Optimization of Extraction Process of Polysaccharides from Hovenia dulcis Fruit Pedicels and Its Antioxidant Activity
-
摘要: 为获得枳椇果梗多糖,并进一步评价其自由基清除及抑制生物大分子(蛋白质、脂质、DNA)氧化的能力。以枳椇果梗为试验材料,在单因素实验的基础上,结合正交试验及方差分析优化枳椇果梗多糖热水提取工艺条件;对所提多糖清除DPPH、ABTS+自由基能力进行测定;并利用Cu2+/H2O2、FeSO4、APPH分别诱导牛血清蛋白、亚油酸、鲱鱼精子DNA氧化,构建体外蛋白质、脂质、DNA氧化模型,对所提多糖体外抑制生物大分子氧化能力进行评价。结果表明:醇沉体积分数对枳椇果梗多糖的得率有显著性(P<0.05)的影响,最佳的热水提取工艺条件为:料液比1:25 g/mL,提取温度85 ℃,提取时间1 h,醇沉体积分数80%,此时多糖得率为3.06%±0.181%;且随着浓度的增大,所提多糖对自由基的清除和生物大分子的氧化抑制效果也逐渐提高,对DPPH自由基、ABTS+自由基清除IC50分别为1.687、1.824 mg/mL,对牛血清蛋白羰基化、亚油酸过氧化和鲱鱼精子DNA氧化抑制IC50分别为:13.84、10.88、74.70 mg/mL。研究结果可为枳椇果梗多糖的提取及在功能性食品中的应用提供参考。Abstract: The aim of this study was to obtain polysaccharides from Hovenia dulcis fruit pedicels, and further evaluate its ability to scavenge free radicals and inhibit the oxidation of biological macromolecules (proteins, lipids, DNA). On the basis of a single-factor experiment, the hot water extraction process of polysaccharides from Hovenia dulcis fruit pedicels was optimized using orthogonal test combined with an analysis of variance. The ability of the extracted polysaccharides to scavenge DPPH and ABTS+ free radicals was determined. In addition, Cu2+/H2O2, FeSO4 and APPH were used to induce the oxidation of bovine serum albumin, linoleic acid and herring sperm DNA, respectively, to construct in vitro protein, lipid and DNA oxidation models and the ability of the extracted polysaccharides to inhibit biological macromolecule oxidation in vitro was evaluated. The results showed that the volume fraction of ethanol precipitation had a significant effect on the yield of polysaccharides from Hovenia dulcis fruit pedicels (P<0.05). The optimal hot water extraction conditions were as follows: solid-liquid ratio, 1:25 g/mL, extraction temperature 85 ℃, extraction time 1 h, ethanol precipitation volume fraction 80%, with the polysaccharide yield of 3.06%±0.181%. With the increase in the concentration, the effects of the extracted polysaccharides in scavenging free radicals and inhibiting the oxidation of biological macromolecules were gradually improved. The IC50 for scavenging DPPH and ABTS+ free radicals were 1.687 and 1.824 mg/mL, and the IC50 for inhibiting bovine serum albumin carbonylation, linoleic acid peroxidation and herring sperm DNA oxidation were 13.84, 10.88 and 74.70 mg/mL, respectively. The results can provide a reference for the extraction of polysaccharides from Hovenia dulcis fruit pedicels and its application in functional food.
