Effects of Different Cryoprotectant on the Quality Characteristics of Squid Mince during Frozen Storage
-
摘要: 为了提高冷冻鱿鱼滑制品品质的稳定性,本研究以秘鲁鱿鱼为原料,通过测定鱿鱼滑的凝胶强度、持水性、水分分布状态、Ca2+-ATPase活性和微观结构等指标,探究不同添加量的海藻糖(2%、4%、6%)、乳糖醇(2%、4%、6%)和乳酸钠(2%、3%、4%)对鱿鱼滑在冻藏150 d的冷冻保护作用及其品质的影响。结果表明,随着添加量的增加,海藻糖、乳糖醇和乳酸钠均能显著提高鱿鱼滑在冻藏期间的凝胶强度和持水性(P<0.05)。在冻藏150 d后,6%海藻糖、6%乳糖醇和4%乳酸钠组鱿鱼滑Ca2+-ATPase活性分别为0.28、0.26和0.30 μmol Pi/(mg prot·h),显著高于空白组0.17 μmol Pi/(mg prot·h)(P<0.05),延缓了鱿鱼滑肌原纤维蛋白的变性程度。电镜扫描图(SEM)显示,随着冻藏时间的延长,相比乳糖醇组及空白组,添加6%海藻糖和4%乳酸钠的鱿鱼滑微观组织较为紧密,较好地保持了鱿鱼滑的凝胶网络结构。结合感官评定,添加6%海藻糖能够提高冻藏后鱿鱼滑的口感和整体接受度。综上,6%海藻糖可有效延缓鱿鱼滑在冻藏期间的品质变化,为提升秘鲁鱿鱼应用及冷冻调理制品的品质提供理论依据。
-
关键词:
- 鱿鱼滑 /
- 冻藏 /
- 凝胶强度 /
- Ca2+-ATPase活性 /
- SEM
Abstract: In order to improve the quality stability of frozen reconstructed squid mince, the influence of three additions at various concentrations, namely trehalose (2%, 4%, 6%), lactitol (2%, 4%, 6%), and sodium lactate (2%, 3%, 4%) on the cryoprotective effect of squid mince during 5-month frozen storage was evaluated using Peru squid as raw materials. Gel strength, water holding capacity, Ca2+-ATPase activity, water distribution, and microstructures were monitored. The results showed that trehalose, lactitol, and sodium lactate could effectively improve the gel strength and water-holding capacity with increasing addition amounts (P<0.05). After 5-month frozen storage, the Ca2+-ATPase activity of quid mince added with 6% trehalose, 6% lactitol and 4% sodium lactate was 0.28, 0.26 and 0.30 μmol Pi/(mg prot·h) respectively, significantly higher than the control group 0.17 μmol Pi/(mg prot·h) (P<0.05), indicating the denaturation of myofibrillar protein of squid mince was delayed. SEM results showed that the microstructures of squid mince added with 6% trehalose and 4% sodium lactate were more compact with a well-kept gel network matrix compared with the control group and mince added with lactitol during frozen storage. Combined with sensory evaluation, 6% trehalose could enhance the mouthfeel and overall acceptance of squid mince. Overall, 6% trehalose could effectively delay the quality change of squid sliders during frozen storage, and would provide a theoretical foundation for the utilization of Peru squid and its frozen prepared products.-
Key words:
- squid mince /
- frozen storage /
- gel strength /
- Ca2+-ATPase activity /
- SEM
-
图 1 不同种类和添加量的抗冻剂对鱿鱼滑冻藏150 d内凝胶持水性的影响
Figure 1. Effects of different types and amounts of cryoprotectant on gel water holding capacity of squid mince during frozen storage for a period of 150 days
注:不同大写字母代表不同冻藏时间下数据具有显著性差异(P<0.05);不同小写字母代表同一冻藏时间下数据具有显著性差异(P<0.05);图2同。
图 3 不同种类和添加量的抗冻剂对鱿鱼滑冻藏150 d内凝胶水分分布的影响
Figure 3. Effects of different types and amounts of cryoprotectant on gel water migration of squid mince during frozen storage for a period of 150 days
注:A21、A22、A23分别代表结合水、不可移动水和自由水的百分含量;A为不同添加量的海藻糖(2%、4%、6%)水分分布图;B为不同添加量的乳糖醇(2%、4%、6%)水分分布图;C为不同添加量的乳酸钠(2%、3%、4%)水分分布图。
图 5 不同种类和添加量的抗冻剂对鱿鱼滑冻藏30 d与150 d的微观结构的影响(1000×)
Figure 5. Effects of different types and amounts of cryoprotectant on the microstructure of squid during 30 days and 150 days of frozen storage (1000×)
