Preparation and Characterization of Microcapsules by Heat Treated Myofibrillar Protein Coacervation
-
摘要: 探索罗非鱼(Oreochromis niloticus)中提取肌原纤维蛋白(MP)在热处理后(HMP)作为一种新型微胶囊的壳材料,在海藻酸钠(SA)和壳聚糖(CS)共存下,采用超声复凝聚法对玉米油进行微胶囊化,并对其性能进行表征。结果表明:当海藻酸钠含量2.5%,HMP含量3.0%,玉米油含量30%时,乳液粒径小而均匀,乳化稳定性高。壳聚糖含量为1.2%、海藻酸钠和壳聚糖质量比1:1、氯化钙浓度为5.0%时,通过超声复凝聚法得到的微胶囊平均粒径为88.74±2.60 μm,包封率为82.59%±1.44%;微胶囊具有不规则形状和起伏的表面;红外光谱和X射线衍射结果表明,海藻酸钠与壳聚糖因静电结合作用,与HMP共同构成了微胶囊致密的外壳;DSC结果显示HMP微胶囊具有一定的热稳定性;HMP微胶囊显著降低了贮存过程中油脂的POV值与TBA值,有效延缓了玉米油的氧化速度;HMP微胶囊在整个模拟消化阶段的游离脂肪酸(FFA)释放量为92.67%,且在肠消化阶段释放更多的FFA,表明微胶囊化对芯材的释放起到了缓释作用。这项研究显示,HMP与海藻酸钠和壳聚糖复合后,是可以用于微胶囊制备及保护生物活性物质,为HMP的乳化应用扩展途径。
-
关键词:
- 热处理肌原纤维蛋白(HMP) /
- 海藻酸钠 /
- 玉米油 /
- 微胶囊 /
- 性能表征
Abstract: Myogenic fibrin (MP) extracted from Tilapia (Oreochromis niloticus) after heat treatment (HMP) was explored as a novel encapsulant for microencapsulation of corn oil together with sodium alginate (SA) and chitosan (CS), and its performance was characterized using ultrasonic coalescence. The results showed that at 2.5% sodium alginate, 3.0% HMP content and 30% corn oil, the emulsion had small and uniform particle size with high emulsification stability. The average particle size of microcapsules after ultrasonic recondensation was 88.74±2.60 μm while the encapsulation rate was 82.59%±1.44% under the following conditions: 1.2% CS, SA:CS mass ratio of 1:1, and 5.0% calcium chloride. The microcapsules had irregular shapes and undulating surfaces, and the results of infrared spectroscopy and X-ray diffraction indicated that CS and SA formed the dense shell of microcapsules together with HMP due to electrostatic binding. Results from DSC showed that HMP microcapsules had a degree of thermal stability, and the microencapsulation significantly reduced the POV and TBA values of oil during storage, which effectively slowed down the oxidation process. The release of free fatty acids (FFA) from HMP microcapsules was 92.67% during the whole simulated digestion phase with a greater amount released during the intestinal digestion phase, indicating that microencapsulation had a retarding effect on the release of core material. This study shows that HMP compounded with sodium alginate and chitosan is feasible for microencapsulation and protection of bioactive substances, and hence expanding the applications of HMP microgel particles. -
图 14 储存期间玉米油和微胶囊POV值变化
Figure 14. POV trend of corn oil and microcapsules during storage
注:不同小写字母表示不同样品差异显著(P<0.05),图15同。
表 1 微胶囊的理化性质
Table 1. Physicochemical properties of microcapsules
样品 水分含量
(%)水分活度 包封率
(%)粒径
(μm)润湿时间
(s)溶解度
(%)HMP
微胶囊2.82±0.76 0.19±0.01 82.59±1.44 88.74±2.60 37.00±4.00 6.17±1.76 -
[1] 农业部渔业渔政管理局. 中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2021Fishery and Fishery Administration of the Ministry of Agriculture. China fishery statistics yearbook[M]. Beijing: China Agricultural Publishing House, 2021. [2] 郝淑贤, 李来好, 杨贤庆, 等. 5种罗非鱼营养成分分析及评价[J]. 