Bioinformatics Analysis and Gene Cloning of L-Lactate Dehydrogenase from Lactobacillus rhamnosus
-
摘要: 本研究以鼠李糖乳杆菌(Lactobacillus rhamnosus)L-乳酸脱氢酶(Lr-L-LDH)为研究对象,以研究较多的Lr-L-LDH1为对照,对基因组注释的两个Lr-L-LDH1和Lr-L-LDH2基因,进行异同分析。采用在线网站和专业软件对Lr-L-LDH1和Lr-L-LDH2的一级结构、基本特性、亲疏水性、二级结构进行分析和预测,对三级结构进行同源建模以及酶和底物的分子对接分析,并对酶的编码基因进行系统发育分析,克隆表达及酶活性检测。结果显示:相较于Lr-L-LDH1,Lr-L-LDH2有着相似的分子特性,二级和三级结构,但Lr-L-LDH2编码序列短,氨基酸序列同源性低(48.08%),有不同的进化地位;Lr-L-LDH2也含有乳酸脱氢酶催化活性位点序列和保守的NAD+结合位点序列(GXGXXG),能够形成典型的活性三维口袋域,是NAD+依赖型四聚体结构L-乳酸脱氢酶,在细胞中需要果糖1,6-二磷酸(FBP)来激活,催化丙酮酸还原为L-乳酸;体外克隆表达和酶学分析表明,Lr-L-LDH2酶活力极显著低于Lr-L-LDH1(P<0.01)。Lr-L-LDH1和Lr-L-LDH2都具有乳酸脱氢酶活性,推测二者在乳酸表达调控中相互作用,对鼠李糖乳杆菌L-乳酸脱氢酶的分子改造应同时考虑Lr-L-LDH1和Lr-L-LDH2的作用,研究对乳酸发酵工业的基因工程改造提供分子基础和科学依据。Abstract: In this study, L-lactate dehydrogenase (Lr-L-LDH) from Lactobacillus rhamnosus was investigated. The well-known Lr-L-LDH1 was taken as the control, differences between Lr-L-LDH1 and Lr-L-LDH2 annotated from the genome of L. rhamnosus were analyzed. The primary structure, basic properties, hydrophobicity, secondary structure of Lr-L-LDH1 and Lr-L-LDH2 were predicted and analyzed using online websites and professional software. Homology modeling of the tertiary structure, molecular docking of enzymes and substrates, phylogenetic analysis, in vitro cloning, expression, and enzyme activity assays were further studied. The results showed that, in comparison to Lr-L-LDH1, although Lr-L-LHD2 had similar molecular characteristics, secondary and tertiary structures, Lr-L-LHD2 exhibited differences: A shorter sequences, low amino acid identities (48.08%), and a different phylogenetic status. Lr-L-LHD2 also contained a catalytically active site, a highly conserved NAD+ binding site sequence (GXGXXG), a three-dimensional active pocket domain, was an NAD+ dependent tetrameric L-lactate dehydrogenase, and be activated by fructose 1,6-diphosphate in the cytoplasm for catalyzing the reduction of pyruvate to L-lactic acid. In vitro enzyme activity was significantly lower than Lr-L-LDH1 (P<0.01). In conclusion, both Lr-L-LDH1 and Lr-L-LHD2 showed enzyme activities of L-lactate dehydrogenase, indicating they may regulate the L-lactate metabolism pathway together. Considerations of both Lr-L-LDH1 and Lr-L-LHD2 should be taken for the future molecular modifications of L-LDH in L. rhamnosus, and the study provided the molecular and scientific basis for the gene engineering modifications of lactic acid fermentation industry.
