• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020

氮源对德氏乳杆菌保加利亚亚种B61-3耐冻干能力的影响

汤静月 葛绍阳 桑跃 赵亮 刘贵巧

汤静月,葛绍阳,桑跃,等. 氮源对德氏乳杆菌保加利亚亚种B61-3耐冻干能力的影响[J]. 食品工业科技,2023,44(11):144−152. doi:  10.13386/j.issn1002-0306.2022070343
引用本文: 汤静月,葛绍阳,桑跃,等. 氮源对德氏乳杆菌保加利亚亚种B61-3耐冻干能力的影响[J]. 食品工业科技,2023,44(11):144−152. doi:  10.13386/j.issn1002-0306.2022070343
TANG Jingyue, GE Shaoyang, SANG Yue, et al. Effect of Nitrogen Source on Freeze-dried Resistance of Lactobacillus delbrueckii subsp. bulgaricus B61-3[J]. Science and Technology of Food Industry, 2023, 44(11): 144−152. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022070343
Citation: TANG Jingyue, GE Shaoyang, SANG Yue, et al. Effect of Nitrogen Source on Freeze-dried Resistance of Lactobacillus delbrueckii subsp. bulgaricus B61-3[J]. Science and Technology of Food Industry, 2023, 44(11): 144−152. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022070343

氮源对德氏乳杆菌保加利亚亚种B61-3耐冻干能力的影响

doi: 10.13386/j.issn1002-0306.2022070343
基金项目: 国家自然科学基金(32072196)。
详细信息
    作者简介:

    汤静月(1998−),女,硕士研究生,研究方向:食品微生物,E-mail:tangjybk@163.com

    通讯作者:

    赵亮(1983−),男,博士,副教授,研究方向:食品微生物,E-mail:lzhao@cau.edu.cn

    刘贵巧(1969−),女,硕士,教授,研究方向:食品微生物,E-mail:Keli1966@sina.com

  • 中图分类号: TS201.3

Effect of Nitrogen Source on Freeze-dried Resistance of Lactobacillus delbrueckii subsp. bulgaricus B61-3

  • 摘要: 本研究针对德氏乳杆菌保加利亚亚种B61-3,分别测定了其对16种氮源的利用情况,筛选出能够提高菌株冻干耐受的氮源种类及添加量,并进一步测定该氮源对菌株冻干粉发酵活力、菌体形态、发酵关键酶活力的影响。结果表明:氮源为30 g/L牛骨蛋白胨时可提高菌株冻干存活率及冻干粉发酵活力,冻干存活率由9.68%提高到18.90%,冻干粉平均发酵活力较对照组提高22.15%;电子显微镜显示,牛骨蛋白胨培养后菌体大小及形态有所改变,对照组发酵菌体表现出不规则、卷曲的形态且菌体较长,而牛骨蛋白胨为氮源时菌体形态呈表面光滑的短杆状,菌体长径比(l/d)和面积体积比(S/V)显著降低(P<0.05),可能与菌株更高的存活率和发酵活力有关。发酵关键酶活力测定结果表明,冷冻干燥显著降低菌株酶活力(P<0.05),牛骨蛋白胨培养菌株冻干后胞内酶活力均显著高于对照组(P<0.05),乳酸脱氢酶、NaK-ATP酶及β-半乳糖苷酶分别较对照组提高1.30、1.52及2.75倍,且胞外β-半乳糖苷酶活性低于对照组。结果证实,牛骨蛋白胨培养B61-3菌体能够抵抗冷冻干燥过程对菌体细胞膜造成的损伤,减少酶外泄,从而提高冻干存活率和发酵活力。
  • 图  1  德氏乳杆菌保加利亚亚种B61-3生长曲线

    Figure  1.  Growth curve of Lactobacillus delbrueckii subsp. bulgaria B61-3

    注:菌株生长过程中pH和OD600值变化(a)、活菌数变化(b)。

    图  2  不同氮源对菌体增殖培养的影响

    Figure  2.  Effects of different nitrogen sources on bacterial value-added culture

    注:不同字母之间表示具有显著性差异,P<0.05,图3图4同。

    图  3  不同氮源对菌体冷冻存活率的影响

    Figure  3.  Effect of different nitrogen sources on freezing survival rate of bacteria

    图  4  不同氮源及添加量对菌体冻干存活率的影响

    Figure  4.  Effects of different nitrogen sources and addition amount on freeze-drying survival rate of bacteria