-
表 1 正交试验因素水平表
Table 1. Orthogonal test factor level table
水平 A 提取温度(℃) B 提取时间(h) C 料液比(g/mL) D 醇沉体积分数(%) 1 85 1 1:25 60 2 90 1.5 1:30 70 3 95 2 1:35 80 表 2 正交试验设计与结果
Table 2. Design and results of orthogonal test
试验号 因素 多糖得率(%) A B C D 1 1 1 1 1 1.36 2 1 2 2 2 1.31 3 1 3 3 3 2.56 4 2 1 2 3 2.70 5 2 2 3 1 1.07 6 2 3 1 2 1.54 7 3 1 3 2 1.57 8 3 2 1 3 2.91 9 3 3 2 1 1.57 K1 1.743 1.877 1.937 1.333 K2 1.770 1.763 1.860 1.473 K3 2.017 1.890 1.733 2.723 极差R 0.274 0.127 0.204 1.390 表 3 正交试验方差分析
Table 3. Variance analysis of orthogonal test
因素 偏差平方和 自由度 F比 F临界值 P值 显著性 A 0.136 2 4.690 19.000 0.183 B 0.029 2 1.000 19.000 0.039 C 0.063 2 2.172 19.000 0.085 D 3.514 2 121.172 19.000 0.008 * 误差 0.03 2 注:*表示P<0.05。 -
[1] TAN B L, NORHAIZAN M E, LIEW W P. Nutrients and oxidative stress: friend or foe?[J]. Oxidative Medicine and Cellular Longevity,2018,31:9719584. [2] DAS M, BABU K, REDDY N P, et al. Oxidative damage of plasma proteins and lipids in epidemic dropsy patients: Alterations in antioxidant status[J]. Biochimica et Biophysica ACTA-Subjects,2005,1722(2):209−217. doi: 10.1016/j.bbagen.2004.12.014 [3] POPRAC P, JOMOVA K, SIMUNKOVA M, et al. Targeting free radicals in oxidative stress-related human diseases[J]. Trends in Pharmacological Science,2017,38(7):592−607. doi: 10.1016/j.tips.2017.04.005 [4] 杨斯惠, 向月, 曹亚楠, 等. 植物多糖的益生作用及其影响因素研究进展[J]. 食品科学,2022,43(11):301−310. [YANG S H, XIANG Y, CAO Y N, et al. Progress in research on the prebiotic effects of plant polysaccharides and the factors influencing them[J]. Food Science,2022,43(11):301−310. doi: 10.7506/spkx1002-6630-20210610-132 [5] HUANG G, MEI X, HU J. The antioxidant activities of natural polysaccharides[J]. Current Drug Targets,2017,18(11):1296−1300. [6] ZENG P, LI J, CHEN Y, et al. The structures and biological functions of polysaccharides from traditional Chinese herbs[J]. Progress in Molecular Biology and Translational Science,2019,163:423−444. [7] XIE L, SHEN M, HONG Y, et al. Chemical modifications of polysaccharides and their anti-tumor activities[J]. Carbohydrate Polymers,2020,229:115436. doi: 10.1016/j.carbpol.2019.115436 [8] LIU Y, SUN Y Y, HUANG G L. Preparation and antioxidant activities of important traditional plant polysaccharides[J]. International Journal of Biological Macromolecules,2018,111:780−786. doi: 10.1016/j.ijbiomac.2018.01.086 [9] 于俊俊, 徐德平. 枳椇子降尿酸功效成分[J]. 食品科技,2019,44(11):227−231, 237. [YU J J, XU D P. Uric acid-lowering ingredients of Semen Hoveniae[J]. Food Science and Technology,2019,44(11):227−231, 237. doi: 10.13684/j.cnki.spkj.2019.11.041 [10] 陆石英, 覃志高. 药食两用枳椇的研究进展[J]. 食品安全质量检测学报,2020,11(6):1865−1870. [LU S Y, QIN Z G. Research progress on Hovenia dulcis Lindl. for medicine and food[J]. Journal of Food Safety and Quality,2020,11(6):1865−1870. doi: 10.19812/j.cnki.jfsq11-5956/ts.2020.06.031 [11] 向进乐, 杜琳, 朱文学, 等. 枳椇果梗营养功能与加工利用[J]. 中国林副特产,2015,1:98−101. [XIANG J L, DU L, ZHU W X, et al. Research progress in nutrition and utilization of Hovenia peduncles[J]. Forest By-Product and Speciality in China,2015,1:98−101. doi: 10.13268/j.cnki.fbsic.2015.01.045 [12] 李维新, 何志刚, 林晓姿, 等. 拐枣的营养保健功能及其果汁饮料的研制[J]. 