• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020

鼠李糖乳杆菌L-乳酸脱氢酶的生物信息学分析和基因克隆

许黎明 蒋国凤 伍新龄 廖秀芳 劳夏姐 牙韩春 李秀年

许黎明,蒋国凤,伍新龄,等. 鼠李糖乳杆菌L-乳酸脱氢酶的生物信息学分析和基因克隆[J]. 食品工业科技,2023,44(11):153−162. doi:  10.13386/j.issn1002-0306.2022080109
引用本文: 许黎明,蒋国凤,伍新龄,等. 鼠李糖乳杆菌L-乳酸脱氢酶的生物信息学分析和基因克隆[J]. 食品工业科技,2023,44(11):153−162. doi:  10.13386/j.issn1002-0306.2022080109
XU Liming, JIANG Guofeng, WU Xinling, et al. Bioinformatics Analysis and Gene Cloning of L-Lactate Dehydrogenase from Lactobacillus rhamnosus[J]. Science and Technology of Food Industry, 2023, 44(11): 153−162. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022080109
Citation: XU Liming, JIANG Guofeng, WU Xinling, et al. Bioinformatics Analysis and Gene Cloning of L-Lactate Dehydrogenase from Lactobacillus rhamnosus[J]. Science and Technology of Food Industry, 2023, 44(11): 153−162. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022080109

鼠李糖乳杆菌L-乳酸脱氢酶的生物信息学分析和基因克隆

doi: 10.13386/j.issn1002-0306.2022080109
基金项目: 广西科技计划重点研发项目(桂科AB17292001);广西高校中青年教师科研基础能力提升项目(2023KY1314);广西工业职业技术学院科研基金(GYKY2022001A)。
详细信息
    作者简介:

    许黎明(1979−),男,硕士,副研究员,研究方向:基因工程,E-mail:dawn111305@163.com

    通讯作者:

    许黎明(1979−),男,硕士,副研究员,研究方向:基因工程,E-mail:dawn111305@163.com

  • 中图分类号: Q819

Bioinformatics Analysis and Gene Cloning of L-Lactate Dehydrogenase from Lactobacillus rhamnosus

  • 摘要: 本研究以鼠李糖乳杆菌(Lactobacillus rhamnosus)L-乳酸脱氢酶(Lr-L-LDH)为研究对象,以研究较多的Lr-L-LDH1为对照,对基因组注释的两个Lr-L-LDH1Lr-L-LDH2基因,进行异同分析。采用在线网站和专业软件对Lr-L-LDH1和Lr-L-LDH2的一级结构、基本特性、亲疏水性、二级结构进行分析和预测,对三级结构进行同源建模以及酶和底物的分子对接分析,并对酶的编码基因进行系统发育分析,克隆表达及酶活性检测。结果显示:相较于Lr-L-LDH1,Lr-L-LDH2有着相似的分子特性,二级和三级结构,但Lr-L-LDH2编码序列短,氨基酸序列同源性低(48.08%),有不同的进化地位;Lr-L-LDH2也含有乳酸脱氢酶催化活性位点序列和保守的NAD+结合位点序列(GXGXXG),能够形成典型的活性三维口袋域,是NAD+依赖型四聚体结构L-乳酸脱氢酶,在细胞中需要果糖1,6-二磷酸(FBP)来激活,催化丙酮酸还原为L-乳酸;体外克隆表达和酶学分析表明,Lr-L-LDH2酶活力极显著低于Lr-L-LDH1(P<0.01)。Lr-L-LDH1和Lr-L-LDH2都具有乳酸脱氢酶活性,推测二者在乳酸表达调控中相互作用,对鼠李糖乳杆菌L-乳酸脱氢酶的分子改造应同时考虑Lr-L-LDH1和Lr-L-LDH2的作用,研究对乳酸发酵工业的基因工程改造提供分子基础和科学依据。
  • 图  1  Lr-L-ldh1Lr-L-ldh2的DNA序列系统进化树

    Figure  1.  Phylogenetic analysis of DNA sequences of Lr-L-ldh1 and Lr-L-ldh2

    注:系统进化树为Cladogram的拓扑结构,无色部分为L-ldh1 Group;灰色部分为L-ldh2 Group。

    图  2  Lr-L-LDH的亲疏水性分析

    Figure  2.  Hydrophobicity analysis of Lr-L-LDH

    注:A:Lr-L-LDH1;B:Lr-L-LDH2。

    图  3  Lr-L-LDH的跨膜区预测

    Figure  3.  Transmembrane domain prediction of Lr-L-LDH

    注:A:Lr-L-LDH1;B:Lr-L-LDH2。

    图  4  Lr-L-LDH1与Lr-L-LDH2的序列比对和分析

    Figure  4.  Alignment of multiple sequences and analysis of Lr-L-LDH1 and Lr-L-LDH2