    图  5  氮源对菌体发酵活力的影响

    Figure  5.  Effect of nitrogen source on fermentation activity of bacteria

    注:发酵过程中pH变化(A)、滴定酸度变化(B)和活菌数生长曲线(C)。

    图  6  扫描电镜图像

    Figure  6.  Scanning electron microscope image

    注:对照组冻干前(a)、牛骨蛋白胨组冻干前(b)、对照组冻干后(c)、牛骨蛋白胨组冻干后(d);图7同。

    图  7  透射电镜图像图

    Figure  7.  Transmission electron microscope image

    图  8  牛骨蛋白胨对乳酸脱氢酶活力的影响

    Figure  8.  Effect of bovine bone peptone on lactate dehydrogenase activity

    注:和对照组比较,*代表具有显著性差异(P<0.05),**代表具有极显著性差异(P<0.01);图9图10同。

    图  9  牛骨蛋白胨对Na+K+-ATP酶活力的影响

    Figure  9.  Effect of bovine bone peptone on Na+K+-ATPase activity

    图  10  牛骨蛋白胨对β-半乳糖苷酶活力的影响

    Figure  10.  Effect of bovine bone peptone on β-galactosidase activity

    注:a为胞内,b为胞外。

    表  1  牛骨蛋白胨对菌体冻干的影响

    Table  1.   Effect of bovine bone peptone on freeze-drying of bacteria

    培养基冻干存活率
    (%)
    冻干菌粉活菌数
    (lg CFU/g)
    乳糖MRS基础培养基(对照组)9.68±0.56b9.65±0.41b
    牛骨蛋白胨培养基(牛骨蛋白胨组)18.90±0.76a10.43±0.20a
    注:同列不同字母表示组间具有显著性差异(P<0.05),表2同。
    下载: 导出CSV

    表  2  对照组与牛骨蛋白胨组菌体长度、直径、长径比、面积体积比统计结果

    Table  2.   Statistical results of bacterial length, diameter, aspect ratio and volume between control group and bovine bone peptone group

    组别菌体长度
    (l, μm)
    菌体直径
    (d, μm)
    长径比
    (l/d)
    面积体积比
    (S/V)
    对照组冻干前6.85±0.68a0.68±0.03a10.07±0.92a6.69±0.27c
    牛骨蛋白胨组冻干前4.51±1.08b0.66±0.04a6.83±0.31b6.39±0.57c
    对照组冻干后6.24±0.79a0.60±0.05a10.42±0.99a14.55±0.51a
    牛骨蛋白胨组冻干后3.98±0.30b0.64±0.03a6.22±1.02b7.66±0.46b
    下载: 导出CSV
  • [1] NADIA L A, FRIZZO L S, OUWEHAND A C, et al. Technological characterization of probiotic lactic acid bacteria as starter cultures for dry fermented sausages[J]. Foods,2020,9(5):596. doi:  10.3390/foods9050596
    [2] FONSECA F, CENARD S, PASSOT S. Freeze drying of lactic acid bacteria[M]. New York, NY: Springer New York, 2015: 477−488.
    [3] WANG Y, WU J, LÜ M, et al. Metabolism characteristics of lactic acid bacteria and the expanding applications in food industry[J]. Front Bioeng Biotechnol,2021,9:612285. doi:  10.3389/fbioe.2021.612285
    [4] CUI S, HANG F, LIU X, et al. Effect of acids produced from carbohydrate metabolism in cryoprotectants on the viability of freeze-dried lactobacillus and prediction of optimal initial cell concentration[J]. J Biosci Bioeng,2018,125(5):513−518. doi:  10.1016/j.jbiosc.2017.12.009
    [5] 孙媛媛. 异型发酵乳杆菌高密度培养及提高其冻干存活率的方法[D]. 无锡: 江南大学, 2021

    SUN Y Y. High-density cultivation of heterofermentive lactobacillus and methods to improve the freeze-drying survival rate[D]. Wuxi: Jiangnan University, 2021.
    [6] CARVALHO A S, SILVA J, HO P, et al. Relevant factors for the preparation of freeze-dried lactic acid bacteria[J]. International Dairy Journal,2004,14(10):835−847. doi:  10.1016/j.idairyj.2004.02.001
    [7] 李宝磊. 真空冷冻干燥对乳酸菌损伤机制及关键保护技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2011

