• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020

小麦面条和面过程面絮特征与检测研究进展

史赵建 胡新中 马恺阳

史赵建,胡新中,马恺阳. 小麦面条和面过程面絮特征与检测研究进展[J]. 食品工业科技,2023,44(11):487−495. doi:  10.13386/j.issn1002-0306.2022090142
引用本文: 史赵建,胡新中,马恺阳. 小麦面条和面过程面絮特征与检测研究进展[J]. 食品工业科技,2023,44(11):487−495. doi:  10.13386/j.issn1002-0306.2022090142
SHI Zhaojian, HU Xinzhong, MA Kaiyang. Research Progress on the Characteristics and Detection of Wheat Dough Crumbs during Flour Mixing of Noodle Making[J]. Science and Technology of Food Industry, 2023, 44(11): 487−495. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022090142
Citation: SHI Zhaojian, HU Xinzhong, MA Kaiyang. Research Progress on the Characteristics and Detection of Wheat Dough Crumbs during Flour Mixing of Noodle Making[J]. Science and Technology of Food Industry, 2023, 44(11): 487−495. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022090142

小麦面条和面过程面絮特征与检测研究进展

doi: 10.13386/j.issn1002-0306.2022090142
基金项目: 陕西省重点研发计划(2019ZDLNY-04);陕西省国际合作基地(2019GHJD-15);陕西省创新能力支撑计划(2020TD-049);国家现代农业产业技术体系(CARS-07-E)。
详细信息
    作者简介:

    史赵建(1996−),男,硕士研究生,研究方向:粮食、油脂及植物蛋白工程,E-mail:szj2385521213@163.com

    通讯作者:

    胡新中(1972−),男,博士,教授,研究方向:谷物科学与营养,E-mail:hxinzhong@126.com

  • 中图分类号: TS210.4

Research Progress on the Characteristics and Detection of Wheat Dough Crumbs during Flour Mixing of Noodle Making

  • 摘要: 和面作为面条制作的关键性工艺,形成的面絮直接决定面条最终品质,但面絮品质缺少客观检测方法,制约了面条工业化发展。面絮形成是谷物粉体颗粒与水分混合形成团聚体的湿法造粒过程,受到面粉自身组分、水分加入量、和面方式和辅料的影响。面絮的颗粒度较为均匀、水分在面絮内部和面絮之间分布均匀、面筋网络结构充分有效包裹淀粉是良好面絮的共同特征。面絮状态图像深度学习分析把面絮形成分为润湿黏连、聚集成形、破裂分散、稳定平衡4个阶段,稳定平衡阶段在精准判别和面终点中起到至关重要的作用。目前面絮颗粒大小评价以目测、时间控制、感官评价为主,还无法实现仪器精确测定或在线质量检测。通过图像分析,用面絮颗粒图像的阴影面积可以间接反映面絮状态,指导面条工业化生产。本文综述了小麦面条和面过程中面絮的基本特征,分析了面絮形成过程中的水分动态变化、颗粒度变化、面筋网络结构变化及其影响因素,讨论了面絮与面条品质之间的关系,介绍了图像检测方法、其他检测方法在面絮检测中的研究进展。
  • 图  1  和面四个阶段示意图[17]

    Figure  1.  Four stages of dough mixing process[17]

    图  2  面絮与面团微观模型

    Figure  2.  Dough crumbs and dough microscopic models

    表  1  面絮形成不同阶段划分及特征

    Table  1.   Division and characteristics of formation of dough crumbs at different stages

