• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020

菌酶联用处理对刺参体壁降解效果及风味特性的影响

邹媛婷 张健 刘芳 井月欣 王共明 矫春娜 赵云苹

邹媛婷,张健,刘芳,等. 菌酶联用处理对刺参体壁降解效果及风味特性的影响[J]. 食品工业科技,2023,44(11):118−126. doi:  10.13386/j.issn1002-0306.2022080279
引用本文: 邹媛婷,张健,刘芳,等. 菌酶联用处理对刺参体壁降解效果及风味特性的影响[J]. 食品工业科技,2023,44(11):118−126. doi:  10.13386/j.issn1002-0306.2022080279
ZOU Yuanting, ZHANG Jian, LIU Fang, et al. Effects of Combined Treatments of Bacteria and Enzyme on the Degradation and Flavor Components of Body Wall of Sea Cucumber[J]. Science and Technology of Food Industry, 2023, 44(11): 118−126. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022080279
Citation: ZOU Yuanting, ZHANG Jian, LIU Fang, et al. Effects of Combined Treatments of Bacteria and Enzyme on the Degradation and Flavor Components of Body Wall of Sea Cucumber[J]. Science and Technology of Food Industry, 2023, 44(11): 118−126. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022080279

菌酶联用处理对刺参体壁降解效果及风味特性的影响

doi: 10.13386/j.issn1002-0306.2022080279
基金项目: 山东省自然科学基金重点项目——基于高品质海参肽的特殊医学用途食品等功能制品研发及产业化示范(ZR2020KC034);山东省现代农业产业技术体系加工与质量控制岗位(SDAIT-22-07)。
详细信息
    作者简介:

    邹媛婷(1998−),女,硕士研究生,研究方向:海洋活性物质及功能产品,E-mail:yt3426987@163.com

    通讯作者:

    张健(1980−),男,博士,副研究员,研究方向:海洋活性物质及功能产品,E-mail:zjsd408@163.com

    刘芳(1988−),女,硕士,工程师,研究方向:海洋活性物质及功能产品,E-mail:45637059@qq.com

  • 中图分类号: TS254.4

Effects of Combined Treatments of Bacteria and Enzyme on the Degradation and Flavor Components of Body Wall of Sea Cucumber

  • 摘要: 目的:为探究不同菌酶联用处理方式对刺参体壁降解效果及产物风味特性的影响。方法:采用不同处理方式:单菌(J)、单酶(M)、先菌后酶(JM)、先酶后菌(MJ)、菌酶同用(T)(菌为解淀粉芽孢杆菌,酶为复合蛋白酶)对刺参体壁进行降解,测定降解液中氨基酸组成、多肽相对分子质量分布等理化指标,同时利用气相色谱-离子迁移谱(GC-IMS)和电子舌分别测定不同处理方式下刺参体壁降解产物的挥发性和非挥发性风味成分。结果:刺参体壁经菌酶联合(JM、MJ、T)处理后,与单独作用相比,相对分子质量>1000 Da的肽含量减少了60.29%,<500 Da的肽含量增加了33.36%,联合处理下游离氨基酸总量与风味核苷酸总量的平均值较菌酶单独作用时分别增加了1.3倍和4.1倍,降解液中挥发性化合物由未处理时的43种增加到联合处理后的67种。表明刺参体壁经联合处理后风味成分变得更加复杂,联合处理可以降低小分子醛、不饱和醛等腥味成分的含量、增加酯类等愉悦性成分的含量。其中,多肽含量最高的处理组是M(34.770 mg/g),其次是JM(30.733 mg/g),感官评分最高的是JM(66.67分),其次是J(63.75分);鲜味和甜味氨基酸之和占总氨基酸的比例中J最高,JM和M次之,T最低;菌酶联合处理中,JM处理组呈酸臭味的丙酸、刺激性气味的2-甲基丙醛相对含量较低、呈酮香味的2-戊酮、芳香味的月桂烯相对含量较高。综合各指标测定结果来看,JM降解液的风味较佳。结论:菌酶联合处理(JM、MJ、T)均能去除刺参降解产物的腥味,同时提升风味,其中JM降解综合评价最高,作为一种技术对刺参体壁进行降解,可获得具有良好风味的多肽降解产物。
  • 图  1  不同菌对发酵液多肽含量和感官评分的影响