-
图 6 Lr-L-LDH1 和Lr-L-LDH2的三维结构预测和分子对接分析
Figure 6. Three-dimensional structure prediction and molecular docking analysis of Lr-L-LDH1 and Lr-L-LDH2
注:A:Lr-L-LDH1;B:Lr-L-LDH2;A1:Lr-L-LDH1单体三维结构模拟;A2:Lr-L-LDH1四聚体三维结构模拟;A3、A4:Lr-L-LDH1酶-丙酮酸底物作用关系分析;B1:Lr-L-LDH2单体三维结构模拟;B2:Lr-L-LDH2四聚体三维结构模拟;B3、B4:Lr-L-LDH2酶-丙酮酸底物作用关系分析;橙黄色虚线表示盐桥(Salt bridge),绿色虚线表示氢键(Conventional hydrogen bond)。
表 1 本研究使用的引物
Table 1. Primer used in this study
引物 引物序列(5'-3') 用途 ldhL1-F CATGGATCCATGCACATAAGAAAGGATGAT 扩增Lr-L-ldh1基因 ldhL1-R GCACTCGAGTTACTGACGTGTTTCGATGTC 扩增Lr-L-ldh1基因 ldhL2-F CATGGATCCATGCAACATAGCGGAAATATT 扩增Lr-L-ldh2基因 ldhL2-R GCACTCGAGCTAGGCTTCCTGTGCCTTCTT 扩增Lr-L-ldh2基因 表 2 Lr-L-LDH基本性质分析
Table 2. Analysis of the basic characteristics of the Lr-L-LDH
基本性质 Lr-L-LDH1 Lr-L-LDH2 氨基酸残基数量 335 312 分子质量(Da) 36608.80 33557.10 等电点 5.34 5.12 带负电荷氨基酸(Asp+Glu) 45 39 带正电荷氨基酸(Arg+Lys) 36 28 分子式 C1639H2613N433O500S7 C1487H2377N407O461S7 原子总数 5192 4739 消光系数(mol/cm) 32890 26025 不稳定指数 30.10 37.35 脂肪族指数 99.88 104.17 亲水性平均系数 -0.096 -0.020 表 3 Lr-L-LDH信号肽预测
Table 3. Signal peptide prediction of Lr-L-LDH
蛋白类型 可能性 Lr-L-LDH1 Lr-L-LDH2 信号肽(Sec/SPI) 0.0116 0.1173 TAT信号肽(Tat/SPI) 0.0019 0.01 脂蛋白信号肽(Sec/SPII) 0.0009 0.039 其他 0.9856 0.8337 表 4 二级结构中组件的比率
Table 4. The proportion of components in a secondary structure
二级结构 比率(%) Lr-L-LDH1 Lr-L-LDH2 α-螺旋 36.72 41.03 延伸链 22.99 20.19 β-转角 8.96 9.29 无规则卷曲 31.34 29.49 -
[1] JU S Y, KIM J H, LEE P C. Long-term adaptive evolution of Leuconostoc mesenteroides for enhancement of lactic acid tolerance and production[J]. Biotechnology for Biofuels,2016,9(1):240. doi: 10.1186/s13068-016-0662-3 [2] ABDEL-RAHMAN M A, TASHIRO Y, SONOMOTO K. Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: Overview and limits[J]. Journal of Biotechnology,2010,156(4):286−301. [3] PARRA-RAMIREZ D, MARTINEZ A, CARDONA C A. Lactic acid production from glucose and xylose using the lactogenic Escherichia coli strain JU15: Experiments and techno-economic results[J]. Bioresource Technology,2018,273:86−92. [4] 孙浩轩, 周卫强, 杨硕, 等. 微生物制备高光学纯度L-乳酸的研究进展[J]. 食品与发酵科技,2021,57(5):91−96, 112. [SUN H X, ZHOU W Q, YANG S, et al. Progress in microbiological preparation of L-lactic acid strain with high optical purity and its production[J]. Food and Fermentation Sciences & Technology,2021,57(5):91−96, 112. [5] 刘金熙, 李冠洋, 金清. 乳酸菌发酵生产D-/L-乳酸的研究进展[J]. 食品安全导刊,2021,33:146−148. [LIU J X, LI G Y, JIN Q. Research progress in production of D-/L-lactic acid by lactic acid bacteria[J]. China Food Safety Magazine,2021,33:146−148. doi: 10.3969/j.issn.1674-0270.2021.30.spaqdk202130085 [6] WESSELS S, AXELSSON L, HANSEN E B, et al. The lactic acid bacteria, the food chain, and their regulation[J]. Trends in Food Science & Technology,2004,15(10):498−505. [7] BERNARD N, FERAIN T, GARMYN