注:A为空白组鱿鱼滑微观结构;B、C、D为别为不同添加量的海藻糖(2%、4%、6%)冻藏30 d与150 d微观结构;E、F、G为别为不同添加量的乳糖醇(2%、4%、6%)冻藏30与150 d微观结构;H、I、J为别为不同添加量的乳酸钠(2%、3%、4%)冻藏30 d与150 d微观结构;1代表冻藏30 d;5代表冻藏150 d。
表 1 鱿鱼滑感官评价评分标准
Table 1. Sensory evaluation criteria for squid mince
指标 感官评分标准 评分(分) 生制样品
析水状况析水现象明显 1~4 略有析水现象 5~7 无析水现象 8~10 生制样品
组织状态组织分散现象明显,挤出时有明显断裂现象 1~4 组织略有分散现象,挤出时基本呈连续流动状 5~7 组织紧致,无分散现象,挤出时呈连续流动状 8~10 组织松散,无弹性 1~4 熟制样品口感 组织略微松散 5~7 组织紧致,弹度适中 8~10 有明显甜味或异味,不易接受 1~4 熟制样品滋味 有甜味或异味,但可接受 5~7 无明显甜味或异味 8~10 难以接受 1~4 整体接受度 接受度一般 5~7 接受度高 8~10 表 2 不同种类和添加量的抗冻剂对鱿鱼滑冻藏150 d内凝胶强度的影响(g·mm)
Table 2. Effects of different types and amounts of cryoprotectant on gel strength of squid mince during frozen storage for a period of 150 days (g·mm)
抗冻剂 抗冻剂添加量(%) 冻藏时间(d) 0 30 60 90 120 150 0 1453.20±10.49Ade 961.01±27.36Bf 870.57±13.20Cf 821.58±31.46CDg 814.98±16.73Dg 770.58±18.99Df 2 1553.58±28.07Ac 1047.63±24.37Be 1002.54±16.56Be 922.73±17.10Cf 890.43±21.52CDef 863.41±21.64Dcd 海藻糖 4 1659.71±45.22Ab 1147.52±41.36Bd 1069.42±41.28Cde 971.13±19.95Dde 925.58±30.82Dcde 925.13±18.50Db 6 1733.99±25.58Aa 1248.27±12.69Bc 1106.85±37.48BCd 1047.30±33.32Cbc 1017.34±22.51CDab 969.40±14.59Da 2 1406.57±18.29Ae 1295.63±17.43Bbc 1193.50±20.84BCc 1001.76±27.48Cbcd 882.33±35.38Def 825.76±19.26Dde 乳糖醇 4 1498.17±24.67Acd 1365.30±13.37Bb 1322.69±11.12Bb 1081.48±21.40Cb 970.56±15.94Dbc 823.02±21.78Ee 6 1769.31±24.62Aa 1454.14±13.85Ba 1435.94±23.74Ba 1227.39±32.63Ca 970.51±21.30Dbc 841.08±26.83Ecde 2 1441.93±28.82Ade 1310.58±28.74Bbc 1250.39±31.37Bc 1058.72±33.24Cbc 868.45±15.13Dfg 776.38±13.09Ef 乳酸钠 3 1530.60±26.36Ac 1348.83±10.44Bb 1320.65±25.58Bb 1166.60±28.17Ca 934.42±34.16Dcd 816.07±14.03Ee 4 1660.21±29.90Ab 1509.98±31.16Ba 1354.90±38.73Cb 1214.02±24.73Da 1058.72±33.24Ea 868.45±15.13Fc 注:同行不同大写字母代表不同冻藏时间下数据具有显著性差异(P<0.05);同列不同小写字母代表同一冻藏时间下数据具有显著性差异(P<0.05)。 -
[1] 于笛, 傅志宇, 郑杰, 等. 秘鲁鱿鱼不同组织营养成分分析与评价[J]. 食品研究与开发,2021,42(5):164−171. [YU D, FU Z Y, ZHENG J, et al. Analysis and evaluation of nutritional components of different tissues from squid Dosidicus gigas[J]. Food Research and Development,2021,42(5):164−171. doi: 10.12161/j.issn.1005-6521.2021.05.028 [2] 姚慧, 祁雪儿, 毛俊龙, 等. 3种鱿鱼冻藏过程中肌原纤维蛋白功能特性变化[J]. 食品科学,2021,42(7):207−213. [YAO H, QI X E, MAO J L, et al. Changes in functional properties of myofibrillar proteins in three species of squid during frozen storage[J]. Food Science,2021,42(7):207−213. [3] AN Y, YOU J, XIONG S, et al. Short-term frozen storage enhances cross-linking that was induced by transglutaminase in surimi gels from silver carp (Hypophthalmichthys molitrix)[J]. Food Chemistry,2018,257:216−222. doi: 10.1016/j.foodchem.2018.02.140 [4] JENKELUNAS P J, LI-CHAN E C Y. Production and assessment of Pacific hake (Merluccius productus) hydrolysates as cryoprotectants for frozen fish mince[J]. Food Chem,2018,239:535−543. doi: 10.1016/j.foodchem.2017.06.148 [5] CHEN X, WU J, LI X, et al. Investigation of the cryoprotective mechanism and effect on quality characteristics of surimi during freezing storage by antifreeze