    文献第一阶段第二阶段第三阶段第四阶段
    [10] 润湿和成核,水分与面粉接触,粉末吸水成核,随后,粉末层内液体迁移导致核生长。 聚集和增长,面絮与面絮、面絮与面粉、面絮与设备之间的碰撞导致面絮颗粒挤压和增长。 摩擦和破裂,在和面机后续的处理过程中,由于冲击、磨损或挤压,面絮颗粒发生破碎。
    [13] 初始阶段,面粉与水在搅拌作用下开始混合,水化作用仅发生在面粉表面,时间较短。 浸润膨胀阶段,水分大部分进入面粉颗粒内部,初步形成了面筋网状结构。 面团形成阶段,面粉与水在搅拌作用下混合、挤压,剩余的游离水进入面粉颗粒内部,促使其继续胀润、黏结,面筋网络由疏变密,筋力由小变大,形成所需面团。
    [4] 湿润粘连阶段,小麦面粉与水分开始接触,水合作用仅在部分面粉表面发生,时间较短,水合范围较小。 浸润膨胀阶段,部分水分自发性地渗入面粉颗粒内部,引发了二硫键的交联作用,促使谷蛋白大分子相互聚集、缠结,醇溶蛋白填充其中,初步形成了无序的网状结构。 成型稳定阶段,更多水分子进入面粉颗粒内部,促使其继续胀润,黏结,面筋网络结构的密度和筋力有所增强。
    [14-15] 润湿粘连阶段,特征是水包裹在面粉颗粒表面产生粘性,相互粘连后被搅拌拉扯成表面附有大量干粉的片状结构。 聚集成形阶段,特征为片状结构挤压卷曲形成大颗粒的堆积结构,干粉完全消失。 破裂分散阶段,特征是大块的堆积结构破裂形成相对较小但更加规则聚集体。 稳定平衡阶段,特征是形成独立、宏观状态基本保持不变的面絮
    颗粒。
    [16] 润湿阶段(0~1 min) 凝聚阶段(1~5 min) 凝聚和破裂的平衡阶段(5~10 min) 破损和流失阶段(10~20 min)
    [17] 润湿黏连阶段特征为水分与机械作用的同时介入,使面粉颗粒表面黏连部分被拉扯为表面附有干粉的片状结构。时间比例分别约为10%。 聚集成形阶段特征为片状结构在机械作用下发生挤压卷曲,干粉消失,形成体积较大的堆积结构。时间比例分别约为15%。 破裂分散阶段特征为堆积结构随着搅拌发生破裂,形成相对较小但更加规则的小体积聚集体。时间比例分别约为25%。 稳定平衡阶段特征为持续的机械力作用将小体积聚集体分散成独立的面絮颗粒,面絮颗粒的宏观状态不随机械搅拌发生改变。时间比例分别约为50%。
    下载: 导出CSV
  • [1] 魏益民. 中华面条之起源[J]. 麦类作物学报,2015,35(7):881−887. [WEI Y M. Origin of Chinese noodles[J]. Journal of Triticeae Crops,2015,35(7):881−887. doi:  10.7606/j.issn.1009-1041.2015.07.01
    [2] 胡新中, 马蓁. 大宗面制品加工理论与实践[M]. 北京: 科学出版社, 2021: 10−15

    HU X Z, MA Z. Principles and practices of staple cereal flour-based products processing[M]. Beijing: Science Press, 2021: 10−15.
    [3] 卞科, 郑学玲. 谷物化学[M]. 北京: 科学出版社, 2017

    BIAN K, ZHENG X L. Cereal chemistry[M]. Beijing: Science Press, 2017.
    [4] 刘玲, 马鑫鑫, 史赵建, 等. 从水分迁移角度阐释压延间距对小麦鲜面品质的影响[J]. 食品科学,2023,44(4):152−161. [LIU L, MA X X, SHI Z J, et al. Influence mechanism of water migration on the qualities of fresh wheat noodles with different sheeting gaps[J]. Food Science,2023,44(4):152−161.
    [5] 张影全. 挂面干燥过程蛋白质结构变化与产品质量的构效关系[D]. 杨凌: 西北农林科技大学, 2021