食品科学,2005,8:249−251. [LI W X, HE Z G, LIN X Z, et al. Nutritional health function of Hovenia dulcis Thunb and research of juice beverage[J]. Food Science,2005,8:249−251. doi: 10.3321/j.issn:1002-6630.2005.03.063 [13] 肖芳, 陈涛, 伍振煌, 等. 植物多糖的提取工艺、生物学功能及其在动物生产中的研究进展[J]. 饲料研究,2022,14:125−128. [XIAO F, CHEN T, WU Z H, et al. Research progress on extraction technology, biological function and animal production of plant polysaccharides[J]. Feed Reaearch,2022,14:125−128. doi: 10.13557/j.cnki.issn1002-2813.2022.14.027 [14] 王文丽, 张金玲, 魏亚宁, 等. 天然多糖提取、纯化及生物活性研究进展[J]. 食品工业科技,2022,43(22):470−480. [WANG W L, ZHANG J L, WEI Y N, et al. Extraction, purification, and bioactivity of natural polysaccharides: A review[J]. Science and Technology of Food Industry,2022,43(22):470−480. doi: 10.13386/j.issn1002-0306.2021120256 [15] WANG W Q, LIU Z C, LIU Y J et al. Plant polypeptides: A review on extraction, isolation, bioactivities and prospects[J]. International Journal of Biological Macromolecules,2022,207:169−178. doi: 10.1016/j.ijbiomac.2022.03.009 [16] 杨海涛, 曹小燕. 超声辅助浸提拐枣中多糖及抗氧化性研究[J]. 应用化工,2017,46(11):2174−2177. [YANG H T, CAO X Y. Study on ultrasonic wave assisted extraction of polysaccharide from Hovenia dulcis and its antioxidant activity[J]. Applied Chemical Industry,2017,46(11):2174−2177. doi: 10.3969/j.issn.1671-3206.2017.11.026 [17] 张保, 李立天, 张萌, 等. 拐枣枝多糖提取工艺优化与其抗氧化性研究[J]. 中国酿造,2016,35(7):155−160. [ZHANG B, LI L T, ZHANG M, et al. Optimization of extraction technology of Hovenia acerba sticks polysaccharides and its antioxidant activity[J]. China Brewing,2016,35(7):155−160. doi: 10.11882/j.issn.0254-5071.2016.07.034 [18] 魏丕伟, 王凌云, 熊俐, 等. 枳椇多糖提取工艺研究[J]. 江苏农业科学,2012,40(8):272−274. [WEI P W, WANG L Y, XIONG L, et al. Study on the extraction process of Hovenia acerba polysaccharide[J]. Jiangsu Agricultural Science,2012,40(8):272−274. doi: 10.3969/j.issn.1002-1302.2012.08.108 [19] 刘佳维, 周君, 高亚杰, 等. 红参多糖脱蛋白的研究[J]. 食品科技,2018,43(7):188−192. [LIU W J, ZHOU J, GAO Y J, et al. Deproteinization of polysaccharide from red ginseng[J]. Food Science and Technology,2018,43(7):188−192. doi: 10.13684/j.cnki.spkj.2018.07.033 [20] YANG B, WU Q J, LUO Y X, et al. High-pressure ultrasonic-assisted extraction of polysaccharides from Hovenia dulcis: Extraction, structure, antioxidant activity and hypoglycemic[J]. International Journal of Biological Macromolecules,2019,137:676−687. doi: 10.1016/j.ijbiomac.2019.07.034 [21] 刘胜男, 余敏敏, 郭晓莉, 等. 迷迭香提取物对自由基诱导蛋白质、油脂及DNA氧化的抑制作用[J]. 食品研究与开发,2020,41(14):22−27. [LIU S N, YU M M, GUO X L, et al. Inhibition effect of rosemary extract against oxidation of protein, lipid and DNA induced by free radicals[J]. Food Research and Development,2020,41(14):22−27. doi: 10.12161/j.issn.1005-6521.2020.14.004 [22] 张月, 刘茜, 肖春霞. 辣椒碱对生物大分子氧化损伤的保护作用[J]. 现代食品科技,2017,33(2):41−47. [ZHANG Y, LIU Q, XIAO CX. Protective effect of capsaicin against oxidative damage to biomolecules[J]. Modern Food Science and Technology,2017,33(2):41−47. doi: 10.13982/j.mfst.1673-9078.2017.2.007 [23] 杨忠敏, 王祖文, 黄先智, 等. 桑叶生物碱对D-半乳糖诱导小鼠生物大分子氧化损伤的改善作用及机理[J]. 食品科学,2020,41(5):135−142. [YANG Z M, WANG Z W, HUANG X Z, et al. Effect and underlying mechanism of mulberry leaf alkaloid on improving D-galactose-induced oxidative damage in mice[J]. Food Science,2020,41(5):135−142. [24] 张双奇, 刘琳, 何念武, 等. 