• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020

开花蚕豆烹饪工艺优化及品质分析

陈雅恬 蔡雪梅 朱开宪 邓静 乔明锋 苗保河

陈雅恬,蔡雪梅,朱开宪,等. 开花蚕豆烹饪工艺优化及品质分析[J]. 食品工业科技,2023,44(11):219−229. doi:  10.13386/j.issn1002-0306.2022080141
引用本文: 陈雅恬,蔡雪梅,朱开宪,等. 开花蚕豆烹饪工艺优化及品质分析[J]. 食品工业科技,2023,44(11):219−229. doi:  10.13386/j.issn1002-0306.2022080141
CHEN Yatian, CAI Xuemei, ZHU Kaixian, et al. Optimization of Cooking Technology and Analysis of Quality of Flowering Vicia faba L doi:  10.13386/j.issn1002-0306.2022080141
Citation: CHEN Yatian, CAI Xuemei, ZHU Kaixian, et al. Optimization of Cooking Technology and Analysis of Quality of Flowering Vicia faba L doi:  10.13386/j.issn1002-0306.2022080141

开花蚕豆烹饪工艺优化及品质分析

doi: 10.13386/j.issn1002-0306.2022080141
基金项目: 四川省科技厅应用基础研究项目(2018JY0450);烹饪科学四川省高等学校重点实验室开放基金(PRKX2020Z09)。
详细信息
    作者简介:

    陈雅恬(2001−),女,大学本科,研究方向:食品质量与安全,E-mail:1901511260@qq.com

    通讯作者:

    乔明锋(1985−),男,博士,副研究员,研究方向:食品化学,E-mail:84564650@qq.com

  • 中图分类号: O657;TS214.9

Optimization of Cooking Technology and Analysis of Quality of Flowering Vicia faba L.

  • 摘要: 为优化开花蚕豆烹饪工艺,选取浸泡温度、浸泡时间、油炸温度和油炸时间4个工艺参数进行单因素和正交试验,并检测色差、质构、营养标签以及挥发性物质等指标。结果表明开花蚕豆最优工艺为:浸泡温度25 ℃、浸泡时间15 h、油炸温度180 ℃和油炸时间6 min。色差特征L*值71.05±1.22、a*值10.59±0.67、b*值29.31±1.46;质构特征酥脆性20.74±1.46 N、硬度26.67±1.33 N;营养标签每100 g开花蚕豆含能量1869.33±0.58 kJ、蛋白质18.83±0.40 g、脂肪26.93±0.21 g、碳水化合物33.40±0.10 g;GC-MS共检测出75种挥发性物质,主要为苯及其衍生物、醇类、烯烃类等,其中空白组37种、最优组40种,两组共有挥发性物质2种,空白组特征物质为对异丙基甲苯,最优组的特征性物质为1-异丙烯基-3-甲基苯;GC-IMS共检测出57种挥发性物质,主要为醇类、酯类、杂环类等,其中空白组44种、最优组42种,共有挥发性物质29种;蚕豆烹饪后醇类、醛类和酮类物质的种类和含量均有不同程度的下降,酯类和醚类物质有不同程度的上升,GC-MS和GC-IMS检测结果一致。此工艺优化下的开花蚕豆色泽金黄,酥脆可口,具有丰富的风味物质。
  • 图  1  浸泡温度对开花蚕豆感官得分的影响

    Figure  1.  Effects of soaking temperature on sensory score of flowering broad beans

    注:同一指标不同字母表示差异显著(P<0.05),图2~图4同。

    图  2  浸泡时间对开花蚕豆感官得分的影响

    Figure  2.  Effects of soaking time on sensory score of flowering broad beans

    图  3  油炸温度对开花蚕豆感官得分的影响

    Figure  3.  Effects of frying temperature on sensory score of flowering broad beans

    图  4  油炸时间对开花蚕豆感官得分的影响

    Figure  4.  Effects of frying time on sensory score of flowering broad beans

    图  5  开花蚕豆空白组和最优组GC-IMS三维地形图

    Figure  5.  GC-IMS 3D topographic map of blank group and optimal group of flowering broad beans