    Figure  1.  Effects of different bacteria on polypeptide content and sensory score of fermentation broth

    注:同一指标不同字母表示差异显著(P<0.05),图2图3同。

    图  2  不同蛋白酶对酶解液多肽含量和感官评分的影响

    Figure  2.  Effects of different proteases on polypeptide content and sensory score of enzymatic hydrolysate

    图  3  不同处理方式对降解液多肽含量、感官评分和游离氨基酸总量的影响

    Figure  3.  Effects of different treatment methods on polypeptide content, sensory score and total free amino acid in degradation solution

    图  4  不同处理方式降解液挥发性化合物的Gallery Plot图

    Figure  4.  Gallery Plot of volatile compounds in different treatment degradation solutions

    注:从上往下依次为Y、JM、T、MJ、M、J样品;图中每个亮点代表一种挥发性化合物,每一行代表一个样品中选取的全部信号峰,数字编号的是未鉴定出的物质,其中:A为Y的挥发性成分;B为M的挥发性成分;C为菌酶共同处理的挥发性成分;D为J的挥发性成分。

    图  5  不同处理方式降解液的PCA图

    Figure  5.  PCA diagram of degradation solution with different treatment methods

    图  6  不同处理方式降解液的聚类分析图

    Figure  6.  Cluster analysis diagram of degradation solution with different treatment methods

    表  1  不同菌种的发酵条件

    Table  1.   Fermentation conditions of different strains

    菌种种类pH温度(℃)时间(h)
    枯草芽孢杆菌7.03748
    植物乳杆菌6.83748
    肠膜明串珠菌7.03748
    解淀粉芽孢杆菌7.23048
    鲁氏酵母7.02848
    下载: 导出CSV

    表  2  不同酶制剂的酶解条件

    Table  2.   Enzymatic hydrolysis conditions of different enzyme preparations

    蛋白酶种类pH温度(℃)时间(h)
    风味蛋白酶7.5504
    复合蛋白酶6.0504
    木瓜蛋白酶6.5554
    碱性蛋白酶8.0504
    下载: 导出CSV

    表  3  感官评分标准

    Table  3.   Sensory rating criteria

    项目评分标准
    1~2分3~5分6~8分9~10分
    腥味(30分)腥味较重腥味中等腥味较淡基本无腥味
    气味(30分)发酵味、酸味过重并伴随一定的异味具有刺参固有的气味,无不良气味具有刺参固有的气味,发酵产生的鲜香味具有刺参固有的气味,令人愉悦的果香味和清爽的酸味
    滋味(40分)口感较差,过苦、过咸、有异味口感一般,偏苦、偏咸口感适宜,微甜、微咸口感柔和,酸甜适宜、鲜香可口
    下载: 导出CSV

    表  4  不同处理方式降解液的多肽相对分子质量分布

    Table  4.   Relative molecular mass distribution of peptides in degradation solution with different treatment methods

    相对分子质量(Da)J(%)M(%)JM(%)MJ(%)T(%)
    >30005.9210.0510.1090.0910
    2000~30008.8850.8131.1751.2970.11
    1000~200019.4459.57510.3249.9193.592
    500~100021.95628.90825.55522.01316.886
    <50043.79460.65362.83766.68079.412
    下载: 导出CSV

    表  5  不同处理方式降解液的氨基酸组成

    Table  5.   Amino acid composition of degradation solution by different treatment methods