营养学报,2007(6):614−615. [HAO S X, LI L H, YANG X Q, et al. Analysis and evaluation of nutrient composition of tilapias[J]. Journal of Nutrition,2007(6):614−615. doi: 10.3321/j.issn:0512-7955.2007.06.022 [3] XIONG Y, LI Q, MIAO S, et al. Effect of ultrasound on physicochemical properties of emulsion stabilized by fish myofibrillar protein and xanthan gum[J]. Innovative Food Science & Emerging Technologies,2019,54:225−234. [4] INTARASIRISAWAT R, BENJAKUL S, VISSESSANGUAN W, et al. Skipjack roe protein hydrolysate combined with tannic acid increases the stability of fish oil upon microencapsulation[J]. European Journal of Lipid Science and Technology,2015,117(5):646−656. doi: 10.1002/ejlt.201400247 [5] MORALES-MEDINA R, TAMM F, GUADIX A, et al. Functional and antioxidant properties of hydrolysates of sardine (S. pilchardus) and horse mackerel (T. mediterraneus) for the microencapsulation of fish oil by spray-drying[J]. Food Chemistry,2016,194:1208−1216. doi: 10.1016/j.foodchem.2015.08.122 [6] SHI L, BEAMER S K, YANG H, et al. Micro-emulsification/encapsulation of krill oil by complex coacervation with krill protein isolated using isoelectric solubilization/precipitation[J]. Food Chemistry,2018,244:284−291. doi: 10.1016/j.foodchem.2017.10.050 [7] BAKRY A, HUANG J, ZHAI Y, et al. Myofibrillar protein with κ-or λ-carrageenans as novel shell materials for microencapsulation of tuna oil through complex coacervation[J]. Food Hydrocolloids,2019,96:43−53. doi: 10.1016/j.foodhyd.2019.04.070 [8] LIU R, ZHAO S M, LIU Y M, et al. Effect of pH on the gel properties and secondary structure of fish myosin[J]. Food Chemistry,2010,121(1):196−202. doi: 10.1016/j.foodchem.2009.12.030 [9] 冯雪平. 热处理温度对鲢肌球蛋白结构和凝胶水分影响的研究[D]. 镇江: 江苏大学, 2016: 21−26FENG X P. Effect of the heating temperature on changes of the bighead carp myosin structures and the gel water[D]. Zhenjiang: Jiangsu University, 2016: 21−26. [10] LIU R, ZHAO S M, XIE B J, et al. Contribution of protein conformation and intermolecular bonds to fish and pork gelation properties[J]. Food Hydrocolloids,2011,25(5):898−906. doi: 10.1016/j.foodhyd.2010.08.016 [11] 王正雯, 田宏伟, 周富裕, 等. 加热温度对麻鸭肌原纤维蛋白结构与凝胶特性的影响[J]. 食品科学,2020,41(13):61−68. [WANG Z W, TIAN H W, ZHOU F Y, et al. Effect of heating temperature on the structure and gel properties of duck myofibrillar protein[J]. Food Science,2020,41(13):61−68. doi: 10.7506/spkx1002-6630-20191128-280 [12] 畅鹏, 谢艳英, 王浩, 等. 热处理温度及时间对镜鲤鱼肌原纤维蛋白热聚集行为的影响[J]. 食品科学,2021,42(1):101−107. [CHANG P, XIE Y Y, WANG H, et al. Effects of heat treatment temperature and time on thermal aggregation behavior of myofibrillar proteins from mirror carp (Cyprinus carpio)[J]. Food Science,2021,42(1):101−107. doi: 10.7506/spkx1002-6630-20191213-152 [13] 郑云芳, 李晨, 汪少芸, 等. 热处理对鲈鱼肌原纤维蛋白结构及功能特性的影响[J]. 福州大学学报(自然科学版),2022,50(1):139−146. [ZHENG Y F, LI C, WANG S Y, et al. Study on the relationship between structure and function of myofibrillar protein in Lateolabrax japonicus based on thermal treatment[J]. Journal of Fuzhou University (Natural Science Edition),2022,50(1):139−146. [14] 张桂艳. 食盐和加热对肌原纤维蛋白与Ⅰ型胶原蛋白乳化特性的影响[D]. 郑州: 河南农业大学, 2022ZHENG G Y. Effects of NaCl and heating on emulsifying properties of myofibrillar protein and type I collagen[D]. Zhengzhou: Henan Agricultural University, 2022. [15] 刘成祥, 王力, 苏建辉, 等. 牡丹籽油微胶囊的制备及特性研究[J]. 中国油脂,2016,41(11):12−16. [LIU C X, WANG L, SU J H, et al. Preparation and property of peony seed oil microcapsule[J]. China Oils and Fats,2016,41(11):12−16. doi: 10.3969/j.issn.1003-7969.2016.11.003 [16] 申莉莉. 百里香微胶囊制备及抑菌效果和机理研究[D]. 