    图  6  空白组和最优组GC-IMS二维谱图

    Figure  6.  GC-IMS two dimensional map of optimal group and blank group

    注:A:俯视图,B:差异图;Candou-A为空白组,Candou-B为最优组。

    图  7  空白组和最优组挥发性物质指纹图谱

    Figure  7.  Fingerprint of volatile organic compounds in blank group and optimal group

    表  1  正交试验因素水平表

    Table  1.   Factors and level table of orthogonal test

    水平因素
    A浸泡温度(℃)B浸泡时间(h)C油炸温度(℃)D油炸时间(min)
    125151604
    235201805
    345252006
    下载: 导出CSV

    表  2  开花蚕豆感官评定标准(分)

    Table  2.   Sensory evaluation and scoring standard of flowering broad beans (points)

    项目标准分值
    色泽(30分)豆粒呈淡黄色、均匀一致21~30
    豆粒呈淡黄色、蚕豆皮略有褐色11~20
    豆粒呈淡黄色、蚕豆皮呈褐色0~10
    酥脆度(30分)酥脆可口21~30
    酥性一般、较脆11~20
    不酥脆、有颗粒感0~10
    风味(20分)咀嚼浓香、口味浓厚14~20
    咀嚼较香、口味一般7~13
    咀嚼无香味、口味淡0~6
    形态(20分)形态完整、颗粒饱满、颗粒均匀14~20
    形态较完整、颗粒较饱满、有不完善粒7~13
    形态不完整、颗粒不饱满、有不完整颗粒0~6
    下载: 导出CSV

    表  3  开花蚕豆正交试验结果

    Table  3.   Orthogonal test results of flowering broad beans

    序号因素感官得分(分)
    ABCD
    1111164.7
    2122284.9
    3133388.7
    4212392.3
    5223174.5
    6231266.7
    7313283.2
    8321370.8
    9332169.8
    K1238.3240.2202.2209.0
    K2233.5230.2247.0234.8
    K3223.8225.2246.4251.8
    k179.4380.0767.4069.67
    k277.8376.7382.3378.27
    k374.6075.0782.1383.93
    R4.835.0014.7314.27
    主次顺序C>D>B>A
    最优水平A1B1C2D3
    下载: 导出CSV

    表  4  开花蚕豆空白对照组和感官最优组理化指标

    Table  4.   Physical and chemical indexes of flowering broad beans blank control group and sensory optimal group

    特性项目空白对照组感官最优组
    色差L*82.90±1.49a71.05±1.22b
    a*5.32±0.39b10.59±0.67a
    b*22.67±1.60b29.31±1.46a
    质构酥脆性(N)58.61±2.54a20.74±1.46b
    硬度(N)86.56±4.79a26.67±1.33b
    营养标签能量(kJ/100 g)1395.66±0.53b1869.33±0.58a
    蛋白质(g/100 g)28.63±0.21a18.83±0.40b
    脂肪(g/100 g)1.73±0.12b26.93±0.21a
    碳水化合物(g/100 g)52.97±0.90a33.40±0.10b
    注:同行不同字母表示差异显著(P<0.05)。
    下载: 导出CSV

    表  5  基于气相色谱质谱联用鉴定开花蚕豆挥发性风味成分

    Table  5.   Identification of volatile flavor components of flowering broad beans based on GC-MS