peptides[J]. Food Chem,2022,371:131054. doi: 10.1016/j.foodchem.2021.131054 [6] WALAYAT N, XIONG H, XIONG Z, et al. Role of cryoprotectants in surimi and factors affecting surimi gel properties: A review[J]. Food Reviews International,2022,38(6):1103−1122. doi: 10.1080/87559129.2020.1768403 [7] XIONG G, CHENG W, YE L, et al. Effects of konjac glucomannan on physicochemical properties of myofibrillar protein and surimi gels from grass carp (Ctenopharyngodon idella)[J]. Food Chemistry,2009,116(2):413−418. doi: 10.1016/j.foodchem.2009.02.056 [8] CHANTARASATAPORN P, YOKSAN R, VISESSANGUAN W, et al. Water-based nano-sized chitin and chitosan as seafood additive through a case study of Pacific white shrimp (Litopenaeus vannamei)[J]. Food Hydrocolloids,2013,32(2):341−348. doi: 10.1016/j.foodhyd.2013.01.011 [9] ZHANG B, YAO H, QI H, et al. Cryoprotective characteristics of different sugar alcohols on peeled Pacific white shrimp (Litopenaeus vannamei) during frozen storage and their possible mechanisms of action[J]. International Journal of Food Properties,2020,23(1):95−107. doi: 10.1080/10942912.2019.1710533 [10] 潘洪民, 员艳苓, 曹丙蕾, 等. 草鱼冷冻鱼糜抗冻剂的复配研究[J]. 中国食品添加剂,2021,32(12):82−88. [PAN H M, YUAN Y L, CAO B L, et al. Study on the formulation of antifreeze agent for grass carp surimi[J]. China Food Additives,2021,32(12):82−88. [11] WU S, PAN S, WANG H. Effect of trehalose on Lateolabrax japonicus myofibrillar protein during frozen storage[J]. Food Chemistry,2014,160:281−285. doi: 10.1016/j.foodchem.2014.03.100 [12] 白冬, 郑炜, 梁佳, 等. 海藻糖类抗冻保水剂对冻藏南美白对虾(Litopenaeus vannamei)品质的影响[J]. 食品工业科技,2018,39(6):286−290,307. [BAI D, ZHENG W, LIANG J, et al. Effects of trehalose antifreeze agent on quality of Litopenaeus vannamei during frozen storage[J]. Science and Technology of Food Industry,2018,39(6):286−290,307. [13] KAUR K, KAUR J, KUMAR R, et al. Formulation and physiochemical study of alpha-tocopherol based oil in water nanoemulsion stabilized with non toxic, biodegradable surfactant: Sodium stearoyl lactate[J]. Ultrason Sonochem,2017,38:570−578. doi: 10.1016/j.ultsonch.2016.08.026 [14] CAMPO-DEAÑO L, TOVAR C A, BORDERíAS J, et al. Gelation process in two different squid (Dosidicus gigas) surimis throughout frozen storage as affected by several cryoprotectants: Thermal, mechanical and dynamic rheological properties[J]. Journal of Food Engineering,2011,107(1):107−116. doi: 10.1016/j.jfoodeng.2011.05.037 [15] 焦甜甜, 姜鹏飞, 傅宝尚, 等. 淀粉对鱿鱼滑反复冻融后品质特性的影响[J]. 食品与发酵工业,2022,48(13):196−203. [JIAO T T, JIANG P F, FU B S, et al. Effect of starches on quality characteristics of squid slid after repeated freeze-thaw[J]. Food and Fermentation Industries,2022,48(13):196−203. [16] 朱凯. 海水虾虾滑加工工艺及品质改良研究 [D]. 杭州: 浙江工商大学, 2022.ZHU K. Study on processing technology of sea shrimp surimi products and quality improvement[D]. Hangzhou: Zhejiang Gongshang University, 2022. [17] 张静雅, 陆剑锋, 林琳, 等. 鲢鱼冷冻鱼糜抗冻剂的复配研究[J]. 