    图  5  Lr-L-LDH的二级结构预测

    Figure  5.  Secondary structure prediction of Lr-L-LDH

    注:A:Lr-L-LDH1;B:Lr-L-LDH2;蓝色代表α-螺旋(Alpha helix);红色代表延伸链(Extended strand),绿色代表β-转角(Beta turn);紫色代表无规则卷曲(Random coil)。

    图  6  Lr-L-LDH1 和Lr-L-LDH2的三维结构预测和分子对接分析

    Figure  6.  Three-dimensional structure prediction and molecular docking analysis of Lr-L-LDH1 and Lr-L-LDH2

    注:A:Lr-L-LDH1;B:Lr-L-LDH2;A1:Lr-L-LDH1单体三维结构模拟;A2:Lr-L-LDH1四聚体三维结构模拟;A3、A4:Lr-L-LDH1酶-丙酮酸底物作用关系分析;B1:Lr-L-LDH2单体三维结构模拟;B2:Lr-L-LDH2四聚体三维结构模拟;B3、B4:Lr-L-LDH2酶-丙酮酸底物作用关系分析;橙黄色虚线表示盐桥(Salt bridge),绿色虚线表示氢键(Conventional hydrogen bond)。

    图  7  PCR验证和酶切验证

    Figure  7.  The result of PCR confirmation and restriction endonuclease digestion

    注:A:M:DNA Marker 2000;1:Lr-L-ldh1;2:Lr-L-ldh2;B:M:DNA Marker 15000;1;pET-28a-Lr-L-ldh1;2:pET-28a-Lr-L-ldh2

    图  8  Lr-L-LDH1和Lr-L-LDH2的诱导表达(A)和酶活检测(B)

    Figure  8.  Induced expression (A) and enzyme activity detection (B) of Lr-L-LDH1and Lr-L-LDH2

    注:A:M:Marker;1:E. coli-BL21(DE3)-pET-28a-Lr-L-ldh1;2:E. coli-BL21(DE3)-pET-28a-Lr-L-ldh2;3:E. coli-BL21(DE3);B:不同小写字母表示差异极显著(P<0.01)。

    表  1  本研究使用的引物

    Table  1.   Primer used in this study

    引物引物序列(5'-3')用途
    ldhL1-FCATGGATCCATGCACATAAGAAAGGATGAT扩增Lr-L-ldh1基因
    ldhL1-RGCACTCGAGTTACTGACGTGTTTCGATGTC扩增Lr-L-ldh1基因
    ldhL2-FCATGGATCCATGCAACATAGCGGAAATATT扩增Lr-L-ldh2基因
    ldhL2-RGCACTCGAGCTAGGCTTCCTGTGCCTTCTT扩增Lr-L-ldh2基因
    下载: 导出CSV

    表  2  Lr-L-LDH基本性质分析

    Table  2.   Analysis of the basic characteristics of the Lr-L-LDH

    基本性质Lr-L-LDH1Lr-L-LDH2
    氨基酸残基数量335312
    分子质量(Da)36608.8033557.10
    等电点5.345.12
    带负电荷氨基酸(Asp+Glu)4539
    带正电荷氨基酸(Arg+Lys)3628
    分子式C1639H2613N433O500S7C1487H2377N407O461S7
    原子总数51924739
    消光系数(mol/cm)3289026025
    不稳定指数30.1037.35
    脂肪族指数99.88104.17
    亲水性平均系数-0.096-0.020
    下载: 导出CSV

    表  3  Lr-L-LDH信号肽预测

    Table  3.   Signal peptide prediction of Lr-L-LDH

    蛋白类型可能性
    Lr-L-LDH1Lr-L-LDH2
    信号肽(Sec/SPI)0.01160.1173
    TAT信号肽(Tat/SPI)0.00190.01
    脂蛋白信号肽(Sec/SPII)0.00090.039
    其他0.98560.8337
    下载: 导出CSV