武汉: 华中农业大学, 2015SHEN L L. Preparation of thyme oil microencapsulation and its antibacterial activity and mechanism study[D]. Wuhan: Huazhong Agricultural University, 2015. [17] 张珊珊. 乳液模板—层层自组装百里香微胶囊制备、缓释和抑菌效果的研究[D]. 武汉: 华中农业大学, 2018ZHANG S S. Preparation of thyme microcapsules by emulsion template layer by layer self assembly method and its controlled release and antibacterial effects research[D]. Wuhan: Huazhong Agricultural University, 2018. [18] 卢艳慧. 牡丹籽油微胶囊化及理化和稳定特性的研究[D]. 济南: 齐鲁工业大学, 2021LU Y H. Study on microencapsulation, physicochemical and stability properties of peony seed oil[D]. Jinan: Qilu University of Technology, 2021. [19] ALCA B, AAAA B, YRS C, et al. Characterization of freeze-dried microencapsulation tuna fish oil with arrowroot starch and maltodextrin[J]. Food Hydrocolloids, 2020, 112. [20] RODRÍGUEZ-RESTREPO Y, GIRALDO G, RODRÍGUEZ-BARONA S. Solubility as a fundamental variable in the characterization of wall material by spray drying of food components: Application to microencapsulation of Bifidobacterium animalis subsp. lactis[J]. Journal of Food Process Engineering,2017,40(6):12557. doi: 10.1111/jfpe.12557 [21] FUCHS M, TURCHIULI C, BOHIN M, et al. Encapsulation of oil in powder using spray drying and fluidised bed agglomeration[J]. Journal of Food Engineering,2006,75(1):27−35. doi: 10.1016/j.jfoodeng.2005.03.047 [22] 罗文涛, 王姿颐, 彭彬倩, 等. 奇亚籽油微胶囊的制备[J]. 食品与发酵工业,2020,46(11):210−215. [LUO W T, WANG Z Y, PENG B Q, et al. Preparation of chia seed oil microcapsule[J]. Food and Fermentation Industries,2020,46(11):210−215. doi: 10.13995/j.cnki.11-1802/ts.022577 [23] YANG X, GAO N, HU L, et al. Development and evaluation of novel microcapsules containing poppy-seed oil using complex coacervation[J]. Journal of Food Engineering,2015,161(9):87−93. [24] TATAR F, TUNÇ M T, DERVISOGLU M, et al. Evaluation of hemicellulose as a coating material with gum arabic for food microencapsulation[J]. Food Research International,2014,57:168−175. doi: 10.1016/j.foodres.2014.01.022 [25] RODRÍGUEZ-CARPENA J G, MORCUENDE D, ESTÉVEZ M. Avocado by-products as inhibitors of color deterioration and lipid and protein oxidation in raw porcine patties subjected to chilled storage[J]. Meat science,2011,89(2):166−173. doi: 10.1016/j.meatsci.2011.04.013 [26] KOSARAJU S, WEERAKKODY R, AUGUSTIN M. In vitro evaluation of hydrocolloid-based encapsulated fish oil[J]. Food Hydrocolloids,2009,23(5):1413−1419. doi: 10.1016/j.foodhyd.2008.10.009 [27] ĐORĐEVIĆ V, BALANČ B, BELŠČAK-CVITANOVIĆ A, et al. Trends in encapsulation technologies for delivery of food bioactive compounds[J]. Food Engineering Reviews,2015,7(4):452−490. doi: 10.1007/s12393-014-9106-7 [28] VELASCO J, DOBARGANES M, MÁRQUEZ-RUIZ G. Oxidation of free and encapsulated oil fractions in dried microencapsulated fish oils[J]. Grasasy Aceites,2000,51(6):439−446. [29] KLAYPRADIT W, HUANG Y. Fish oil encapsulation with chitosan using ultrasonic atomizer[J]. LWT-Food Science and Technology,2008,41(6):1133−1139. doi: 10.1016/j.lwt.2007.06.014 [30] CHEW S, TAN C, NYAM K. Microencapsulation of refined kenaf (Hibiscus cannabinus L.) seed oil by spray drying using β-cyclodextrin/gum arabic/sodium caseinate[J]. Journal of Food Engineering,2018,237:78−85. doi: 10.1016/j.jfoodeng.2018.05.016 [31] 李一喆. 