    序号氨基酸含量(g/100 g干重)
    YJMJMMJT
    1天门冬氨酸Asp6.04±0.04ab4.99±0.11d6.37±0.11a5.78±0.25bc5.67±0.14c5.10±0.11d
    2苏氨酸Thr3.13±0.02b2.23±0.08d3.35±0.04a2.56±0.11c1.98±0.05e1.59±0.03f
    3丝氨酸Ser3.08±0.03a2.19±0.04c3.18±0.04a2.55±0.1b2.20±0.05c1.81±0.03d
    4谷氨酸Glu9.82±0.11a7.34±0.15c10.01±0.15a8.49±0.36b7.35±0.17c6.2±0.13d
    5甘氨酸Gly10.32±0.14a8.15±0.23d9.65±0.18b8.98±0.36c8.6±0.17cd7.43±0.16e
    6丙氨酸Ala4.39±0.04a2.98±0.03c4.29±0.09a3.48±0.14b2.77±0.07d2.22±0.05e
    7半胱氨酸Cys1.39±0.09ab1.50±0.18a1.49±0.04ab1.42±0.02ab1.40±0.03ab1.26±0.03b
    8缬氨酸Val2.28±0.02b1.84±0.03e2.52±0.01a2.14±0.06c2.11±0.04c1.97±0.05d
    9蛋氨酸Met0.86±0.01bc0.56±0.01cd0.46±0.02d0.98±0.28b1.37±0.10a1.11±0.14ab
    10异亮氨酸Ile1.74±0.01b1.23±0.04d1.85±0.06a1.45±0.05c1.23±0.02d1.19±0.03d
    11亮氨酸Leu2.63±0.01b2.04±0.01d3.05±0.03a2.45±0.10c2.68±0.06b2.57±0.05bc
    12酪氨酸Tyr2.01±0.02bc1.91±0.07c2.35±0.02a2.27±0.04ab2.12±0.16abc2.01±0.23bc
    13苯丙氨酸Phe1.45±0.01c1.41±0.03c1.75±0.04ab1.72±0.07b1.82±0.01a1.73±0.04ab
    14赖氨酸Lys1.88±0.01c1.80±0c2.25±0.04a2.16±0.08ab2.19±0.03ab2.12±0.05b
    15脯氨酸Pro4.87±0.05a3.77±0.05c4.74±0.05a4.27±0.13b3.78±0.08c3.29±0.08d
    16组氨酸His0.60±0b0.46±0.01c0.74±0.01a0.55±0.04b0.41±0.04c0.44±0.02c
    17精氨酸Arg4.74±0.08a3.07±0.07c4.58±0.08a3.54±0.18b2.74±0.04d2.12±0.04e
    18TAA61.22±0.59a47.48±0.92d62.61±0.8a54.78±1.77b50.43±0.83c44.19±0.93e
    19DAA15.86±0.18a12.33±0.32c16.38±0.32a14.27±0.76b13.02±0.37c11.30±0.29d
    20SAA25.79±0.35a19.33±0.55c25.2±0.49a21.84±1.03b19.33±0.51c16.35±0.43d
    21BAA18.18±0.07b14.33±0.03f19.55±0.18a17.25±0.34c16.68±0.08d15.28±0.38e
    22DAA+SAA41.65±0.53a31.65±0.87c41.58±0.81a36.11±1.78b32.35±0.89c27.65±0.72d
    23(DAA+SAA)/TAA0.68±0a0.67±0b0.66±0b0.66±0.01b0.64±0c0.63±0d
    24BAA/TAA0.30±0d0.30±0.01cd0.31±0c0.32±0c0.33±0b0.35±0a
    注:TAA为总氨基酸;DAA为鲜味氨基酸(谷氨酸、天冬氨酸);SAA为甜味氨基酸(甘氨酸、丙氨酸、丝氨酸、脯氨酸、苏氨酸);BAA为苦味氨基酸(酪氨酸、苯丙氨酸、缬氨酸、组氨酸、异亮氨酸、亮氨酸、赖氨酸、精氨酸、甲硫氨酸);同行不同小写字母表示不同处理组差异显著(P<0.05)。
    下载: 导出CSV

    表  6  不同处理方式降解液的核苷酸含量

    Table  6.   Nucleotide content of degradation solution by different treatment methods