    表  4  二级结构中组件的比率

    Table  4.   The proportion of components in a secondary structure

    二级结构比率(%)
    Lr-L-LDH1Lr-L-LDH2
    α-螺旋36.7241.03
    延伸链22.9920.19
    β-转角8.969.29
    无规则卷曲31.3429.49
    下载: 导出CSV
  • [1] JU S Y, KIM J H, LEE P C. Long-term adaptive evolution of Leuconostoc mesenteroides for enhancement of lactic acid tolerance and production[J]. Biotechnology for Biofuels,2016,9(1):240. doi:  10.1186/s13068-016-0662-3
    [2] ABDEL-RAHMAN M A, TASHIRO Y, SONOMOTO K. Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: Overview and limits[J]. Journal of Biotechnology,2010,156(4):286−301.
    [3] PARRA-RAMIREZ D, MARTINEZ A, CARDONA C A. Lactic acid production from glucose and xylose using the lactogenic Escherichia coli strain JU15: Experiments and techno-economic results[J]. Bioresource Technology,2018,273:86−92.
    [4] 孙浩轩, 周卫强, 杨硕, 等. 微生物制备高光学纯度L-乳酸的研究进展[J]. 食品与发酵科技,2021,57(5):91−96, 112. [SUN H X, ZHOU W Q, YANG S, et al. Progress in microbiological preparation of L-lactic acid strain with high optical purity and its production[J]. Food and Fermentation Sciences & Technology,2021,57(5):91−96, 112.
    [5] 刘金熙, 李冠洋, 金清. 乳酸菌发酵生产D-/L-乳酸的研究进展[J]. 食品安全导刊,2021,33:146−148. [LIU J X, LI G Y, JIN Q. Research progress in production of D-/L-lactic acid by lactic acid bacteria[J]. China Food Safety Magazine,2021,33:146−148. doi:  10.3969/j.issn.1674-0270.2021.30.spaqdk202130085
    [6] WESSELS S, AXELSSON L, HANSEN E B, et al. The lactic acid bacteria, the food chain, and their regulation[J]. Trends in Food Science & Technology,2004,15(10):498−505.
    [7] BERNARD N, FERAIN T, GARMYN D, et al. Cloning of the D-lactate dehydrogenase gene from Lactobacillus delbrueckii subsp. bulgaricus by complementation in Escherichia coli[J]. FEBS Letters,1991,290:61−64. doi:  10.1016/0014-5793(91)81226-X
    [8] ABDEL-RAHMAN M A, TASHIRO Y, SONOMOTO K. Recent advances in lactic acid production by microbial fermentation processes[J]. Biotechnology Advances,2013,31(6):877−902. doi:  10.1016/j.biotechadv.2013.04.002
    [9] 吉林中粮生化有限公司. 产L-乳酸的重组菌株及其构建方法和发酵产L-乳酸的方法及应用: 中国, CN202010463397.3[P]. 2020-08-07