橘皮油微胶囊制备及其理化性质研究[D]. 大连: 大连理工大学, 2020LI Y Z. Research on the microencapsulated mandarin oil preparation technology and the physicochemical property of the microcapsule[D]. Dalian: Dalian University of Technology, 2020. [32] LIN D Q et al. Peptide/protein hydrolyses and their derivatives: Their role as emulsifying agents for enhancement of physical and oxidative stability of emulsions[J]. Trends in Food Science & Technology,2022,129:11−24. [33] DIMA C, PĂTRAŞCU L, CANTARAGIU A, et al. The kinetics of the swelling process and the release mechanisms of Coriandrum sativum L. essential oil from chitosan/alginate/inulin microcapsules[J]. Food Chemistry,2016,195:39−48. doi: 10.1016/j.foodchem.2015.05.044 [34] SANTOS M, BOZZA F, THOMAZINI M, et al. Microencapsulation of xylitol by double emulsion followed by complex coacervation[J]. Food Chemistry,2015,171:32−39. doi: 10.1016/j.foodchem.2014.08.093 [35] DA CRUZ M, DAGOSTIN J, PERUSSELLO C, et al. Assessment of physicochemical characteristics, thermal stability and release profile of ascorbic acid microcapsules obtained by complex coacervation[J]. Food Hydrocolloids,2019,87:71−82. doi: 10.1016/j.foodhyd.2018.07.043 [36] SARAVANAN M, RAO K P. Pectin-gelatin and alginate-gelatin complex coacervation for controlled drug delivery: Influence of anionic polysaccharides and drugs being encapsulated on physicochemical properties of microcapsules[J]. Carbohydrate Polymers,2010,80(3):808−816. doi: 10.1016/j.carbpol.2009.12.036 [37] EZHILARASI P, INDRANI D, JENA B S, et al. Freeze drying technique for microencapsulation of Garcinia fruit extract and its effect on bread quality[J]. Journal of Food Engineering,2013,117(4):513−520. doi: 10.1016/j.jfoodeng.2013.01.009 [38] RAJAM R, KARTHIK P, PARTHASARATHI S, et al. Effect of whey protein-alginate wall systems on survival of microencapsulated Lactobacillus plantarum in simulated gastrointestinal conditions[J]. Journal of Functional Foods,2012,4(4):891−898. doi: 10.1016/j.jff.2012.06.006 [39] LAWRIE G, KEEN I, DREW B, et al. Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS[J]. Biomacromolecules,2007,8(8):2533−2541. doi: 10.1021/bm070014y [40] HO Y, MI F, SUNG H, et al. Heparin-functionalized chitosan-alginate scaffolds for controlled release of growth factor[J]. International Journal of Pharmaceutics,2009,376(1-2):69−75. doi: 10.1016/j.ijpharm.2009.04.048 [41] LI Z, RAMAY H, HAUCH K, et al. Chitosan-alginate hybrid scaffolds for bone tissue engineering[J]. Biomaterials,2005,26(18):3919−3928. doi: 10.1016/j.biomaterials.2004.09.062 [42] KANG Y, LEE Y, KIM Y, et al. Characterization and storage stability of chlorophylls microencapsulated in different combination of gum Arabic and maltodextrin[J]. Food Chemistry,2019,272:337−346. doi: 10.1016/j.foodchem.2018.08.063 [43] CAVALU S, PROKISCH J, LASLO V, et al. Preparation, structural characterisation and release study of novel hybrid microspheres entrapping nanoselenium, produced by green synthesis[J]. IET Nanobiotechnology,2017,11(4):426−432. doi: 10.1049/iet-nbt.2016.0107 [44] VENKATESAN J, LEE J, KANG D, et al. Antimicrobial and anticancer activities of porous chitosan-alginate biosynthesized silver nanoparticles[J]. International Journal of Biological Macromolecules,2017,98:515−525. doi: 10.1016/j.ijbiomac.2017.01.120 [45] SONG J, JIANG L, PENG H, et al. Microcapsule prepared by extruding starch and procyanidins inhibited protein oxidation and improved quality of chicken sausages[J]. LWT-Food Science and Technology,2022,154:112617. doi: 10.1016/j.lwt.2021.112617 [46] 廖腾飞. 