    类型序号中文名称CAS号相对含量(%)
    空白组最优组
    烷烃类12,7,10-三甲基十二烷74645-98-00.108
    23-甲基十三烷6418-41-30.054
    3正十三烷629-50-50.142
    44-乙基-2,2,6,6-四甲基庚烷62108-31-00.118
    52,6,6-三甲基癸烷62108-24-10.040
    62,6-二甲基庚烷54105-67-80.048
    73-甲基-5-丙基壬烷31081-18-20.026
    8环癸烷293-96-90.022
    92,4-二甲基庚烷2213-23-20.140
    102,3-二甲基癸烷17312-44-60.026
    113-甲基十一烷1002-43-30.032
    12[1R,3R,(+)]-1-甲基-3-异丙基环己烷13837-67-70.159
    烯烃类132-十一烯60212-29-50.102
    144,4-二甲基五-1,2-二烯58368-66-41.262
    15(E)-8-甲基-8-七烯55044-98-90.024
    164-甲基-1-己烯3769-23-10.296
    17对薄荷烯18368-95-10.052
    18松油烯99-86-50.026
    197-甲氧基甲基-2,7-二甲基环庚-1,3,5-三烯73992-48-00.013
    201-异丙基-4α-甲基环己烯619-52-31.349
    215-(1,5-二甲基-4-己烯基)-2-甲基双环[3.1.0]hex-2-烯58319-06-50.015
    22γ-榄香烯3242-08-80.031
    23顺式-m-薄荷-8-烯24399-15-30.189
    24莰烯79-92-50.085
    醇类25顺-3-甲基环己醇5454-79-50.370
    26(R)-(-)-2-丁醇14898-79-420.444
    27十一醇112-42-50.160
    28正辛醇111-87-50.100
    29α-(甲氨甲基)苯甲醇6589-55-50.014
    30DL-氨基丙醇6168-72-50.030
    31二氧化4-氨基四氢噻吩-3-醇55261-00-20.021
    32桃金娘烯醇515-00-40.014
    332-甲基-6-(对甲苯基)庚-2-烯-4-醇38142-57-30.058
    34D-氨基丙醇35320-23-10.018
    353-甲基苯乙醇1875-89-40.024
    361-甲基氨基丙烷-2-醇16667-45-10.017
    苯及其衍生物37对异丙基甲苯99-87-625.514
    38邻异丙基甲苯527-84-412.836
    393,5-二甲基苯并(b)硫代苯1964-45-00.018
    401-异丙烯基-3-甲基苯1124-20-516.31611.591
    411-甲氧基-4-(1-丙烯基)苯104-46-10.014
    425-乙基-3,5-二甲基苯934-74-70.012
    43间异丙基甲苯535-77-30.047
    441,3-二甲基-2-乙基苯2870-04-40.015
    452-氟-3-[1-羟基-2-(甲胺基)乙基]苯酚103439-04-90.021
    酯类462-甲基丁酸乙酯7452-79-10.016
    47异戊酸甲酯556-24-10.028
    48异戊酸乙酯108-64-50.146
    49(E)-3,7-二甲基-2,6-辛二烯-1-醇苯甲酸酯94-48-40.022
    50(Z)-醋酸维苯酯29135-27-10.191
    醛类51正己醛66-25-10.384
    523-甲基-2,4-二羟基苯甲醛6248-20-00.388
    533-甲基己醛19269-28-40.278
    54正壬醛124-19-60.162
    氨基酸及其衍生物55磺基丙氨酸498-40-80.033
    56L-半胱亚磺酸1115-65-70.027
    57甲基牛磺酸107-68-60.549
    58牛磺酸107-35-70.017
    酮醚类592-羟基-4,6-二甲氧基苯乙酮90-24-40.018
    603-二十烷酮2955-56-80.042
    61环氧乙烷75-21-80.021
    杂环类62顺-2-(2-戊烯基)呋喃70424-13-40.034
    633-对甲苯磺酰基-1,2,3,4-四氢异喹啉20335-69-70.048
    酸类64乙醇酸79-14-10.082
    652-羟基-2-[(1-氧代-2-丙烯基)氨基]乙酸6737-24-20.014
    66(1RS)-1,8-二甲基-7-氧代-6-氧代-双环[3.2.1]oct-2-烯-8-羧酸54345-92-50.020
    其他67氨基脲4426-72-60.1980.032
    68N-(1-甲基-2-苯基乙基)-N-亚硝基丙氨酸腈3422-20-60.052
    691-壬-3-炔57223-18-40.025
    701-甲基-3-苯基丙胺22374-89-60.015
    71十二烷烃-(3aR、5aR、8aR8bR)-rel-如吲哚蒽30159-15-00.027
    72甲基丁基亞碸2976-98-90.026
    73(E)-α-贝加莫汀13474-59-40.049
    742,5-二氢-5-(4-甲基苯基)-4-苯基恶唑36879-73-90.013
    751-乙基-2-苯肼622-82-20.012
    下载: 导出CSV

    表  6  基于气相色谱-离子迁移谱鉴定开花蚕豆挥发性风味成分

    Table  6.   Identification of volatile flavor components of flowering broad beans based on GC-IMS