    Jilin COFCO Biochemical Co. Ltd. Recombinant strain producing L-lactic acid and its construction method, fermentation method and application: China, CN202010463397.3[P]. 2020-08-07.
    [10] 李雪晴, 袁风娇, 刘艳, 等. 不对称还原苯丙酮酸的L-乳酸脱氢酶L-LcLDH2的表达及生物信息学分析[J]. 食品与生物技术学报,2019,38(12):25−30. [LI X Q, YUAN F J, LIU Y, et al. Expression and bioinformatic analysis of an L-Lactate Dehydrogenase (L-LcLDH2) for the asymmetric reduction of phenylpyruvic acid[J]. Journal of Food Science and Biotechnology,2019,38(12):25−30. doi:  10.3969/j.issn.1673-1689.2019.12.004
    [11] ANDRES J, MOLINER V, KRECHL J, et al. A PM3 quantum chemical study of the pyruvate reduction mechanism catalyzed by lactate dehydrogenase[J]. Bioorganic Chemistry,1993,21(3):260−274. doi:  10.1006/bioo.1993.1022
    [12] KLEEREBEZEM M, HUGENHOLTZ J. Metabolic pathway engineering in lactic acid bacteria[J]. Current Opinion in Biotechnology,2003,14(2):232−237. doi:  10.1016/S0958-1669(03)00033-8
    [13] 杨贞耐, 张雪. 乳酸菌代谢途径的基因工程调控[J]. 中国乳品工业,2007,35(11):44−47. [YANG Z N, ZHANG X. Genetic engineering of metabolic pathways in lactic acid bacteria[J]. China Dairy Industry,2007,35(11):44−47. doi:  10.3969/j.issn.1001-2230.2007.11.013
    [14] 李倩, 王梦, 刘珞, 等. L-乳酸脱氢酶在大肠杆菌BL-21(DE3)中的表达[J]. 生物加工过程,2011,9(6):21−25. [LI Q, WANG M, LIU L, et al. Expression of L-lactate dehydrogenase in Escherichia coli BL-21 (DE3)[J]. Chinese Journal of Bioprocess Engineering,2011,9(6):21−25. doi:  10.3969/j.issn.1672-3678.2011.06.005
    [15] 袁剑, 秦浩, 葛向阳, 等. 干酪乳杆菌L-乳酸脱氢酶在大肠杆菌中的表达、纯化及酶学性质[J]. 微生物学通报,2011,38(10):1482−1487. [YUAN J, QIN H, GE X Y, et al. Overexpression, purification and properties of ldhL gene from Lactobacillus casei in Escherichia coli[J]. Microbiology China,2011,38(10):1482−1487.
    [16] 杨登峰, 潘丽霞, 关妮, 等. 产高纯度L-乳酸大肠杆菌基因工程菌的初步研究[J]. 现代食品科技,2010,26(2):126−128,171. [YANG D F, PAN L X, GUAN N, et al. Construction of recombinant E. coli. strain for producing high-purity L-Lactate[J]. Modern Food Science and Technology,2010,26(2):126−128,171.
    [17] 王刚, 肖雨, 李义, 等. ldhL-ldb0094基因敲除对保加利亚乳杆菌产L-乳酸的影响[J]. 中国生物工程杂志,2019,39(8):66−73. [WANG G, XIAO Y, LI Y, et al. Effect of ldhL-ldb0094 gene knock out mutant on Lactobacillus delbrueckii subsp. blgaricus producing L-lactic acid[J]. China Biotechnology,2019,39(8):66−73.
    [18] 许黎明, 成春燕, 吕军. 鼠李糖乳杆菌D-乳酸脱氢酶基因ldhD的敲除[J]. 基因组学与应用生物学,2016,35(6):1421−1427. [XU L M, CHENG C Y, LÜ J. Knockout of D-Lactate dehydrogenase gene ldhD in Lactobacillus rhamnosus[J]. Genomics and Applied Biology,2016,35(6):1421−1427.
    [19] 金李玲, 孙丽霞, 陈思婷, 等. 鼠李糖乳杆菌半固态发酵法生产L-乳酸及发酵动力学分析[J]. 食品工业科技,2015,36(19):195−201. [JIN L L, SUN L X, CHEN S T, et al. Study on production of L-Lactic acid in semi-solid state fermentation by Lactobacillus rhamnosus and fermentation kinetics[J]. Science and Technology of Food Industry,2015,36(19):195−201.
    [20] JIANG G F, HINSINGER D D, STRIJK J S. Comparison of intraspecific, interspecific and intergeneric chloroplast diversity in Cycads[J]. Scientific Reports,2016,6:31473. doi:  10.1038/srep31473
    [21] XU L M, HINSINGER D D, JIANG G F. The complete mitochondrial genome of the Agrocybe aegerita, an edible mushroom[J]. Mitochondrial Dna Part B,2017,2(2):791−792. doi:  10.1080/23802359.2017.1398618
    [22] XU L M, HINSINGER D D, JIANG G F. The complete mitochondrial genome of the Basidiomycete fungus Pleurotus cornucopiae (Paulet) Rolland[J]. Mitochondrial DNA Part B,2018,3(1):73−75. doi:  10.1080/23802359.2017.1422405
    [23] 李建武, 萧能, 余瑞元, 等. 生物化学实验原理和方法[M]. 北京: 北京大学出版社, 1997: 351−353

    LI J W, XIAO N, YU R Y, et al. Principles and methods of biochemical experiment[M]. Beijing: Peking University Press, 1997: 351−353.
    [24] 倪玉芳. 四种啮齿动物Ldha基因的克隆、原核表达与酶学性质研究[D]. 泸州: 西南医科大学, 2021

    NI Y F. Cloning, prokaryotic expression and enzymatic properties of Ldha genes from four rodents[D]. Luzhou: Southwest Medical University, 2021.
    [25] 申萍香, 黄艳, 黄江, 等. 生物信息学分析亚洲牛带绦虫乳酸脱氢酶基因及其蛋白的结构与特性[J]. 中国人兽共患病学报,2008,24(8):722−727. [SHEN P X, HUANG Y, HUANG J, et al. Bioinformatics analysis on the structures and properties of gene and the encoding protein of lactate dehydrogenase from Taeniasaginata asiatica[J]. Chinese Journal of Zoonoses,2008,24(8):722−727. doi:  10.3969/j.issn.1002-2694.2008.08.008
    [26] 吕刚, 余新炳, 黄灿, 等. 日本血吸虫乳酸脱氢酶(SjLDH)结构与功能的生物信息学分析[J]. 中国寄生虫学与寄生虫病杂志,2007,25(3):202−205. [LÜ G, YU X B, HUANG C, et al. Bioinformatics analysis for the structure and function of lactate dehydrogenase from Schistosoma japonicum[J]. Chinese Journal of Parasitology and Parasitic Diseases,2007,25(3):202−205. doi:  10.3969/j.issn.1000-7423.2007.03.010
    [27] 赵婷. 副干酪乳杆菌乳酸脱氢酶的克隆表达及酶学性质的研究[D]. 苏州: 苏州大学, 2012

