus delbrueckii subsp. bulgaricus IMAU80319[D]. Huhehot: Inner Mongolia Agricultural University, 2015. [33] 赵宏飞. 乳糖对瑞士乳杆菌生长代谢影响及高密度培养研究[D]. 北京: 北京林业大学, 2014ZHAO H F. Effect of lactose on the growth and metabolism of Lactobacillus helveticus and its high cell density culture[D]. Beijing: Beijing Forestry University, 2014. [34] 朱丹凤, 王园园, 崔树茂, 等. 罗伊氏乳杆菌氮源利用的选择性与特征分析[J]. 食品与发酵工业,2018,44(11):35−41. [ZHU D F, WANG Y Y, CUI S M, et al. Selectivity and characteristic analysis of nitrogen source utilized by Lactobacillus reuteri[J]. Food and Fermentation Industry,2018,44(11):35−41. [35] 汪政煜, 吴文茹, 习羽, 等. cspL对保加利亚乳杆菌的影响研究[J]. 食品科技,2017,42(1):7−11. [WANG Z Y, WU W R, XI Y, et al. The influence of cspL on Lactobacillus delbrueckii subsp. bulgaricus[J]. Food Science and Technology,2017,42(1):7−11. [36] 严涛, 朱建国, 姜甜, 等. 高密度发酵乳酸菌抗冻性影响因素分析[J]. 食品研究与开发,2018,39(17):209−213. [YAN T, ZHU J G, JIANG T, et al. Study on influencing factors of anti-freezing of high-density fermentation lactic acid bacteria[J]. Food Research and Development,2018,39(17):209−213. doi: 10.3969/j.issn.1005-6521.2018.17.038 [37] 岳林芳, 王俊国, 萨如拉, 等. 培养条件对乳酸菌发酵剂抗冷冻干燥性能影响的研究进展[J]. 食品科学,2016,37(11):270−276. [YUE L F, WANG J G, SA R L, et al. Effects of culture conditions on the survival of freeze-dried lactic acid bacterial starter cultures[J]. Food Science,2016,37(11):270−276. doi: 10.7506/spkx1002-6630-201611047 [38] 安慧莹. 戊糖乳杆菌发酵产乳酸的培养条件优化及组学分析[D]. 大连: 大连理工大学, 2017AN H Y. Optimization of culture conditions and omics analysis of lactic acid production by Lactobacillus pentosus[D]. Dalian: Dalian University of Technology, 2017. [39] SENZ M, VAN L B, BADER J, et al. Control of cell morphology of probiotic Lactobacillus acidophilus for enhanced cell stability during industrial processing[J]. International Journal of Food Microbiology,2015,192:34−42. doi: 10.1016/j.ijfoodmicro.2014.09.015 [40] KREBS S J, TAYLOR R K. Nutrient-dependent, rapid transition of Vibrio cholerae to coccoid morphology and expression of the toxin co-regulated pilus in this form[J]. Microbiology (Reading),2011,157(Pt 10):2942−2953. [41] DUMONT F, MARECHAL P, GERVAIS P. Cell size and water permeability as determining factors for cell viability after freezing at different cooling rates[J]. Applied and Environmental Microbiology,2004,70(1):268−272. doi: 10.1128/AEM.70.1.268-272.2004 [42] PROUST L, SOURABIE A, PEDERSEN M, et al. Insights into the complexity of yeast extract peptides and their utilization by Streptococcus thermophilus[J]. Front Microbiol,2019,10:906. doi: 10.3389/fmicb.2019.00906 [43] 张晓宁. 不同干燥方式及贮藏环境对植物乳杆菌LIP-1活性影响的研究[D]. 呼和浩特: 内蒙古农业大学, 2019ZHANG X N. Effects of Lactobacillus plantarum LIP-1 activity during storage in different drying methods[D]. Huhehot: Inner Mongolia Agricultural University, 2019. [44] 崔树茂. 乳酸菌的生长抑制和冻干存活的影响因素及规律[D]. 无锡: 江南大学, 2017CUI S M. The impact factors and rules of growth inhibition and freeze-drying survival for lactic acid bacteria[D]. Wuxi: Jiangnan University, 2017. [45] LARSEN B S, SKYTTE J, SVAGAN A J, et al. Using dextran of different molecular weights to achieve faster freeze-drying and improved storage stability of lactate dehydrogenase[J]. Pharm Dev Technol,2019,24(3):323−328. doi: 10.1080/10837450.2018.1479866 [46] 尹玉文, 高鸣阳, 张艳森, 等. 响应面法优化提取牛骨蛋白酶解物及其对酵母增殖的影响[J]. 食品工业,2022,43(6):34−38. [YIN Y W, GAO M Y, ZHANG Y S, et al. Optimization of extraction of bovine bone protein hydrolysate by response surface methodology and its effect on yeast proliferation[J]. Food Industry,2022,43(6):34−38. [47] 张俊理. 