    序号化合物CAS号#分子式保留时间(s)迁移时间(ms)呈香描述
    共同挥发性物质29种
    14-甲基苄醇乙酯2216-45-7C10H12O2878.8831.47548
    2甲酸香茅酯105-85-1C11H20O2859.251.92066水果香
    3庚酸乙酯106-30-9C9H18O2521.3121.41288菠萝香
    4异戊酸异戊酯659-70-1C10H20O2518.7241.47003香蕉香、甜香
    5乙酰丙酸乙酯539-88-8C7H12O3434.6191.63446苹果香
    6乙酰乙酸乙酯141-97-9C6H10O3255.3471.57973水果香
    7乙酸戊酯628-63-7C7H14O2256.0281.77822香蕉香
    8异硫氰酸烯丙酯1957-6-7C4H5NS241.0641.37056刺激性气味
    9芳樟醇(M)78-70-6C10H18O519.3711.67762浓郁花香
    10芳樟醇(D)78-70-6C10H18O513.5481.77441浓郁花香
    11仲辛醇123-96-6C8H18O333.0451.43854芳香
    12反式-3-己烯-1-醇928-97-2C6H12O222.6991.26064
    13糠醇98-00-0C5H6O2215.3251.10423特殊苦辣气味
    14丙酮醇116-09-6C3H6O2145.8851.24784
    15四氢噻吩-3-酮1003-04-9C4H6OS291.641.17963葱蒜、肉、蔬菜香
    161-戊烯-3-酮1629-58-9C5H8O150.0771.09874香辣刺激性气味
    17异亚丙基丙酮141-79-7C6H10O186.2391.12527蜂蜜香
    18水杨醛1990-2-8C7H6O2420.3851.14698苦杏仁气味
    19乙缩醛105-57-7C6H14O2163.9651.12344
    20异戊醛590-86-3C5H10O134.0931.19661苹果、桃子香
    215-甲基糠醛620-02-0C6H6O2288.8931.47356甜香、辛香气味
    222-乙酰基-3-甲基吡嗪23787-80-6C7H8N2O479.9061.17264
    232,3-二甲基吡嗪5910-89-4C6H8N2257.9981.47936焙烤、肉类香
    242,6-二甲基吡嗪108-50-9C6H8N2257.3881.5253咖啡和炒花生香
    252,4,5-三甲基噻唑13623-11-5C6H9NS327.871.14931巧克力香
    26异戊酸(M)503-74-2C5H10O2201.9611.19661具有难闻的气味
    27异丁酸79-31-2C4H8O2180.0141.35733强烈刺激性气味
    28二糠基硫醚13678-67-6C10H10O2S1124.2841.80147牛、鸡肉香
    292-甲氧基-4-甲基苯酚93-51-6C8H10O2710.3741.19114香辛料和烟熏香
    空白组特有挥发性物质15种
    303-羟基丁酸乙酯5405-41-4C6H12O3283.4261.64337果香、白酒香
    31乙酸丁酯123-86-4C6H12O2202.0821.25642水果香
    32反式-2-已烯-1-醇2305-21-7C6H12O227.0681.19981
    33正己醇111-27-3C6H14O227.7821.31091嫩枝叶、酒香
    34乙醇中异丁醇78-83-1C4H10O122.2721.17604酒精味
    35二异丁基酮108-83-8C9H18O306.9681.325青香、发酵香
    361-戊烯-3-酮1629-58-9C5H8O152.0061.33199香辣刺激性气味
    372-戊酮107-87-9C5H10O156.5621.37077酒和丙酮气味
    38反-2-庚烯醛18829-55-5C7H12O289.1331.25867
    39糠醛1998-1-1C5H4O2203.8831.31754苯甲醛的特殊味
    40正戊醛110-62-3C5H10O156.8011.17014特殊香味
    412-甲基吡嗪109-08-0C5H6N2205.1751.39713熟牛肉、烧烤香
    42异戊酸(D)503-74-2C5H10O2203.5251.48667酸败气味
    43丙酸1979-9-4C3H6O2156.3221.24938酸败刺鼻气味
    442,2,4,6,6-五甲基庚烷13475-82-6C12H26286.2791.36894
    最优组特有挥发性物质13种
    45丙位庚内酯105-21-5C7H12O2630.211.25863焦糖甜味
    46丁酸丁酯109-21-7C8H16O2334.9861.33941苹果香
    47γ-丁内酯96-48-0C4H6O2270.291.084
    48丁酸丙酯105-66-8C7H14O2243.1041.27452香蕉、菠萝香
    49正丁醇71-36-3C4H10O136.4511.37498果香
    502-己酮591-78-6C6H12O182.8321.20485
    512-甲基四氢呋喃-3-酮3188-00-9C5H8O2182.571.41889甜焦糖、朗姆酒香
    523-甲基-2-戊酮565-61-7C6H12O172.0891.17558
    53苯乙醛122-78-1C8H8O418.4451.25661浓郁的玉簪花香
    542-乙酰基噻唑24295-03-2C5H5NOS358.2771.11782牛肉、爆玉米香
    55四氢噻吩110-01-0C4H8S182.571.30272臭味
    561,4-二氧六环123-91-1C4H8O2165.5381.31461清香的酯味
    57乙二醇二甲醚110-71-4C4H10O2129.91.27528强烈醚样气味
    下载: 导出CSV