超声辅助提取陕产天麻多糖的工艺优化及抗氧化活性研究[J]. 中国农学通报,2021,37(9):131−136. [ZHANG S Q, LIU L, HE N W, et al. Gastrodia elata polysaccharide from Shanxi by ultrasound-assisted hot water extraction: Process optimization and antioxidant activity[J]. Chinese Agricultural Science Bulletin,2021,37(9):131−136. doi: 10.11924/j.issn.1000-6850.casb2020-0235 [25] CHEN C, YOU L J, ABBASI A M, et al. Optimization for ultrasound extraction of polysaccharides from mulberry fruits with antioxidant and hyperglycemic activityin vitro[J]. Carbohydrate Polymers,2015,130:122−132. doi: 10.1016/j.carbpol.2015.05.003 [26] 龚频, 王思远, 陈雪峰, 等. 响应面法优化杏鲍菇粗多糖提取条件及其体外活性[J]. 陕西科技大学学报,2019,37(6):60−65. [GONG P, WANG S Y, CHEN X F, et al. Optimization of crude polysaccharide extraction conditions from Pleurotus eryngii by response surface methodology and its vitro activities[J]. Journal of Shanxi University of Science & Technology,2019,37(6):60−65. doi: 10.3969/j.issn.1000-5811.2019.06.010 [27] 朱梅, 毕宏涛, 杨威, 等. 乙醇浓度对人参多糖分离的影响[J]. 东北师范大学报(自然科学版),2019,37(6):60−65. [ZHU M, BI H T, YANG W, et al. The effects of ethanol concentrations on isolation of ginseng polysaccharides[J]. Journal of Northeast Normal University (Natural Science Edition),2019,37(6):60−65. [28] 何坤明, 王国锭, 白新鹏, 等. 山茱萸籽多糖分离纯化、结构表征及抗氧化活性[J]. 食品科学,2021,42(19):81−88. [HE K M, WANG G D, BAI X P, et al. Solation, purification, structure characterization and antioxidant activity of Cornus officinalis seed polysaccharides[J]. Food Science,2021,42(19):81−88. doi: 10.7506/spkx1002-6630-20201111-109 [29] 霍达, 张霞, 陈君诚, 等. 玉竹多糖的提取工艺优化、结构表征及抗氧化活性的研究[J]. 食品科技,2020,45(7):200−208. [HUO D, ZHANG X, CHEN J C, et al. Optimization of extraction, structure characterization and antioxidant activity of polysaccharide from Polygonatum ordoratum (Mill.) druce[J]. Food Science and Technology,2020,45(7):200−208. doi: 10.13684/j.cnki.spkj.2020.07.035 [30] 郭磊, 管雨晴, 李梅云. 慈竹竹叶多糖体外抗氧化作用研究[J]. 食品研究与开发,2013,34(16):9−11. [GUO L, GUAN Y Q, LI M Y. Study on antioxidative effects of polysaccharide from Neosinocalamus affinis leaves[J]. Food Research and Development,2013,34(16):9−11. doi: 10.3969/j.issn.1005-6521.2013.16.003 [31] 叶文斌, 樊亮. 响应面与酶法优化拐枣多糖的提取工艺及其抗氧化活性研究[J]. 安徽农业大学学报,2016,43(2):182−189. [YE W B, FAN L. Extraction of polysaccharides from Hovenia acerba Lindi. by optimization enzymolysis and response surface methodology and its antioxidant capacity[J]. Journal of Anhui Agricultural University,2016,43(2):182−189. doi: 10.13610/j.cnki.1672-352x.20160311.030 [32] 左高隆, 黄霞, 林勇, 等. 蛋白质羰基化及茶多酚的预防作用研究进展[J]. 茶叶通讯,2019,46(3):257−262. [ZUO G L, HUANG X, LIN Y, et al. Research progress on protein carbonylation and prevention of tea polyphenols[J]. Journal of Tea Communication,2019,46(3):257−262. doi: 10.3969/j.issn.1009-525X.2019.03.002 [33] 童鑫怡, 韦铮, 陈梅, 等. 茶多糖-茶多酚对D-半乳糖诱导的小鼠脑组织氧化损伤的改善作用[J]. 食品工业科技,2022,43(16):377−383. [TONG X Y, WEI Z, CHEN M, et al. Effect of tea polysaccharide-tea polyphenol on improving D-galactose-induced oxidative damage of brain in mice[J]. Science and Technology of Food Industry,2022,43(16):377−383. doi: 10.13386/j.issn1002-0306.2021110008 -