耐冷菌Pseudomonas sp. W7产低温蛋白酶水解牛骨蛋白研究[D]. 哈尔滨: 黑龙江大学, 2012ZHANG J L, Study on hydrolysis of bovine bone protein by cold-tolerant bacterium Pseudomonas sp. W7[D]. Harbin: Heilongjiang University, 2012. [48] LE M C, BON E, LONVAUD F A. Tolerance to high osmolality of the lactic acid bacterium Oenococcus oeni and identification of potential osmoprotectants[J]. International Journal of Food Microbiology,2007,115(3):335−342. doi: 10.1016/j.ijfoodmicro.2006.12.039 [49] NORDAHL L, WENNMALM S, JONSSON J, et al. Direct observation of Na+K+-ATPase oligomers in the plasma membrane of living cells by FRET-FCS[J]. The FASEB Journal,2022,36(S1):4657. [50] E J, CHEN J, CHEN Z, et al. Effects of different initial pH values on freeze-drying resistance of Lactobacillus plantarum LIP-1 based on transcriptomics and proteomics[J]. Food Res Int,2021,149:110694. doi: 10.1016/j.foodres.2021.110694 [51] AZATIAN S B, KAUR N, LATHAM M P. Increasing the buffering capacity of minimal media leads to higher protein yield[J]. Journal of Biomolecular NMR,2019,73(1):11−17. [52] AYIVI R D, IBRAHIM S A, KRASTANOV A, et al. The impact of alternative nitrogen sources on the growth and viability of Lactobacillus delbrueckii subsp. bulgaricus[J]. Journal of Dairy Science,2022,105(10):7986−7997. doi: 10.3168/jds.2022-21971 [53] XU Z, LI C, YE Y, et al. The β-galactosidase LacLM plays the major role in lactose utilization of Lactobacillus plantarum[J]. LWT,2022,153:112481. doi: 10.1016/j.lwt.2021.112481 [54] 李宝坤. 乳酸杆菌冷冻干燥生理损伤机制及保护策略的研究[D]. 无锡: 江南大学, 2011LI B K. Study on the physiology mechanism of cell damage caused by freeze-drying and protection strategies of Lactobacillus Beijerinck[D]. Wuxi: Jiangnan University, 2011. [55] GOMES T A, SANTOS L B, NOGUEIRA A, et al. Increase in an intracellular β-galactosidase biosynthesis using Lactobacillus reuteri NRRL B-14171, inducers and alternative low-cost nitrogen sources under submerged cultivation[J]. International Journal of Food Engineering,2018,14(3):20170333. [56] MAKUCH K, MARKIEWICZ M, PASENKIEWICZ G M. Asymmetric spontaneous intercalation of lutein into a phospholipid bilayer, a computational study[J]. Computational and Structural Biotechnology Journal,2019,17:516−526. doi: 10.1016/j.csbj.2019.04.001 [57] KOBAYASHI J. D-amino acids and lactic acid bacteria[J]. Microorganisms,2019,7(12):690. doi: 10.3390/microorganisms7120690 [58] WOLKERS W F, OLDENHOF H, TANG F, et al. Factors affecting the membrane permeability barrier function of cells during preservation technologies[J]. Langmuir,2019,35(23):7520−7528. doi: 10.1021/acs.langmuir.8b02852 [59] 张莉. 抗冻肽在乳酸乳球菌中表达及其抗冻活性表征[D]. 上海: 上海交通大学, 2018ZHANG L. Intracellular expression of an antifreeze peptide by Lactococcus lactis and evaluation of cryoprotective effect in recombinant bacteria[D]. Shanghai: Shanghai Jiao Tong University, 2018. [60] LI C, ZHANG G F, MAO X, et al. Growth and acid production of Lactobacillus delbrueckii subsp. bulgaricus ATCC 11842 in the fermentation of algal carcass[J]. J Dairy Sci,2016,99(6):4243−4250. doi: 10.3168/jds.2015-10700 [61] 张晓宁, 陈境, 麻丽丽, 等. 优化培养基对冷冻干燥后植物乳杆菌LIP-1活性的影响[J]. 食品科技,2019,44(7):1−9. [ZHANG X N, CHEN J, MA L L, et al. The effect of optimized medium components on the activity of Lactobacillus plantarum LIP-1 after freeze-drying[J]. Food Science and Technology,2019,44(7):1−9. -