  • [1] LIZARAZO C I, LAMPI A M, LIU J W, et al. Nutritive quality and protein production from grain legumes in a boreal climate[J]. Journal of the Science of Food and Agriculture,2015,95:2053−2064. doi:  10.1002/jsfa.6920
    [2] LONGOBARDI F, SACCO D, CASIELLO G, et al. Chemical pro-file of the carpino broad bean by conventional and innovative phys-icochemical analyses[J]. Journal of Food Quality,2015,38:273−284. doi:  10.1111/jfq.12143
    [3] NEME K, BULTOSA G, BUSSA N. Nutrient and functional prop-erties of composite flours processed from pregelatinised barley, sprouted faba bean and carrot flours[J]. International Journal of Food Science and Technology,2015,50:2375−2382. doi:  10.1111/ijfs.12903
    [4] MULTARI S, STEWART D, RUSSELL W R. Potential of fava bean as future protein supply to partially replace meat intake in the human diet[J]. Compr Rev Food Sci F,2015,14(5):511−522. doi:  10.1111/1541-4337.12146
    [5] 申士富, 钱静, 刘廷, 等. 青海蚕豆中原花青素和左旋多巴的含量测定和品种间差异的比较[J]. 中国食物与营养,2017,23(9):36−40. [SHEN Shifu, QIAN Jing, LIU Ting, et al. Determination of oligomeric proanthocyanidins and levodopa in broad bean from Qinghai province and comparison of differences among varieties[J]. Food and Nutrition in China,2017,23(9):36−40. doi:  10.3969/j.issn.1006-9577.2017.09.009
    [6] 吴海虹, 卓成龙, 江宁, 等. 正交试验优化蚕豆真空微波干燥工艺[J]. 食品科学,2013,34(14):100−103. [WU Haihong, ZHUO Chenglong, JIANG Ning, et al. Optimization of vacuum microwave drying of broad bean[J]. Food Science,2013,34(14):100−103. doi:  10.7506/spkx1002-6630-201314020
    [7] TAZRART K, ZAIDI F, SALVADOR A, et al. Effect of broad bean (Vicia faba) addition on starch properties and texture of dry and fresh pasta[J]. Food Chemistry,2019,278:476−481. doi:  10.1016/j.foodchem.2018.11.036
    [8] 李雪芬, 韩涛, 夏晓楠, 等. 铜螯合亲和层析分离抗氧化活性蚕豆蛋白酶解物[J]. 中国粮油学报,2017,32(1):119−124. [LI Xuefen, HAN Tao, XIA Xiaonan, et al. Separation of antioxidant hydrolysates from broad bean protein with immobilized metal affinity chromatography (IMAC)[J]. Journal of the Chinese Cereals and Oils Association,2017,32(1):119−124. doi:  10.3969/j.issn.1003-0174.2017.01.021
    [9] XIE J H, DU M X, SHEN M Y, et al. Physico-chemical properties, antioxidant activities and angiotensin-I converting enzyme inhibitory of protein hydrolysates from Mung bean (Vigna radiate)[J]. Food Chemistry,2019,270:243−250. doi:  10.1016/j.foodchem.2018.07.103
    [10] 陈丹阳, 韩涛, 杜斌, 等. 酶解蚕豆蛋白制备降胆固醇肽及其响应面优化[J]. 中国油脂,2018,43(10):46−52. [CHEN Danyang, HAN Tao, DU Bin, et al. Optimization of preparation of hypocholesterolemic peptides from broad bean protein by enzymatic hydrolysis using response surface methodology[J]. China Oils and Fats,2018,43(10):46−52. doi:  10.3969/j.issn.1003-7969.2018.10.010