    不同处理
    方式
    鲜味物质含量(mg/100 g)
    5’-AMP
    (腺苷酸)
    5’-GMP
    (鸟苷酸)
    5’-IMP
    (肌苷酸)
    风味核苷酸
    Y0.43±0.00e0.43±0.00e
    J2.17±0.06c11.33±0.78b13.50±0.84c
    M0.76±0.00d0.76±0.00d
    JM2.45±0.07a11.31±0.78b13.76±0.85c
    MJ2.29±0.04b32.90±1.36a35.19±1.4b
    T2.20±0.02bc36.39±2.31a38.59±2.33a
    注:−表示未检出;风味核苷酸为5’-GMP、5’-IMP和5’-AMP之和;同列小写字母不同表示不同处理组差异显著(P<0.05)。
    下载: 导出CSV
  • [1] PANGESTUTI R, ARIFIN Z. Medicinal and health benefit effects of functional sea cucumbers[J]. Journal of Traditional and Complementary Medicine,2018,8(3):341−351. doi:  10.1016/j.jtcme.2017.06.007
    [2] TINGTING W, LIN Z, TIANTIAN Z, et al. Anti-diabetic effects of sea cucumber (Holothuria nobilis) hydrolysates in streptozotocin and high-fat-diet induced diabetic rats via activating the PI3K/Akt pathway[J]. Journal of Functional Foods,2020,75:104224−104224. doi:  10.1016/j.jff.2020.104224
    [3] JANAKIRAM N B, MOHAMMED A, RAO C V. Sea cucumbers metabolites as potent anti-cancer agents[J]. Marine Drugs,2015,13(5):2909−2923. doi:  10.3390/md13052909
    [4] 林凯, 韩雪, 张兰威, 等. ACE抑制肽构效关系及其酶法制备的研究进展[J]. 食品科学,2017,38(3):261−270. [LIN K, HAN X, ZHANG L W, et al. Progress in structure-activity relationship and enzymatic preparation of ACE inhibitory peptides[J]. Food Science,2017,38(3):261−270.
    [5] CHAI K F, VOO A Y H, CHEN W N. Bioactive peptides from food fermentation: A comprehensive review of their sources, bioactivities, applications, and future development[J]. Comprehensive Reviews in Food Science and Food Safety,2020,19(6):3825−3885. doi:  10.1111/1541-4337.12651
    [6] 梁丽芬, 叶泉清, 陈静, 等. 菌酶协同发酵生产蛋白饲料的研究进展及应用[J]. 饲料研究,2021,44(2):129−131. [LIANG L F, YE Q Q, CHEN J, et al. Research progress and application of bacterial enzyme co-fermentation in protein feed production[J]. Feed Research,2021,44(2):129−131. doi:  10.13557/j.cnki.issn1002-2813.2021.02.030
    [7] 王安凤. 合浦珠母贝肉调味料的制备及风味研究[D]. 上海: 上海海洋大学, 2017.

    WANG A F. Study on preparation and flavor improvement of seasoning derived from Pinctada fucata muscle[D]. Shanghai: Shanghai Ocean University, 2017.
    [8] 汪韬, 温运启, 于娇, 等. 富含乳酸菌的脱腥海参肽粉的制备[J]. 食品与发酵工业,2020,46(18):187−191. [WANG T, WEN Y Q, YU J, et al. Preparation of deodorized sea cucumber peptide powder rich in lactic acid bacteria[J]. Food and Fermentation Industries,2020,46(18):187−191. doi:  10.13995/j.cnki.11-1802/ts.023819
    [9] 闫泽文. 不同菌种发酵对海参内脏酶解液风味的影响及抗肿瘤活性研究[D]. 烟台: 烟台大学, 2021.

    YAN Z W, Effects of different strains fermentation on flavor and antitumor activity of enzymatic hydrolysate of sea cucumber viscera[D]. Yantai: Yantai University, 2021.
    [10] 王共明. 仿刺参卵多肽、多糖的制备及多肽活性研究[D]. 上海: 上海海洋大学, 2013.