食品科学,2012,33(2):127−132. [ZHANG J Y, LU J F, LIN L, et al. Optimization of cryoprotectant formula for silver carp surimi during frozen storage[J]. Food Science,2012,33(2):127−132. [18] BENJAKUL S, BAUER F. Physicochemical and enzymatic changes of cod muscle proteins subjected to different freeze–thaw cycles[J]. Journal of the Science of Food and Agriculture,2000,80(8):1143−1150. doi: 10.1002/1097-0010(200006)80:8<1143::AID-JSFA610>3.0.CO;2-C [19] 米顺利, 石君连, 王双龙, 等. 两种抗冻剂对罗非鱼鱼糜的凝胶性及抗冻性的影响[J]. 食品科技,2012,37(3):159−162. [MI S L, SHI J L, WANG S L, et al. Effects of two cryoprotectant on gel forming and cryoprotective properties of tilapia surimi[J]. Food Science and Technology,2012,37(3):159−162. [20] 蓝蔚青, 赵亚楠, 胡潇予, 等. 3种抗冻剂处理对凡纳滨对虾冻融循环期间品质及营养变化影响[J]. 上海海洋大学学报,2021,30(5):922−931. [LAN W Q, ZHAO Y N, HU X Y, et al. Effects of three antifreeze treatments on quality and vegetative changes during the freeze-thaw cycle of Penaeus vanabine[J]. Journal of Shanghai Ocean University,2021,30(5):922−931. [21] 徐蓓蓓, 胡玲萍, 姜晓明, 等. 冷冻南极磷虾(Euphausia superba)肌肉的理化性质及蛋白的加工特性[J]. 食品工业科技,2017,38(21):56−64. [XU B B, HU L P, JIANG X M, et al. Physicochemical properties and processing characteristics of Antarctic krill (Euphausia superba) muscle[J]. Science and Technology of Food Industry,2017,38(21):56−64. [22] ZHANG Y, ERTBJERG P. Effects of frozen-then-chilled storage on proteolytic enzyme activity and water-holding capacity of pork loin[J]. Meat Science,2018,145:375−382. doi: 10.1016/j.meatsci.2018.07.017 [23] 黄建联. 不同抗冻剂对冻藏鲢鱼滑品质特性的影响[J]. 中国食品学报,2019,19(12):204−212. [HUANG J L. Effects of different antifreeze agents on slippery quality characteristics of frozen silve carp[J]. Journal of China Food Science,2019,19(12):204−212. [24] ESTÉVEZ M, VENTANAS S, HEINONEN M, et al. Protein carbonylation and water-holding capacity of pork subjected to frozen storage: Effect of muscle type, premincing, and packaging[J]. Journal of Agricultural and Food Chemistry,2011,59(10):5435−5443. doi: 10.1021/jf104995j [25] SÁNCHEZ-VALENCIA J, SÁNCHEZ-ALONSO I, MARTINEZ I, et al. Low-field nuclear magnetic resonance of proton (1H LF NMR) relaxometry for monitoring the time and temperature history of frozen hake (Merluccius merluccius L.) muscle[J]. Food and Bioprocess Technology,2015,8(10):2137−2145. doi: 10.1007/s11947-015-1569-x [26] 刘妙. 保鲜剂对冻藏鱿鱼品质的影响 [D]. 上海: 上海海洋大学, 2016.LIU M. Effect of preservative on frozen squid quality[D]. Shanghai: Shanghai Ocean University, 2016. [27] YANG R, XU A, CHEN Y, et al. Effect of laver powder on textual, rheological properties and water distribution of squid (Dosidicus gigas) surimi gel[J]. Journal of Texture Studies,2020,51(6):968−978. doi: 10.1111/jtxs.12556 [28] 林天泉, 范大明, 黄建联, 等. 鲢鱼滑在冻藏过程中的结构变化[J]. 食品工业科技,2016,37(12):155−159, 182. [LIN T Q, FAN D M, HUANG J L, et al. Structural changes of silver carp in frozen storage[J]. Science and Technology of Food Industry,2016,37(12):155−159, 182. [29] ZHANG B, QI X E, MAO J L, et al. Trehalose and alginate oligosaccharides affect the stability of myosin in whiteleg shrimp (Litopenaeus vannamei): The water-replacement mechanism confirmed by molecular dynamic simulation[J]. LWT,2020,127:109393. doi: 10.1016/j.lwt.2020.109393 -