    [11] 林琳, 卢跃红, 陈友霞, 等. 蚕豆多酚对过氧自由基介导的DNA损伤的保护作用[J]. 食品科学,2020,41(17):83−88. [LIN Lin, LU Yuehong, CHEN Youxia, et al. Protective effect of polyphenols from broad bean on peroxy radical-Induced DNA damage[J]. Food Science,2020,41(17):83−88. doi:  10.7506/spkx1002-6630-20190725-343
    [12] 兰佳佳, 杨希娟, 王生君. 蚕豆加工利用综述[J]. 青海农林科技,2017(4):46−49. [LAN Jiajia, YANG Xijuan, WANG Shengjun. Summary of processing and utilization of faba bean[J]. Science and Technology of Qinghai Agriculture and Forestry,2017(4):46−49. doi:  10.3969/j.issn.1004-9967.2017.04.015
    [13] 袁婷婷, 董坤, 郭增鹏, 等. 阿魏酸诱导蚕豆枯萎病发生及根系组织结构损伤的化感效应[J]. 植物营养与肥料学报,2020,26(5):914−923. [YUAN Tingting, DONG Kun, GUO Zengpeng, et al. Allelopathic effects of ferulic acid inducing Fusarium wilt occurrence and abnormal root tissue structure of faba bean[J]. Journal of Plant Nutrition and Fertilizers,2020,26(5):914−923. doi:  10.11674/zwyf.19388
    [14] 王丽娟, 杨丽萍. 基于专利分析的油炸蚕豆休闲食品产业技术创新态势研究[J]. 中国高新科技,2020(17):36−37. [WANG Lijuan, YANG Liping. Research on technological innovation situation of fried broad bean snack food industry based on patent analysis[J]. China High and New Technology,2020(17):36−37. doi:  10.3969/j.issn.2096-4137.2020.17.010
    [15] 范柳萍, 王维琴, 孙金才, 等. 预处理技术对真空油炸脆蚕豆品质的影响[J]. 食品工业科技,2008(7):108−109, 113. [FAN Liuping, WANG Weiqin, SUN Jincai, et al. Effects of pretreatment on the quality of vacuum fried horsebean[J]. Science and Technology of Food Industry,2008(7):108−109, 113. doi:  10.13386/j.issn1002-0306.2008.07.026
    [16] 李焕荣, 胡瑞兰, 贾静. 蚕豆膨化休闲食品的研制[J]. 食品科学,2006,27(11):627−631. [LI Huanrong, HU Ruilan, JIA Jing. Production technology of puffed and recreation food with the broad bean[J]. Food Science,2006,27(11):627−631. doi:  10.3321/j.issn:1002-6630.2006.11.157
    [17] 饶先军, 汪立成, 刘春梅, 等. 预糊化替代复合磷酸盐在油炸蚕豆中的应用[J]. 食品工业科技,2012,33(21):242−245. [RAO Xianjun, WANG Licheng, LIU Chunmei, et al. Compound phosphate replaced by pre-gelatinizing in the application of frying broad bean[J]. Science and Technology of Food Industry,2012,33(21):242−245. doi:  10.13386/j.issn1002-0306.2012.21.053
    [18] 张洁, 徐桂花, 黄蓉. 酥脆蚕豆休闲食品的研制[J]. 粮食与饲料工业,2010(9):34−36. [ZHANG Jie, XU Guihua, HUANG Rong. Research and manufacture of snack food crispy broad beans[J]. Cereal & Feed Industry,2010(9):34−36. doi:  10.3969/j.issn.1003-6202.2010.09.012
    [19] 郭爱平, 温利军, 吴晓伟, 等. 花生荞面豆制作工艺的研究[J]. 美食研究,2016,33(2):48−52. [GUO Aiping, WEN Lijun, WU Xiaowei, et al. Processing technology of fried fava beans coated by peanut and puckwheat paste[J]. Journal of Researches on Dietetic Science and Culture,2016,33(2):48−52. doi:  10.3969/j.issn.1009-4717.2016.02.010
    [20] 刘潇潇, 张龙飞, 甘钰培, 等. 油炸花生米生产工艺及挥发性风味成分研究[J]. 食品研究与开发,2021,42(24):68−73. [LIU Xiaoxiao, ZHANG Longfei, GAN Yupei. et al. The production technology and volatile flavor components of fried peanuts[J]. Food Research and Development,2021,42(24):68−73. doi:  10.12161/j.issn.1005-6521.2021.24.010