    WANG G M. Preparation of peptide and polysaccharide and activity research of Apostichopus japonicus Spawn peptide[D]. Shanghai: Shanghai Ocean University, 2013.
    [11] 井月欣, 乔瑞光, 张健, 等. 响应面试验优化盐渍仿刺参脱盐工艺[J]. 食品工业科技,2017,38(18):160−164, 172. [JING Y X, QIAO R G, ZHANG J, et al. Optimization of desalting process of salted Apostichopus japonicus by response surface methodology[J]. Science and Technology of Food Industry,2017,38(18):160−164, 172. doi:  10.13386/j.issn1002-0306.2017.18.031
    [12] 王婷, 温子健, 季晓彤, 等. 海参卵纳豆菌发酵条件及产物生物活性[J]. 食品科学,2017,38(8):43−48. [WANG T, WEN Z J, JI X T, et al. Investigation of fermentation conditions for fibrinolysin production from sea cucumber ovum by Bacillus natto and bioactive activity of the fermentation product[J]. Food Science,2017,38(8):43−48. doi:  10.7506/spkx1002-6630-201708008
    [13] 鲁伟, 任国谱, 宋俊梅. 蛋白水解液中多肽含量的测定方法[J]. 食品科学,2005(7):169−171. [LU W, REN G P, SONG J M. Determination of content of peptides in protein hydrolysates[J]. Food Science,2005(7):169−171. doi:  10.3321/j.issn:1002-6630.2005.07.039
    [14] 张倩, 刘睿, 王欣之, 等. 高效液相色谱法测定四角蛤蜊、菲律宾蛤仔中呈味核苷酸[J]. 食品与发酵工业,2017,43(3):224−228. [ZHANG Q, LIU R, WANG X Z et al. Determination of flavor nucleotides in Mactra veneriformis and Ruditapes philippinarum by high performance liquid chromatography[J]. Food and Fermentation Industries,2017,43(3):224−228. doi:  10.13995/j.cnki.11-1802/ts.201703039
    [15] LI X, DONG Y, JIANG P, et al. Identification of changes in volatile compounds in sea cucumber Apostichopus japonicus during seasonings soaking using HS-GC-IMS[J]. LWT-Food Science and Technology, 2022, 154.
    [16] 王田田, 汪腾蛟, SAYTHON, 等. 菌、酶协同发酵对辣木茎叶粉的营养价值及抗氧化活性的影响[J]. 黑龙江畜牧兽医,2020(12):117−121. [WANG T T, WANG T J, SAYTHON, et al. The effect of nutritional value and antioxidant activity of Moringa oleifera Lam stem and leaf powder by cooperative fermentation of bacteria and enzymes doi:  10.13881/j.cnki.hljxmsy.2019.12.0100

    J]. Heilongjiang Animal Science and Veterinary Medicine,2020(12):117−121. doi:  10.13881/j.cnki.hljxmsy.2019.12.0100
    [17] 赵彦珺. 基于气相离子迁移谱研究酶解及发酵对海参肠卵挥发性物质的影响[D]. 烟台: 烟台大学, 2020.

    ZHAO Y J. The effect of enzymolysis and fermentation on the volatile compounds in the intestines and gonads of sea cucumber using headspace-gas chromatography-ion mobility spectroscopy (HS-GC-IMS)[D]. Yantai: Yantai University, 2020.
    [18] 张涵. 海参及其发酵制品风味构成研究[D]. 大连: 大连工业大学, 2017.