    ZHANG Y Q. Structure-activity relationship between protein structure changes and product quality properties during drying process of Chinese dried noodles[D]. Yangling: Northwest A & F University, 2021.
    [6] 刘锐, 张影全, 武亮, 等. 挂面生产工艺及设备研发进展[J]. 食品与机械,2016,32(5):204−208. [LIU R, ZHANG Y Q, WU L, et al. A review of production technology and equipment of dried Chinese noodle[J]. Food & Machinery,2016,32(5):204−208. doi:  10.13652/j.issn.1003-5788.2016.05.047
    [7] IVESON S M, LITSTER J D, HAPGOOD K, et al. Nucleation, growth and breakage phenomena in agitated wet granulation processes: A review[J]. Powder Technology,2001,117(1-2):3−39. doi:  10.1016/S0032-5910(01)00313-8
    [8] BARKOUTI A, DELALONDE M, RONDET E, et al. Structuration of wheat powder by wet agglomeration: Case of size association mechanism[J]. Powder Technology,2014,252:8−13. doi:  10.1016/j.powtec.2013.10.037
    [9] KONTOGIORGOS V. Microstructure of hydrated gluten network[J]. Food Research International,2011,44(9):2582−2586. doi:  10.1016/j.foodres.2011.06.021
    [10] TARDOS G I, KHAN M I, MORT P R. Critical parameters and limiting conditions in binder granulation of fine powders[J]. Powder Technology,1997,94(3):245−258. doi:  10.1016/S0032-5910(97)03321-4
    [11] 史赵建. 小麦面条和面阶段面絮图像识别与面絮特性研究[D]. 西安: 陕西师范大学, 2022

    SHI Z J. Image recognition of dough crumbs at the mixing stages and study on the characteristics of the crumbs[D]. Xi’an: Shaanxi Normal University, 2022.
    [12] 刘玲. 水分子运动对小麦面条的影响机制研究[D]. 西安: 陕西师范大学, 2022

    LIU L. Influence mechanism of water molecules movements on the processing qualities of wheat noodles[D]. Xi’an: Shaanxi Normal University, 2022.
    [13] 杨玉玲. 不同和面方式对面团流变学特性和面条品质的影响[D]. 郑州: 河南工业大学, 2018

    YANG Y L. Influence of different mixing methods on the rheological properties of dough and noodle quality[D]. Zhengzhou: Henan University of Technology, 2018.
    [14] YE X, SUI Z. Physicochemical properties and starch digestibility of Chinese noodles in relation to optimal cooking time[J]. International Journal of Biological Macromolecules,2016,84:428−433. doi:  10.1016/j.ijbiomac.2015.12.054
    [15] SUWAIBAH G, ABDULAMIR A S, FATIMAH A B, et al. Microbial growth, sensory characteristic and pH as potential spoilage indicators of Chinese yellow wet noodles from commercial processing plants[J]. American Journal of Applied Sciences,2009,6(6):1059−1066. doi:  10.3844/ajassp.2009.1059.1066
    [16] 荆鹏. 面絮特性对面条品质的影响研究[D]. 郑州: 河南工业大学, 2015