用于乳液分离的壳聚糖/海藻酸钠复合海绵的制备与性能研究[D]. 武汉: 武汉工程大学, 2022LIAO T F. Preparation and properties of chitosan/sodium alginate composite sponge for lotion separation[D]. Wuhan: Wuhan University of Engineering, 2022. [47] BAN Z, ZHANG J, LI L, et al. Ginger essential oil-based microencapsulation as an efficient delivery system for the improvement of jujube (Ziziphus jujuba Mill.) fruit quality[J]. Food Chemistry,2020,306:125628. doi: 10.1016/j.foodchem.2019.125628 [48] HASANI S, OJAGH S M, GHORBANI M. Nanoencapsulation of lemon essential oil in Chitosan-Hicap system. Part 1: Study on its physical and structural characteristics[J]. International Journal of Biological Macromolecules,2018,115:143−151. doi: 10.1016/j.ijbiomac.2018.04.038 [49] SARMENTO B, FERREIRA D, VEIGA F, et al. Characterization of insulin-loaded alginate nanoparticles produced by ionotropic pre-gelation through dsc and ftir studies[J]. Carbohydrate Polymers,2006,66(1):1−7. doi: 10.1016/j.carbpol.2006.02.008 [50] MITRA B, RINNAN Å, RUIZ-CARRASCAL J. Tracking hydrophobicity state, aggregation behaviour and structural modifications of pork proteins under the influence of assorted heat treatments[J]. Food Research International,2017,101:266−273. doi: 10.1016/j.foodres.2017.09.027 [51] 薛艾莲. 不同干燥处理的板栗粉品质及老化改善研究[D]. 重庆: 西南大学, 2022XUE A L. Study on the quality and aging improvement of chestnut powder under different drying treatments[D]. Chongqing: Southwest University, 2022. [52] PAN J, LI Y, CHEN K, et al. Enhanced physical and antimicrobial properties of alginate/chitosan composite aerogels based on electrostatic interactions and noncovalent crosslinking[J]. Carbohydrate Polymers,2021,266:118102. doi: 10.1016/j.carbpol.2021.118102 [53] 郝乾有, 侯利霞. 煎炸不同含水量食材对玉米油理化指标和维生素E含量变化影响的研究[J]. 粮食与食品工业,2016,23(4):5. [HAO Q Y, HOU L X. Study on the influence of frying food materials with different water content on the changes of physicochemical indexes and vitamin E content of corn oil[J]. Food and Food Industry,2016,23(4):5. [54] 王花花. 基于微胶囊化技术的精油-多酚生物活性膜的制备及其应用[D]. 长春: 吉林大学, 2022WANG H H. Preparation and application of essential oil-polyphenol bioactive membrane based on microencapsulation technology[D]. Changchun: Jilin University, 2022. [55] 王帝, 张海娇, 冯晓梅, 等. 南极磷虾油纳米复合微胶囊制备、表征及其性质研究[J]. 食品科技,2022,47(7):236−242. [WANG D, ZHANG H J, FENG X M, et al. Preparation, characterization and properties of Antarctic krill oil nanocomposite microcapsules[J]. Food Science and Technology,2022,47(7):236−242. doi: 10.3969/j.issn.1005-9989.2022.7.spkj202207035 [56] 王军, 王忠合, 骆宝. 热处理对猪肉中蛋白质体外消化率及5-羟甲基糠醛形成的影响[J]. 食品工业科技,2017,38(16):5. [WANG J, WANG Z H, LUO B. Effect of heating treatment on in vitro digestibility of protein and 5-hydroxymethylfurfural formation in pork meat[J]. Science and Technology of Food Industry,2017,38(16):5. doi: 10.13386/j.issn1002-0306.2017.16.016 -