    ZHANG H. Characterization of flavor composition in sea cucumber and fermented products[D]. Dalian: Dalian Polytechnic University, 2017.
    [19] 李学鹏, 王祺, 励建荣, 等. 海参酶解液的体外抗氧化活性研究[J]. 食品工业科技,2014,35(24):100−103. [LI X P, WANG Q, LI J R, et al. Study on the in vitro inoxidizability of enzymatic hydrolysates from sea cucumber (Stichopus japonicus)[J]. Science and Technology of Food Industry,2014,35(24):100−103. doi:  10.13386/j.issn1002-0306.2014.24.012
    [20] 周逢芳, 蔡彬新, 巫鑫睿, 等. 海参体壁蛋白ACE抑制肽酶解工艺及产物分子量分布研究[J]. 食品工业科技,2017,38(17):163−167, 173. [ZHOU P F, CAI B X, WU X R, et al. Study on hydrolysis condition and molecular weight distribution of ACE inhibitory peptide derived from sea cucumber protein[J]. Science and Technology of Food Industry,2017,38(17):163−167, 173. doi:  10.13386/j.issn1002-0306.2017.17.031
    [21] 李学鹏, 刘晏玮, 谢晓霞, 等. 热预处理对蓝蛤酶解及酶解液呈味特性的影响[J]. 食品科学,2020,41(2):133−140. [LI X P, LIU Y W, XIE X X, et al. Effect of thermal pretreatment on enzymatic hydrolysis of clam (Aloididae aloidi) and flavor characteristics of hydrolysates[J]. Food Science,2020,41(2):133−140. doi:  10.7506/spkx1002-6630-20181206-086
    [22] 徐永霞, 曲诗瑶, 李涛, 等. 不同蛋白酶对蓝蛤酶解液风味特性的影响[J]. 食品科学,2021,42(4):190−196. [XU Y X, QU S Y, LI T, et al. Effects of different proteases on the flavor characteristics of Aloididae aloidi muscle hydrolysates[J]. Food Science,2021,42(4):190−196. doi:  10.7506/spkx1002-6630-20190823-248
    [23] 吴红洋, 姜太玲, 胡惠茗, 等. 响应面法优化酶解花椒籽蛋白制备降血压肽工艺[J]. 食品科学,2014,35(21):180−185. [WU H Y, JIANG T L, HU H M, et al. Response surface methodology for optimization of hydrolysis conditions for preparing antihypertensive peptides sichuan pepper (Zanthoxylum bungeanum) seed protein[J]. Food Science,2014,35(21):180−185. doi:  10.7506/spkx1002-6630-201421035
    [24] WANG Y, TANG X, LUAN J, et al. Effects of ultrasound pretreatment at different powers on flavor characteristics of enzymatic hydrolysates of cod (Gadus macrocephalus) head[J]. Food Research International (Ottawa, Ont),2022,159:111612−111612. doi:  10.1016/j.foodres.2022.111612
    [25] 于芳珠, 薄存美, 刘登勇. 食品中鲜味物质研究进展[J]. 食品安全质量检测学报,2020,11(16):5554−5561. [YU F Z, BO C M, LIU D Y. Research progress of umami substances in food[J]. Journal of Food Safety and Quality,2020,11(16):5554−5561. doi:  10.19812/j.cnki.jfsq11-5956/ts.2020.16.037
    [26] 刘倩. 毛霉蛋白酶水解制备大豆鲜味肽的研究[D]. 广州: 华南理工大学, 2020.

    LIU Q. The study of extracting soybean umami peptides by mucro protease[D]. Guangzhou: South China Universityo of Technology. 2020.
    [27] LIU M Y, TANG H C, HU S H, et al. Peptide-based enteral formula improves tolerance and clinical outcomes in abdominal surgery patients relative to a whole protein enteral formula[J]. World Journal of Gastrointestinal Surgery,2016,8(10):700−705. doi:  10.4240/wjgs.v8.i10.700
    [28] 张健, 王茂剑, 马晶晶, 等. 仿刺参生殖腺营养成分分析[J]. 食品科学,2013,34(14):232−236. [ZHANG J, WANG M J, MA J J, et al. Nutrient composition of Apostichopus japonicas gonad[J]. Food Science,2013,34(14):232−236. doi:  10.7506/spkx1002-6630-201314047
    [29] 李雪, 冯涛, 宋诗清, 等. 不同处理方法对蟹味菇呈味物质释放的影响[J]. 食品科学,2020,41(10):198−205. [LI X, FENG T, SONG S Q, et al. Effect of different pretreatment methods on the release of flavor substances from Hypsizygus marmoreus[J]. Food Science,2020,41(10):198−205. doi:  10.7506/spkx1002-6630-20190611-121
    [30] 孟凌玉. 虾头酶解产物微生物混合发酵工艺及其风味成分的变化[D]. 湛江: 广东海洋大学, 2013.