    JING P. Study on effects of characteristics of dough pieces on the quality of Chinese noodle[D]. Zhengzhou: Henan University of Technology, 2015.
    [17] 史赵建, 胡新中, 李亮, 等. 小麦面条和面过程不同阶段面絮的划分与自动识别[J]. 农业工程学报,2022,38(5):279−288. [SHI Z J, HU X Z, LI L, et al. Classification and automated identification of dough crumbs at different stages of the wheat noodles mixing process[J]. Transactions of the Chinese Society of Agricultural Engineering,2022,38(5):279−288. doi:  10.11975/j.issn.1002-6819.2022.05.033
    [18] 荆鹏, 郑学玲, 刘翀, 等. 面条制作中面絮特性与面团流变学特性的关系研究[J]. 现代食品科技,2014,30(9):73−78. [JING P, ZHENG X L, LIU C, et al. Relationship between the characteristics of dough pieces and the rheological properties of dough during noodle production[J]. Modern Food Science and Technology,2014,30(9):73−78. doi:  10.13982/j.mfst.1673-9078.2014.09.013
    [19] 彭湃, 王柯, 王晓龙, 等. 燕麦、荞麦面条品质提升研究进展[J]. 中国粮油学报,2021,36(4):153−160. [PENG P, WANG K, WANG X L, et al. Research progress on quality improvement of oat and buckwheat noodles[J]. Journal of the Chinese Cereals and Oils Association,2021,36(4):153−160. doi:  10.3969/j.issn.1003-0174.2021.04.026
    [20] LIU R, WEI Y, REN X, et al. Effects of vacuum mixing, water addition, and mixing time on the quality of fresh Chinese white noodles and the optimization of the mixing process[J]. Cereal Chemistry,2015,92(5):427−433. doi:  10.1094/CCHEM-10-14-0204-R
    [21] NIVELLE M A, BEGHIN A S, BOSMANS G M, et al. Molecular dynamics of starch and water during bread making monitored with temperature-controlled time domain 1H NMR[J]. Food Research International,2019,119:675−682. doi:  10.1016/j.foodres.2018.10.045
    [22] UMBACH S L, DAVIS E A, GORDON J, et al. Water self-diffusion coefficients and dielectrics determination for starch-gluten-water mixture by microwave and by conventional methods[J]. Cereal Chemistry,1992,69:637−642.
    [23] BUSHUK W, HLYNKA I. Water as a constituent of flour, dough, and bread[J]. Baker’s Digest,1964,38:43−46.
    [24] LI J, HOU G G, CHEN Z, et al. Studying the effects of whole-wheat flour on the rheological properties and the quality attributes of whole-wheat saltine cracker using SRC, alveograph, rheometer, and NMR technique[J]. LWT-Food Science and Technology,2014,55(1):43−50. doi:  10.1016/j.lwt.2013.07.022
    [25] 张毅, 陈洁, 汪磊, 等. 加水量与和面时间对面片质构及蛋白特性的影响[J]. 农业工程学报,2020,36(14):299−306. [ZHANG Y, CHEN J, WANG L, et al. Effects of water addition and mixing time on the texture and protein properties of dough sheets[J]. Transactions of the Chinese Society of Agricultural Engineering,2020,36(14):299−306. doi:  10.11975/j.issn.1002-6819.2020.14.036
    [26] LIU Y, WANG S W, KANG J, et al. Arabinoxylan from wheat bran: Molecular degradation and functional investigation[J]. Food Hydrocolloids,2020,107:105914. doi:  10.1016/j.foodhyd.2020.105914
    [27] ZHOU Y, DHITAL S, ZHAO C, et al. Dietary fiber-gluten protein interaction in wheat flour dough: Analysis, consequences and proposed mechanisms[J]. Food Hydrocolloids, 2020: 106203.
    [28] 刘锐, 武亮, 张影全, 等. 基于低场核磁和差示量热扫描的面条面团水分状态研究[J]. 农业工程学报,2015,31(9):288−294. [LIU R, WU L, ZHANG Y Q, et al. Water state and distribution in noodle dough using low-field nuclear magnetic resonance and differential scanning calorimetric[J]. Transactions of the Chinese Society of Agricultural Engineering,2015,31(9):288−294. doi:  10.11975/j.issn.1002-6819.2015.09.043
    [29] HACKENBERG S, JEKLE M, BECKER T. Mechanical wheat flour modification and its effect on protein network structure and dough rheology[J]. Food Chemistry,2018,248:296−303. doi:  10.1016/j.foodchem.2017.12.054
    [30] CHEN Y, OBADI M, LIU S, et al. Evaluation of the processing quality of noodle dough containing a high Tartary buckwheat flour content through texture analysis[J]. Journal of Texture Studies,2020,51(4):688−697. doi:  10.1111/jtxs.12539
    [31] OKUMUS B N, TACER-CABA Z, KAHRAMAN K, et al. Resistant starch type V formation in brown lentil (Lens culinaris Medikus) starch with different lipids/fatty acids[J]. Food Chemistry,2018,240:550−558. doi:  10.1016/j.foodchem.2017.07.157
    [32] 郭孝源. 油脂对面团及面条品质的影响[D]. 郑州: 河南工业大学, 2013