D, et al. Cloning of the D-lactate dehydrogenase gene from Lactobacillus delbrueckii subsp. bulgaricus by complementation in Escherichia coli[J]. FEBS Letters,1991,290:61−64. doi: 10.1016/0014-5793(91)81226-X [8] ABDEL-RAHMAN M A, TASHIRO Y, SONOMOTO K. Recent advances in lactic acid production by microbial fermentation processes[J]. Biotechnology Advances,2013,31(6):877−902. doi: 10.1016/j.biotechadv.2013.04.002 [9] 吉林中粮生化有限公司. 产L-乳酸的重组菌株及其构建方法和发酵产L-乳酸的方法及应用: 中国, CN202010463397.3[P]. 2020-08-07Jilin COFCO Biochemical Co. Ltd. Recombinant strain producing L-lactic acid and its construction method, fermentation method and application: China, CN202010463397.3[P]. 2020-08-07. [10] 李雪晴, 袁风娇, 刘艳, 等. 不对称还原苯丙酮酸的L-乳酸脱氢酶L-LcLDH2的表达及生物信息学分析[J]. 食品与生物技术学报,2019,38(12):25−30. [LI X Q, YUAN F J, LIU Y, et al. Expression and bioinformatic analysis of an L-Lactate Dehydrogenase (L-LcLDH2) for the asymmetric reduction of phenylpyruvic acid[J]. Journal of Food Science and Biotechnology,2019,38(12):25−30. doi: 10.3969/j.issn.1673-1689.2019.12.004 [11] ANDRES J, MOLINER V, KRECHL J, et al. A PM3 quantum chemical study of the pyruvate reduction mechanism catalyzed by lactate dehydrogenase[J]. Bioorganic Chemistry,1993,21(3):260−274. doi: 10.1006/bioo.1993.1022 [12] KLEEREBEZEM M, HUGENHOLTZ J. Metabolic pathway engineering in lactic acid bacteria[J]. Current Opinion in Biotechnology,2003,14(2):232−237. doi: 10.1016/S0958-1669(03)00033-8 [13] 杨贞耐, 张雪. 乳酸菌代谢途径的基因工程调控[J]. 中国乳品工业,2007,35(11):44−47. [YANG Z N, ZHANG X. Genetic engineering of metabolic pathways in lactic acid bacteria[J]. China Dairy Industry,2007,35(11):44−47. doi: 10.3969/j.issn.1001-2230.2007.11.013 [14] 李倩, 王梦, 刘珞, 等. L-乳酸脱氢酶在大肠杆菌BL-21(DE3)中的表达[J]. 生物加工过程,2011,9(6):21−25. [LI Q, WANG M, LIU L, et al. Expression of L-lactate dehydrogenase in Escherichia coli BL-21 (DE3)[J]. Chinese Journal of Bioprocess Engineering,2011,9(6):21−25. doi: 10.3969/j.issn.1672-3678.2011.06.005 [15] 袁剑, 秦浩, 葛向阳, 等. 干酪乳杆菌L-乳酸脱氢酶在大肠杆菌中的表达、纯化及酶学性质[J]. 微生物学通报,2011,38(10):1482−1487. [YUAN J, QIN H, GE X Y, et al. Overexpression, purification and properties of ldhL gene from Lactobacillus casei in Escherichia coli[J]. Microbiology China,2011,38(10):1482−1487. [16] 杨登峰, 潘丽霞, 关妮, 等. 产高纯度L-乳酸大肠杆菌基因工程菌的初步研究[J]. 现代食品科技,2010,26(2):126−128,171. [YANG D F, PAN L X, GUAN N, et al. Construction of recombinant E. coli. strain for producing high-purity L-Lactate[J]. Modern Food Science and Technology,2010,26(2):126−128,171. [17] 王刚, 肖雨, 李义, 等. ldhL-ldb0094基因敲除对保加利亚乳杆菌产L-乳酸的影响[J]. 中国生物工程杂志,2019,39(8):66−73. [WANG G, XIAO Y, LI Y, et al. Effect of ldhL-ldb0094 gene knock out mutant on Lactobacillus delbrueckii subsp. blgaricus producing L-lactic acid[J]. China Biotechnology,2019,39(8):66−73. [18] 许黎明, 成春燕, 吕军. 