    LI B L. Freeze-drying damage mechanism of lactic acid bacteria and the key protection technology research[D]. Harbin: Harbin Institute of Technology, 2011.
    [8] 于小青. 植物乳杆菌在冷冻干燥过程中生理损伤及保护策略的研究[D]. 上海: 上海理工大学, 2019

    YU X Q. The study on physiological damage and protection strategies of lactobacillus plantarum during freeze-drying[D]. Shanghai: University of Shanghai for Science and Technology, 2019.
    [9] 李娜. 植物乳杆菌ZJ316的高密度发酵及高活性菌制剂的初步研究[D]. 南宁: 广西大学, 2020

    LI N. High-density fermentation of Lactobacillus plantarum ZJ316 and preliminary study on the high activity bacteria agent[D]. Nanning: Guangxi University, 2020.
    [10] BODZEN A, JOSSIER A, DUPONT S, et al. Design of a new lyoprotectant increasing freeze-dried Lactobacillus strain survival to long-term storage[J]. BMC Biotechnol,2021,21(1):66. doi:  10.1186/s12896-021-00726-2
    [11] HAN L, PU T, WANG X, et al. Optimization of a protective medium for enhancing the viability of freeze-dried Bacillus amyloliquefaciens B1408 based on response surface methodology[J]. Cryobiology,2018,81:101−106. doi:  10.1016/j.cryobiol.2018.02.003
    [12] WANG G Q, PU J, YU X Q, et al. Influence of freezing temperature before freeze-drying on the viability of various Lactobacillus plantarum strains[J]. J Dairy Sci,2020,103(4):3066−3075. doi:  10.3168/jds.2019-17685
    [13] 冯志伟. Pediococcus acidilactici IMAU95219增殖培养基及高密度培养工艺优化[D]. 呼和浩特: 内蒙古农业大学, 2020

    FENG Z W. Optimization of enrichment medium and high cell density cultivation of Pediococcus acidilactici IMAU95219[D]. Huhehot: Inner Mongolia Agricultural University, 2020.
    [14] 田良玉. 乳酸菌高密度规模发酵工艺优化[D]. 扬州: 扬州大学, 2018

    TIAN Y L. Optimization of high-density and large-scale fermentation for lactic acid bacteria[D]. Yangzhou: Yangzhou University, 2018.
    [15] SANTIVARANGKNA C, HIGL B, FOERST P. Protection mechanisms of sugars during different stages of preparation process of dried lactic acid starter cultures[J]. Food Microbiology,2008,25(3):429−441. doi:  10.1016/j.fm.2007.12.004
    [16] SHAO Y, GAO S, GUO H, et al. Influence of culture conditions and preconditioning on survival of Lactobacillus delbrueckii subsp. bulgaricus ND02 during lyophilization[J]. J Dairy Sci,2014,97(3):1270−1280. doi:  10.3168/jds.2013-7536
    [17] CHEN Z, E J, MA R, et al. The effect of aspartic acid on the freeze-drying survival rate of Lactobacillus plantarum LIP-1 and its inherent mechanism[J]. LWT,2022,155:112929. doi:  10.1016/j.lwt.2021.112929
    [18] WANG C, CUI Y, QU X. Identification of proteins regulated by acid adaptation related two component system HPK1/RR1 in Lactobacillus delbrueckii subsp. bulgaricus[J]. Arch Microbiol,2018,200(9):1381−1393. doi:  10.1007/s00203-018-1552-9
    [19] LIU E, ZHENG H, SHI T, et al. Relationship between Lactobacillus bulgaricus and Streptococcus thermophilus under whey conditions: Focus on amino acid formation[J]. International Dairy Journal,2016,56:141−150. doi:  10.1016/j.idairyj.2016.01.019
    [20] YAMAMOTO E, WATANABE R, ICHIMURA T, et al. Effect of lactose hydrolysis on the milk-fermenting properties of Lactobacillus delbrueckii subsp. bulgaricus 2038 and Streptococcus thermophilus 1131[J]. J Dairy Sci,2021,104(2):1454−1464. doi:  10.3168/jds.2020-19244
    [21] 汪文丽. 双歧杆菌氮源利用的选择性及特征分析[D]. 无锡: 江南大学, 2021