    MENG L Y, Fermentation technology and flavor changes of shrimp head enzymatic hydrolysate with mixed starter cultures[D]. Zhanjiang: Guangdong Ocean University. 2013.
    [31] 蔡路昀, 王亚茹, 王静, 等. 水产品中ATP及其关联化合物研究进展[J]. 食品工业科技,2019,40(7):278−284. [CAI L Y, WANG Y R, WANG J, et al. Research progress of ATP and Its related compounds in aquatic products[J]. Science and Technology of Food Industry,2019,40(7):278−284. doi:  10.13386/j.issn1002-0306.2019.07.048
    [32] 谷镇. 食用菌呈香呈味物质分析及制备工艺研究[D]. 上海: 上海师范大学, 2012.

    GU Z. Study on the determination of flavor substances and preparation technology[D]. Shanghai: Shanghai Normal University, 2012.
    [33] ZHANG H, GENG Y F, QIN L, et al. Characterization of volatile compounds in different dried sea cucumber cultivars[J]. Journal of Food Measurement and Characterization,2018,12(3):1439−1448. doi:  10.1007/s11694-018-9759-7
    [34] 邵悦春, 付晓婷, 许加超, 等. 基于气相离子迁移谱的发酵海带风味分析[J]. 食品工业科技,2021,42(12):300−306. [SHAO Y C, FU X T, XU J C, et al. Flavor analysis of fermented Laminaria japonica based on gas chromatograph-ion mobility spectrometer (GC-IMS)[J]. Science and Technology of Food Industry,2021,42(12):300−306. doi:  10.13386/j.issn1002-0306.2020090210
    [35] 阮秋凤, 安玥琦, 陈周, 等. 短时间微流水处理对草鱼鱼肉风味品质的影响[J]. 食品科学技术学报,2021,39(3):30−42, 51. [RUAN Q F, AN Y Q, CHEN Z, et al. Effect of short-time micro-flow water treatment on flavor quality of grass carp fish meat[J]. Journal of Food Science and Technology,2021,39(3):30−42, 51. doi:  10.12301/j.issn.2095-6002.2021.03.004
    [36] LI X, WANG K, YANG R, et al. Mechanism of aroma compounds changes from sea cucumber peptide powders (SCPPs) under different storage conditions[J]. Food Research International, 2020, 128.
    [37] 律诗, 代晹鑫, 刘野, 等. 食用菌鲜味强度评价及鲜味氨基酸和核苷酸提取工艺优化[J]. 食品科学技术学报,2022,40(1):100−108. [LU S, DAI Y X, LIU Y, et al. Evaluation of umami intensity of edible fungi and optimization of umami amino acid and nucleotide extraction[J]. Journal of Food Science and Technology,2022,40(1):100−108. doi:  10.12301/spxb202100376
    [38] LI M, YANG R, ZHANG H, et al. Development of a flavor fingerprint by HS-GC-IMS with PCA for volatile compounds of Tricholoma matsutake Singer[J]. Food Chemistry,2019,290:32−39. doi:  10.1016/j.foodchem.2019.03.124
    [39] ZHANG Q, DING Y, GU S, et al. Identification of changes in volatile compounds in dry-cured fish during storage using HS-GC-IMS[J]. Food Research International, 2020, 137.
  • 加载中
图(6) / 表(6)
计量
  • 文章访问数:  84
  • HTML全文浏览量:  17
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-30
  • 网络出版日期:  2023-05-06
  • 刊出日期:  2023-06-01

目录

    /

    返回文章
    返回