    [21] IDRUS N F M, YANG T A. Comparison between roasting by super-heated steam and by convection on changes in colour, texture and microstructure of peanut (Arachis hypogaea)[J]. Food Science and Technology Research,2012,18(4):515−524. doi:  10.3136/fstr.18.515
    [22] BLANK I. Gas chromatography-olfactometry in food aroma analysis. In R. Marsili (Ed.)[M]//Techniques for Analyzing Food Aroma New York: Nestec Ltd Dekker, 1997: 293−329.
    [23] JELEN H H, OBUCHOWSKA M, ZAWIRSKA-WOJTASIAK R, et al. Headspace solid-phase microextraction use for the characterization of volatile compounds in vegetable oils of different sensory quality[J]. Journal of Agricultural and Food Chemistry,2000,48(6):2360−2367. doi:  10.1021/jf991095v
    [24] 袁小钧, 钟世荣, 吴华昌, 等. 火锅常用不同品种干辣椒感官品质差异研究[J]. 中国调味品,2022,47(4):173−177. [YUAN Xiaojun, ZHONG Shirong, WU Huachang, et al. Study on sensory quality differences of different varieties of dried chilies commonly used in hot pot[J]. China Condiment,2022,47(4):173−177. doi:  10.3969/j.issn.1000-9973.2022.04.033
    [25] YANG M, ZHENG C, ZHOU Q, et al. Minor components and oxidative stability of cold-pressed from rapeseed cultivars in China[J]. Journal of Food Composition and Analysis,2013,29(1):1−9. doi:  10.1016/j.jfca.2012.08.009
    [26] 冷进松, 熊洋, 胡韬纲. 低温真空油炸大蒜调味配方及含油率影响研究[J]. 食品工业,2015,36(12):126−129. [LENG Jinsong, XIONG Yang, HU Taogang. Study on the fried garlic seasoning formula of low temperature vacuum and the influence of oil content[J]. The Food Industry,2015,36(12):126−129.
    [27] 李祥慧, 周文君, 易阳, 等. 菜籽油挥发性成分检测及高温处理前后变化分析[J]. 食品科技,2020,45(3):190−195. [LI Xianghui, ZHOU Wenjun, YI Yang, et al. Determination of volatile compounds from refined rapeseed oil and their changes before and after high temperature treatment[J]. Food Science and Technology,2020,45(3):190−195. doi:  10.13684/j.cnki.spkj.2020.03.035
    [28] 鲁金花, 谢定, 鲜灵芝. 发酵型与浸泡型杨梅酒的挥发性成分分析[J]. 食品与机械,2022,38(6):34−39, 179. [LU Jinhua, XIE Ding, XIAN Lingzhi. Analysis of volatile components of fermented and soaked bayberry wine[J]. Food and Machinery,2022,38(6):34−39, 179. doi:  10.13652/j.spjx.1003.5788.2022.80027
    [29] YAN W, LIU Q, WANG Y, et al. Inhibition of lipid and aroma deterioration in rice bran by infrared heating[J]. Food and Bioprocess Technology,2020,13:1677−1687. doi:  10.1007/s11947-020-02503-z
    [30] 廖紫玉, 魏光强, 田洋, 等. 基于HS-SPME-GC-MS分析加工方式对即食乳扇风味品质的影响[J]. 中国乳品工业,2022,50(3):14−21. [LIAO Ziyu, WEI Guangqiang, TIAN Yang, et al. Based on HS-SPME-GC-MS analysis of the effect of processing methods on the flavor quality of instant Rushan[J]. China Dairy Industry,2022,50(3):14−21. doi:  10.19827/j.issn1001-2230.2022.03.003