    WANG W L. Selectivity and characteristic analysis of nitrogen source utilization by Bifidobacteria[D]. Wuxi: Jiangnan University, 2021.
    [22] 陈琪, 张亚敏, 赵颖, 等. 表达外源谷氨酸脱羧酶基因对重组乳酸乳球菌胁迫抗性的影响[J]. 食品科学,2018,39(20):132−139. [CHEN Q, ZHANG Y M, ZHAO Y, et al. Effect of overexpression of glutamic acid decarboxylase(CsGAD) gene from Camellia sinensis on stress tolerance in Lactococcus lactis[J]. Food Science,2018,39(20):132−139. doi:  10.7506/spkx1002-6630-201820020
    [23] CHEN H, HUANG J, SHI X, et al. Effects of six substances on the growth and freeze-drying of Lactobacillus delbrueckii subsp. bulgaricus[J]. Acta Sci Pol Technol Aliment,2017,16(4):403−412.
    [24] 李子叶. 不同酸奶发酵剂的发酵性能及其产品功能活性的研究[D]. 哈尔滨: 东北农业大学, 2019

    LI Z Y. Study on fermentation performance of different starter culture and evaluation of its functional bioactivity in yogurt[D]. Harbin: Northeaster Agricultural University, 2019.
    [25] 冯镇, 张兰威. 变温培养对乳酸菌高密度培养的影响[J]. 中国乳品工业,2009,37(7):4−7. [FENG Z, ZHANG L W. Effect temperature-shift strategy on high density culture of lactic acid bacteria[J]. China Dairy Industry,2009,37(7):4−7. doi:  10.3969/j.issn.1001-2230.2009.07.001
    [26] 中华人民共和国国家卫生和计划生育委员会. GB 5009.239-2016 食品安全国家标准 食品酸度的测定[S]. 北京: 中国标准出版社, 2016

    National Health and Family Planning Commission of the People's Republic of China. GB 5009.239-2016 National food safety standard-determination of acidity of food[S]. Beijing: Standards Press of China, 2016.
    [27] 钱志浩. 通过调节细胞膜组成提高乳杆菌冻干存活率的研究[D]. 无锡: 江南大学, 2021

    QIAN Z H. Study on improving the lyophilization survival rate of Lactobacillus beijerinck. by regulating the composition of cell membrane[D]. Wuxi: Jiangnan University, 2021.
    [28] 臧凯丽, 王泳, 赵林森, 等. 球磨-CTAB法提取嗜酸乳杆菌基因组DNA条件优化[J]. 生物技术,2018,28(3):236−241. [ZANG K L, WANG Y, ZHAO L S, et al. Conditions research on beadbeater-CTAB extraction of Lactobacillus acidophilus genome DNA[J]. Biotechnology,2018,28(3):236−241.
    [29] 刘晓永, 王强, 胡永金. 用微珠涡流法破壁酵母细胞[J]. 吉首大学学报(自然科学版),2006(6):110−113. [LIU X Y, WANG Q, HU Y J. Disruption of the yeast cell walls by vortex-mini-bead disruption method[J]. Journal of Jishou University (Natural Science Edition),2006(6):110−113. doi:  10.3969/j.issn.1007-2985.2006.06.029
    [30] PALMFELDT J, RADSTROM P, HAHN H B. Optimisation of initial cell concentration enhances freeze-drying tolerance of Pseudomonas chlororaphis[J]. Cryobiology,2003,47(1):21−29. doi:  10.1016/S0011-2240(03)00065-8
    [31] 丛美楠. 保加利亚乳杆菌的低成本培养、保藏及初步应用研究[D]. 厦门: 集美大学, 2017

    CONG M N. Low cost culture, preservation and preliminary application study of Lactobacillus delbrueckii subsp. bulgaricus[D]. Xiamen: Jimei University, 2017.
    [32] 高姝冉. 德氏乳杆菌保加利亚亚种IMAU80319高密度发酵和真空冷冻干燥工艺的研究[D]. 呼和浩特: 内蒙古农业大学, 2015

    GAO S R. Study on high cell density culture and vacuum freeze-drying of Lactobacillus delbrueckii subsp. bulgaricus IMAU80319[D]. Huhehot: Inner Mongolia Agricultural University, 2015.
    [33] 赵宏飞. 乳糖对瑞士乳杆菌生长代谢影响及高密度培养研究[D]. 北京: 北京林业大学, 2014