鼠李糖乳杆菌D-乳酸脱氢酶基因ldhD的敲除[J]. 基因组学与应用生物学,2016,35(6):1421−1427. [XU L M, CHENG C Y, LÜ J. Knockout of D-Lactate dehydrogenase gene ldhD in Lactobacillus rhamnosus[J]. Genomics and Applied Biology,2016,35(6):1421−1427. [19] 金李玲, 孙丽霞, 陈思婷, 等. 鼠李糖乳杆菌半固态发酵法生产L-乳酸及发酵动力学分析[J]. 食品工业科技,2015,36(19):195−201. [JIN L L, SUN L X, CHEN S T, et al. Study on production of L-Lactic acid in semi-solid state fermentation by Lactobacillus rhamnosus and fermentation kinetics[J]. Science and Technology of Food Industry,2015,36(19):195−201. [20] JIANG G F, HINSINGER D D, STRIJK J S. Comparison of intraspecific, interspecific and intergeneric chloroplast diversity in Cycads[J]. Scientific Reports,2016,6:31473. doi: 10.1038/srep31473 [21] XU L M, HINSINGER D D, JIANG G F. The complete mitochondrial genome of the Agrocybe aegerita, an edible mushroom[J]. Mitochondrial Dna Part B,2017,2(2):791−792. doi: 10.1080/23802359.2017.1398618 [22] XU L M, HINSINGER D D, JIANG G F. The complete mitochondrial genome of the Basidiomycete fungus Pleurotus cornucopiae (Paulet) Rolland[J]. Mitochondrial DNA Part B,2018,3(1):73−75. doi: 10.1080/23802359.2017.1422405 [23] 李建武, 萧能, 余瑞元, 等. 生物化学实验原理和方法[M]. 北京: 北京大学出版社, 1997: 351−353LI J W, XIAO N, YU R Y, et al. Principles and methods of biochemical experiment[M]. Beijing: Peking University Press, 1997: 351−353. [24] 倪玉芳. 四种啮齿动物Ldha基因的克隆、原核表达与酶学性质研究[D]. 泸州: 西南医科大学, 2021NI Y F. Cloning, prokaryotic expression and enzymatic properties of Ldha genes from four rodents[D]. Luzhou: Southwest Medical University, 2021. [25] 申萍香, 黄艳, 黄江, 等. 生物信息学分析亚洲牛带绦虫乳酸脱氢酶基因及其蛋白的结构与特性[J]. 中国人兽共患病学报,2008,24(8):722−727. [SHEN P X, HUANG Y, HUANG J, et al. Bioinformatics analysis on the structures and properties of gene and the encoding protein of lactate dehydrogenase from Taeniasaginata asiatica[J]. Chinese Journal of Zoonoses,2008,24(8):722−727. doi: 10.3969/j.issn.1002-2694.2008.08.008 [26] 吕刚, 余新炳, 黄灿, 等. 日本血吸虫乳酸脱氢酶(SjLDH)结构与功能的生物信息学分析[J]. 中国寄生虫学与寄生虫病杂志,2007,25(3):202−205. [LÜ G, YU X B, HUANG C, et al. Bioinformatics analysis for the structure and function of lactate dehydrogenase from Schistosoma japonicum[J]. Chinese Journal of Parasitology and Parasitic Diseases,2007,25(3):202−205. doi: 10.3969/j.issn.1000-7423.2007.03.010 [27] 赵婷. 副干酪乳杆菌乳酸脱氢酶的克隆表达及酶学性质的研究[D]. 苏州: 苏州大学, 2012ZHAO T. Cloning, overexpression and properties of ldh gene from Lactobacillus paracasei[D]. Suzhou: Soochow University, 2012. [28] GURUPRASAD K, REDDY B V, PANDIT M W. Correlation between stability of a protein and its dipeptide composition: A novel approach for predicting in vivo stability of a protein from its primary sequence[J]. Protein Engineering, Design and Selection,1990,4(2):155−161. doi: 10.1093/protein/4.2.155 [29] GASTEIGER E, HOOGLAND C, GATTIKER A, et al. The proteomics protocols handbook: Protein identification and analysis tools on the ExPASy server[M]. Clifton: Humana Press, 2005: 571−607. [30] WOODS H K R. Prediction of protein antigenic determinants from amino acid sequences[J]. Proceedings of the National Academy of Sciences of the United States of America,1981,78(6):3824−3828. doi: 10.1073/pnas.78.6.3824 [31] 陈琦, 李春秀, 郑高伟, 等. 