    GUO X Y. Effects of lipids on dough properties and noodle quality[D]. Zhengzhou: Henan University of Technology, 2013.
    [33] 荆鹏, 郑学玲, 卞科, 等. 面絮粒度分布对面条品质影响研究[J]. 中国粮油学报,2015,30(11):12−18. [JING P, ZHENG X L, BIAN K, et al. Effects of different size particles of dough pieces on the quality of Chinese white noodle[J]. Journal of the Chinese Cereals and Oils Association,2015,30(11):12−18. doi:  10.3969/j.issn.1003-0174.2015.11.003
    [34] KADDOUR A A, CUQ B. In line monitoring of wet agglomeration of wheat flour using near infrared spectroscopy[J]. Powder Technology,2009,190(1-2):10−18. doi:  10.1016/j.powtec.2008.04.045
    [35] OSBORNE J D, SOCHON R P J, CARTWRIGHT J J, et al. Binder addition methods and binder distribution in high shear and fluidised bed granulation[J]. Chemical Engineering Research and Design,2011,89(5):553−559. doi:  10.1016/j.cherd.2010.08.006
    [36] 荆鹏, 郑学玲, 杨力会, 等. 基于主成分分析法分析面絮与面条品质的关系[J]. 粮食与油脂,2014,27(10):21−25. [JING P, ZHENG X L, YANG L H, et al. The relationship of dough pieces and the quality of noodle based on principal component analysis[J]. Cereals & Oils,2014,27(10):21−25. doi:  10.3969/j.issn.1008-9578.2014.10.006
    [37] LIU R, WEI Y M, LU Y Y, et al. Performance of industrial dough mixers and its effects on noodle quality[J]. International Journal of Agricultural and Biological Engineering,2016,9(1):125−134.
    [38] 刘锐, 卢洋洋, 邢亚楠, 等. 高速连续和面机的和面效果及其对面条质量的影响[J]. 中国食品学报,2015,15(11):54−61. [LIU R, LU Y Y, XING Y N, et al. Mixing effects and noodles quality of differential continuous high-speed mixers[J]. Journal of Chinese Institute of Food Science and Technology,2015,15(11):54−61. doi:  10.16429/j.1009-7848.2015.11.009
    [39] SHAO L F, GUO X N, LI M, et al. Effect of different mixing and kneading process on the quality characteristics of frozen cooked noodle[J]. LWT-Food Science and Technology,2019,101:583−589. doi:  10.1016/j.lwt.2018.11.078
    [40] CLYDE D, WIM J L, JOHAN J P, et al. Understanding the link between GMP and dough: From glutenin particles in flour towards developed dough[J]. Journal of Cereal Science,2003,38(2):157−165. doi:  10.1016/S0733-5210(03)00017-1
    [41] OOMS N, DELCOUR J A. How to impact gluten protein network formation during wheat flour dough making[J]. Current Opinion in Food Science,2019,25:88−97. doi:  10.1016/j.cofs.2019.04.001
    [42] KONTOGIORGOS V, GOFF H D, KASAPIS S. Effect of aging and ice-structuring proteins on the physical properties of frozen flour-water mixtures[J]. Food Hydrocolloids,2008,22(6):1135−1147. doi:  10.1016/j.foodhyd.2007.06.005
    [43] KONTOGIORGOS V, KASAPIS S. Temperature dependence of relaxation spectra for highly hydrated gluten networks[J]. Journal of Cereal Science,2010,52(1):100−105. doi:  10.1016/j.jcs.2010.04.001
    [44] JAZAERI S, BOCK J E, BAGAGLI M P, et al. Structural modifications of gluten proteins in strong and weak wheat dough during mixing[J]. Cereal Chemistry,2015,92(1):105−113. doi:  10.1094/CCHEM-10-13-0212-R