    ZHAO H F. Effect of lactose on the growth and metabolism of Lactobacillus helveticus and its high cell density culture[D]. Beijing: Beijing Forestry University, 2014.
    [34] 朱丹凤, 王园园, 崔树茂, 等. 罗伊氏乳杆菌氮源利用的选择性与特征分析[J]. 食品与发酵工业,2018,44(11):35−41. [ZHU D F, WANG Y Y, CUI S M, et al. Selectivity and characteristic analysis of nitrogen source utilized by Lactobacillus reuteri[J]. Food and Fermentation Industry,2018,44(11):35−41.
    [35] 汪政煜, 吴文茹, 习羽, 等. cspL对保加利亚乳杆菌的影响研究[J]. 食品科技,2017,42(1):7−11. [WANG Z Y, WU W R, XI Y, et al. The influence of cspL on Lactobacillus delbrueckii subsp. bulgaricus[J]. Food Science and Technology,2017,42(1):7−11.
    [36] 严涛, 朱建国, 姜甜, 等. 高密度发酵乳酸菌抗冻性影响因素分析[J]. 食品研究与开发,2018,39(17):209−213. [YAN T, ZHU J G, JIANG T, et al. Study on influencing factors of anti-freezing of high-density fermentation lactic acid bacteria[J]. Food Research and Development,2018,39(17):209−213. doi:  10.3969/j.issn.1005-6521.2018.17.038
    [37] 岳林芳, 王俊国, 萨如拉, 等. 培养条件对乳酸菌发酵剂抗冷冻干燥性能影响的研究进展[J]. 食品科学,2016,37(11):270−276. [YUE L F, WANG J G, SA R L, et al. Effects of culture conditions on the survival of freeze-dried lactic acid bacterial starter cultures[J]. Food Science,2016,37(11):270−276. doi:  10.7506/spkx1002-6630-201611047
    [38] 安慧莹. 戊糖乳杆菌发酵产乳酸的培养条件优化及组学分析[D]. 大连: 大连理工大学, 2017

    AN H Y. Optimization of culture conditions and omics analysis of lactic acid production by Lactobacillus pentosus[D]. Dalian: Dalian University of Technology, 2017.
    [39] SENZ M, VAN L B, BADER J, et al. Control of cell morphology of probiotic Lactobacillus acidophilus for enhanced cell stability during industrial processing[J]. International Journal of Food Microbiology,2015,192:34−42. doi:  10.1016/j.ijfoodmicro.2014.09.015
    [40] KREBS S J, TAYLOR R K. Nutrient-dependent, rapid transition of Vibrio cholerae to coccoid morphology and expression of the toxin co-regulated pilus in this form[J]. Microbiology (Reading),2011,157(Pt 10):2942−2953.
    [41] DUMONT F, MARECHAL P, GERVAIS P. Cell size and water permeability as determining factors for cell viability after freezing at different cooling rates[J]. Applied and Environmental Microbiology,2004,70(1):268−272. doi:  10.1128/AEM.70.1.268-272.2004
    [42] PROUST L, SOURABIE A, PEDERSEN M, et al. Insights into the complexity of yeast extract peptides and their utilization by Streptococcus thermophilus[J]. Front Microbiol,2019,10:906. doi:  10.3389/fmicb.2019.00906
    [43] 张晓宁. 不同干燥方式及贮藏环境对植物乳杆菌LIP-1活性影响的研究[D]. 呼和浩特: 内蒙古农业大学, 2019

    ZHANG X N. Effects of Lactobacillus plantarum LIP-1 activity during storage in different drying methods[D]. Huhehot: Inner Mongolia Agricultural University, 2019.
    [44] 崔树茂. 乳酸菌的生长抑制和冻干存活的影响因素及规律[D]. 无锡: 江南大学, 2017

    CUI S M. The impact factors and rules of growth inhibition and freeze-drying survival for lactic acid bacteria[D]. Wuxi: Jiangnan University, 2017.
    [45] LARSEN B S, SKYTTE J, SVAGAN A J, et al. Using dextran of different molecular weights to achieve faster freeze-drying and improved storage stability of lactate dehydrogenase[J]. Pharm Dev Technol,2019,24(3):323−328. doi:  10.1080/10837450.2018.1479866
    [46] 尹玉文, 高鸣阳, 张艳森, 等. 响应面法优化提取牛骨蛋白酶解物及其对酵母增殖的影响[J]. 食品工业,2022,43(6):34−38. [YIN Y W, GAO M Y, ZHANG Y S, et al. Optimization of extraction of bovine bone protein hydrolysate by response surface methodology and its effect on yeast proliferation[J]. Food Industry,2022,43(6):34−38.
    [47] 张俊理. 耐冷菌Pseudomonas sp. W7产低温蛋白酶水解牛骨蛋白研究[D]. 哈尔滨: 黑龙江大学, 2012