    ZHAO T. Cloning, overexpression and properties of ldh gene from Lactobacillus paracasei[D]. Suzhou: Soochow University, 2012.
    [28] GURUPRASAD K, REDDY B V, PANDIT M W. Correlation between stability of a protein and its dipeptide composition: A novel approach for predicting in vivo stability of a protein from its primary sequence[J]. Protein Engineering, Design and Selection,1990,4(2):155−161. doi:  10.1093/protein/4.2.155
    [29] GASTEIGER E, HOOGLAND C, GATTIKER A, et al. The proteomics protocols handbook: Protein identification and analysis tools on the ExPASy server[M]. Clifton: Humana Press, 2005: 571−607.
    [30] WOODS H K R. Prediction of protein antigenic determinants from amino acid sequences[J]. Proceedings of the National Academy of Sciences of the United States of America,1981,78(6):3824−3828. doi:  10.1073/pnas.78.6.3824
    [31] 陈琦, 李春秀, 郑高伟, 等. 工业蛋白质构效关系的计算生物学解析[J]. 生物工程学报,2019,35(10):1829−1842. [CHEN Q, LI C X, ZHENG G W, et al. Computational analysis of structure-activity relationship of industrial enzymes[J]. Chinese Journal of Biotechnology,2019,35(10):1829−1842.
    [32] ARAI K, ISHIMITSU T, FUSHINOBU S, et al. Active and inactive state structures of unliganded Lactobacillus casei allosteric L-lactate dehydrogenase[J]. Proteins-structure Function & Bioinformatics,2010,78(3):681−694.
    [33] GARVIE E I. Bacterial lactate dehydrogenases[J]. Microbiological Reviews,1980,44(1):106. doi:  10.1128/mr.44.1.106-139.1980
    [34] FELDMAN-SALIT A, HERING S, MESSIHA H L, et al. Regulation of the activity of lactate dehydrogenases from four lactic acid bacteria[J]. Journal of Biological Chemistry,2013,288(29):21295−21306. doi:  10.1074/jbc.M113.458265
    [35] NEVES A R, POOL W A, KOK J, et al. Overview on sugar metabolism and its control in Lactococcus lactis-the input from in vivo NMR[J]. Fems Microbiology Reviews,2010,29(3):531−554.
    [36] 钱国军, 陈彩平, 翟如英, 等. 极耐热性乳酸脱氢酶高效表达、纯化及酶学性质[J]. 生物工程学报,2014,30(4):545−553. [QIAN G J, CHEN C P, ZHAI R Y, et al. Expression, purification and characterization of a thermostable lactate dehydrogenase from Thermotoga maritima[J]. Chinese Journal of Biotechnology,2014,30(4):545−553.
    [37] ZHAO R, ZHENG S, DUAN C, et al. NAD-dependent lactate dehydrogenase catalyses the first step in respiratory utilization of lactate by Lactococcus lactis[J]. Febs Open Bio,2013,3:379−386. doi:  10.1016/j.fob.2013.08.005
    [38] CROW V L, PRITCHARD G G. Fructose-1, 6-diohosphate activated L-lactate dehydrogenase from Streptococcus lactis kinetic properties and factors affecting activation[J]. Journal of Bacteriology,1977,131(1):82−91. doi:  10.1128/jb.131.1.82-91.1977
    [39] THOMAS T D, TURNER K W, CROW V L. Galactose fermentation by Streptococcus lactis and Streptococcus cremoris: Pathways, products, and regulation[J]. Journal of Bacteriology,1980,144(2):672−682. doi:  10.1128/jb.144.2.672-682.1980
    [40] CARREA G, RIVA S. Properties and synthetic applications of enzymes in organic solvents[J]. Cheminform,2000,39(13):2226−2254.
    [41] 王希庆. 产高光学纯度D-乳酸保加利亚乳杆菌工程菌的构建及在生物炼制中的应用[D]. 长春: 吉林农业大学, 2018

    WANG X Q. Construction of Lactobacillus delbrueckii sp. bulgaricus engineering for high optical purity D-lactic acid and application in biorefinery[D]. Changchun: Jilin Agricultural University, 2018.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  93
  • HTML全文浏览量:  29
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-10
  • 网络出版日期:  2023-04-20
  • 刊出日期:  2023-06-01

目录

    /

    返回文章
    返回