    [45] LIU Q, GUO X N, ZHU K X. Effects of frozen storage on the quality characteristics of frozen cooked noodles[J]. Food Chemistry,2019,283:522−529. doi:  10.1016/j.foodchem.2019.01.068
    [46] FERNANDO A P A, MOHAMED A H, THOMAS B. A vision system for surface homogeneity analysis of dough based on the grey level co-occurrence Matrix (GLCM) for optimum kneading time prediction[J]. Journal of Food Process Engineering,2016,39:166−177. doi:  10.1111/jfpe.12209
    [47] SHEHZAD A, CHIRON H, DELLA VALLE G, et al. Porosity and stability of bread dough during proofing determined by video image analysis for different compositions and mixing conditions[J]. Food Research International,2010,43(8):1999−2005. doi:  10.1016/j.foodres.2010.05.019
    [48] LIU S, LIU Q, LI X, et al. Effects of dough resting time on the development of gluten network in different sheeting directions and the textural properties of noodle dough[J]. LWT,2021,141:110920. doi:  10.1016/j.lwt.2021.110920
    [49] 高辉, 甄彤, 李智慧. 粘连颗粒图像的分割方法综述[J]. 中国粮油学报,2022,37(3):186−194. [GAO H, ZHEN T, LI Z H. A review of segmentation methods for adhesive particle images[J]. Journal of the Chinese Cereals and Oils Association,2022,37(3):186−194. doi:  10.3969/j.issn.1003-0174.2022.03.028
    [50] WANG R, LI M, CHEN S, et al. Effects of flour dynamic viscosity on the quality properties of buckwheat noodles[J]. Carbohydrate Polymers,2019,207:815−823. doi:  10.1016/j.carbpol.2018.09.048
    [51] FUNAMI T, NAKAUMA M. Instrumental food texture evaluation in relation to human perception[J]. Food Hydrocolloids,2022,124:107253. doi:  10.1016/j.foodhyd.2021.107253
    [52] HARATI H, BEKES F, HOWELL K, et al. Signatures for torque variation in wheat dough structure are affected by enzymatic treatments and heating[J]. Food Chemistry,2020,316:126357. doi:  10.1016/j.foodchem.2020.126357
    [53] 杨纬金, 张印, 吴凤凤, 等. 和面机扭矩与面团和制效果关系的研究[J]. 粮食与饲料工业,2015(10):35−38. [YANG W J, ZHANG Y, WU F F, et al. Relationship between torque of dough mixing machine and dough kneading degree[J]. Cereal & Feed Industry,2015(10):35−38.
    [54] MANDATO S, TALIANI C C, AÏT-KADDOUR A, et al. In-line monitoring of durum wheat semolina wet agglomeration by near infrared spectroscopy for different water supply conditions and water addition levels[J]. Journal of Food Engineering,2013,119(3):533−543. doi:  10.1016/j.jfoodeng.2013.06.022
    [55] LÉTANG C, PIAU M, VERDIER C, et al. Characterization of wheat-flour-water doughs: A new method using ultrasound[J]. Ultrasonics,2001,39(2):133−141. doi:  10.1016/S0041-624X(00)00058-5
    [56] KADDOUR A A, CUQ B. Dynamic NIR spectroscopy to monitor bread dough mixing: A short review[J]. American Journal of Food Technology,2011,6(3):173−185. doi:  10.3923/ajft.2011.173.185
    [57] BOWLER A L, BAKALIS S, WATSON N J. Monitoring mixing processes using ultrasonic sensors and machine learning[J]. Sensors,2020,20(7):1813. doi:  10.3390/s20071813
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  136
  • HTML全文浏览量:  57
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-15
  • 网络出版日期:  2023-04-21
  • 刊出日期:  2023-06-01

目录

    /

    返回文章
    返回