    ZHANG J L, Study on hydrolysis of bovine bone protein by cold-tolerant bacterium Pseudomonas sp. W7[D]. Harbin: Heilongjiang University, 2012.
    [48] LE M C, BON E, LONVAUD F A. Tolerance to high osmolality of the lactic acid bacterium Oenococcus oeni and identification of potential osmoprotectants[J]. International Journal of Food Microbiology,2007,115(3):335−342. doi:  10.1016/j.ijfoodmicro.2006.12.039
    [49] NORDAHL L, WENNMALM S, JONSSON J, et al. Direct observation of Na+K+-ATPase oligomers in the plasma membrane of living cells by FRET-FCS[J]. The FASEB Journal,2022,36(S1):4657.
    [50] E J, CHEN J, CHEN Z, et al. Effects of different initial pH values on freeze-drying resistance of Lactobacillus plantarum LIP-1 based on transcriptomics and proteomics[J]. Food Res Int,2021,149:110694. doi:  10.1016/j.foodres.2021.110694
    [51] AZATIAN S B, KAUR N, LATHAM M P. Increasing the buffering capacity of minimal media leads to higher protein yield[J]. Journal of Biomolecular NMR,2019,73(1):11−17.
    [52] AYIVI R D, IBRAHIM S A, KRASTANOV A, et al. The impact of alternative nitrogen sources on the growth and viability of Lactobacillus delbrueckii subsp. bulgaricus[J]. Journal of Dairy Science,2022,105(10):7986−7997. doi:  10.3168/jds.2022-21971
    [53] XU Z, LI C, YE Y, et al. The β-galactosidase LacLM plays the major role in lactose utilization of Lactobacillus plantarum[J]. LWT,2022,153:112481. doi:  10.1016/j.lwt.2021.112481
    [54] 李宝坤. 乳酸杆菌冷冻干燥生理损伤机制及保护策略的研究[D]. 无锡: 江南大学, 2011

    LI B K. Study on the physiology mechanism of cell damage caused by freeze-drying and protection strategies of Lactobacillus Beijerinck[D]. Wuxi: Jiangnan University, 2011.
    [55] GOMES T A, SANTOS L B, NOGUEIRA A, et al. Increase in an intracellular β-galactosidase biosynthesis using Lactobacillus reuteri NRRL B-14171, inducers and alternative low-cost nitrogen sources under submerged cultivation[J]. International Journal of Food Engineering,2018,14(3):20170333.
    [56] MAKUCH K, MARKIEWICZ M, PASENKIEWICZ G M. Asymmetric spontaneous intercalation of lutein into a phospholipid bilayer, a computational study[J]. Computational and Structural Biotechnology Journal,2019,17:516−526. doi:  10.1016/j.csbj.2019.04.001
    [57] KOBAYASHI J. D-amino acids and lactic acid bacteria[J]. Microorganisms,2019,7(12):690. doi:  10.3390/microorganisms7120690
    [58] WOLKERS W F, OLDENHOF H, TANG F, et al. Factors affecting the membrane permeability barrier function of cells during preservation technologies[J]. Langmuir,2019,35(23):7520−7528. doi:  10.1021/acs.langmuir.8b02852
    [59] 张莉. 抗冻肽在乳酸乳球菌中表达及其抗冻活性表征[D]. 上海: 上海交通大学, 2018

    ZHANG L. Intracellular expression of an antifreeze peptide by Lactococcus lactis and evaluation of cryoprotective effect in recombinant bacteria[D]. Shanghai: Shanghai Jiao Tong University, 2018.
    [60] LI C, ZHANG G F, MAO X, et al. Growth and acid production of Lactobacillus delbrueckii subsp. bulgaricus ATCC 11842 in the fermentation of algal carcass[J]. J Dairy Sci,2016,99(6):4243−4250. doi:  10.3168/jds.2015-10700
    [61] 张晓宁, 陈境, 麻丽丽, 等. 优化培养基对冷冻干燥后植物乳杆菌LIP-1活性的影响[J]. 食品科技,2019,44(7):1−9. [ZHANG X N, CHEN J, MA L L, et al. The effect of optimized medium components on the activity of Lactobacillus plantarum LIP-1 after freeze-drying[J]. Food Science and Technology,2019,44(7):1−9.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  22
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-02
  • 网络出版日期:  2023-04-18
  • 刊出日期:  2023-06-01

目录

    /

    返回文章
    返回