    [31] 孟令晗, 雷思佳, 吴迪, 等. 全麦速冻油条复热加工中风味与抗氧化特性[J]. 食品科学,2022,43(4):167−174. [MENG Linghan, LEI Sijia, WU Di, et al. Flavor substances and antioxidant properties of quick-frozen pre-fried whole wheat youtiao after different reheating methods[J]. Food Science,2022,43(4):167−174. doi:  10.7506/spkx1002-6630-20210219-202
    [32] ASOKAPANDIAN S, SWAMY G J, HAJJUL H. Deep fat frying of foods: A critical review on process and product parameters[J]. Crit Rev Food Sci,2020,60(20):3400−3413. doi:  10.1080/10408398.2019.1688761
    [33] 陶星宇, 邓科磊, 汤尚文, 等. 烘烤温度对黑米挥发性风味物质的影响[J]. 食品科技,2022,47(8):138−145. [TAO Xingyu, DENG Keqiang, TANG Shangwen, et al. Effects of baking temperature on volatile organic compounds in black rice[J]. Food Science and Technology,2022,47(8):138−145. doi:  10.3969/j.issn.1005-9989.2022.8.spkj202208022
    [34] 尹含靓, 肖何, 邓高文, 等. 基于GC-IMS技术分析不同香辛料水煮液的风味物质组成差异[J]. 食品工业科技,2021,42(17):278−284. [YIN Hanliang, XIAO He, DENG Gaowen, et al. Based on GC-IMS technology to analyze the difference in flavor composition of different spice boiling liquids[J]. Science and Technology of Food Industry,2021,42(17):278−284. doi:  10.13386/j.issn1002-0306.2020110117
    [35] 袁琴琴. 气相色谱-离子迁移谱分析漂烫和银杏叶提取物对腊肉挥发性物质成分的影响[J]. 食品研究与开发,2020,41(11):165−172. [YUAN Qinqin. The aromatic constituents analysis of cantonese bacon suffer from blanching and ginkgo biloba extract by GC-IMS[J]. Food Research and Development,2020,41(11):165−172. doi:  10.12161/j.issn.1005-6521.2020.11.028
    [36] 姚文生, 蔡莹暄, 刘登勇, 等. 不同材料熏制鸡腿肉挥发性物质GC-IMS指纹图谱分析[J]. 食品科学技术学报,2019,37(6):37−45. [YAO Wensheng, CAI Yingxuan, LIU Dengyong, et al. Volatile compounds analysis in chicken thigh smoked with different materials by GC-IMS fingerprint[J]. Journal of Food Science and Technology,2019,37(6):37−45. doi:  10.3969/j.issn.2095-6002.2019.06.006
    [37] 张敬文, 潘磊庆, 屠康. 基于E-nose、HS-SPME-GC-MS和GC-IMS检测三种草莓鲜榨汁的香气[J]. 食品工业科技,2023,44(3):286−296. [ZHANG Jingwen, PAN Leiqing, TU Kang. Aroma determination of three freshly squeezed strawberry juice based on E-nose, HS-SPME-GC-MS and GC-IMS[J]. Science and Technology of Food Industry,2023,44(3):286−296. doi:  10.13386/j.issn1002-0306.2022040207
    [38] 卢延想, 梁慧珍, 陈鹏, 等. 高温大曲中产香酵母的筛选及特征香气分析[J]. 食品研究与开发,2021,42(11):167−174. [LU Yanxiang, LIANG Huizhen, CHEN Peng, et al. Screening and characteristic aroma analysis of aroma-producing yeasts in high-temperature Daqu[J]. Food Research and Development,2021,42(11):167−174. doi:  10.12161/j.issn.1005-6521.2021.11.027
    [39] 詹展. 再生稻稻米品质研究[D]. 武汉: 武汉轻工大学, 2021.

    ZHAN Zhan. Study on rice quality of ratoon crop rice[D]. Wuhan: Wuhan Polytechnic University, 2021.
  • 加载中
图(7) / 表(6)
计量
  • 文章访问数:  81
  • HTML全文浏览量:  13
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-15
  • 网络出版日期:  2023-04-20
  • 刊出日期:  2023-06-01

目录

    /

    返回文章
    返回