工业蛋白质构效关系的计算生物学解析[J]. 生物工程学报,2019,35(10):1829−1842. [CHEN Q, LI C X, ZHENG G W, et al. Computational analysis of structure-activity relationship of industrial enzymes[J]. Chinese Journal of Biotechnology,2019,35(10):1829−1842. [32] ARAI K, ISHIMITSU T, FUSHINOBU S, et al. Active and inactive state structures of unliganded Lactobacillus casei allosteric L-lactate dehydrogenase[J]. Proteins-structure Function & Bioinformatics,2010,78(3):681−694. [33] GARVIE E I. Bacterial lactate dehydrogenases[J]. Microbiological Reviews,1980,44(1):106. doi: 10.1128/mr.44.1.106-139.1980 [34] FELDMAN-SALIT A, HERING S, MESSIHA H L, et al. Regulation of the activity of lactate dehydrogenases from four lactic acid bacteria[J]. Journal of Biological Chemistry,2013,288(29):21295−21306. doi: 10.1074/jbc.M113.458265 [35] NEVES A R, POOL W A, KOK J, et al. Overview on sugar metabolism and its control in Lactococcus lactis-the input from in vivo NMR[J]. Fems Microbiology Reviews,2010,29(3):531−554. [36] 钱国军, 陈彩平, 翟如英, 等. 极耐热性乳酸脱氢酶高效表达、纯化及酶学性质[J]. 生物工程学报,2014,30(4):545−553. [QIAN G J, CHEN C P, ZHAI R Y, et al. Expression, purification and characterization of a thermostable lactate dehydrogenase from Thermotoga maritima[J]. Chinese Journal of Biotechnology,2014,30(4):545−553. [37] ZHAO R, ZHENG S, DUAN C, et al. NAD-dependent lactate dehydrogenase catalyses the first step in respiratory utilization of lactate by Lactococcus lactis[J]. Febs Open Bio,2013,3:379−386. doi: 10.1016/j.fob.2013.08.005 [38] CROW V L, PRITCHARD G G. Fructose-1, 6-diohosphate activated L-lactate dehydrogenase from Streptococcus lactis kinetic properties and factors affecting activation[J]. Journal of Bacteriology,1977,131(1):82−91. doi: 10.1128/jb.131.1.82-91.1977 [39] THOMAS T D, TURNER K W, CROW V L. Galactose fermentation by Streptococcus lactis and Streptococcus cremoris: Pathways, products, and regulation[J]. Journal of Bacteriology,1980,144(2):672−682. doi: 10.1128/jb.144.2.672-682.1980 [40] CARREA G, RIVA S. Properties and synthetic applications of enzymes in organic solvents[J]. Cheminform,2000,39(13):2226−2254. [41] 王希庆. 产高光学纯度D-乳酸保加利亚乳杆菌工程菌的构建及在生物炼制中的应用[D]. 长春: 吉林农业大学, 2018WANG X Q. Construction of Lactobacillus delbrueckii sp. bulgaricus engineering for high optical purity D-lactic acid and application in biorefinery[D]. Changchun: Jilin Agricultural University, 2018. -