Research Progress on Nanoparticles of Flavonoids Based on Natural Macromolecules
-
摘要: 黄酮类化合物是存在于天然食品中一类重要的多酚类化合物,在食品、药品、保健品和化妆品等行业具有极大的应用潜力。然而黄酮类化合物却普遍因为自身的溶解度低、稳定性和渗透性差,导致其生物利用度差,因而限制了其在食品中的应用。利用纳米技术,以天然生物大分子为基质制备黄酮类化合物的纳米颗粒,进而改善黄酮类化合物的理化性质,是一种很有前途的策略。本文综合近年来国内外研究,简单介绍了黄酮类化合物的结构与性质,在此基础上,例举了多种蛋白质和多糖基质的纳米颗粒及相关的研究成果,讨论其结合机理和适用性,并展望黄酮类化合物纳米颗粒在食品行业中应用的发展前景。旨在为黄酮类化合物天然大分子纳米颗粒的开发利用提供理论基础和依据。Abstract: Flavonoids are an important group of polyphenolic compounds found in natural foods, showing great potential for the usage in food, pharmaceutical, nutraceutical, and cosmetic industries. Nevertheless, flavonoids are generally limited in their potential application in food industry due to their low solubility, poor stability and permeability, resulting in poor bioavailability. It is a promising strategy to use nanotechnology to prepare nanoparticles of flavonoids based on natural biological macromolecules and thus improve the physicochemical properties of flavonoids. Recent researches at home and abroad are comprehensive analyzed in this paper, and the structure and properties of flavonoids are briefly described. On this basis, examples of nanoparticles of various protein and polysaccharide matrices and related research results are presented in this paper to discuss their binding mechanisms and applicability. The development of flavonoid nanoparticles for applications in the food industry is also envisaged. The objective of this study is to provide a theoretical basis and rationale for the development and utilization of natural macromolecular nanoparticles of flavonoids.
-
Key words:
- flavonoids /
- natural macromolecules /
- nanocarriers /
- stability /
- bioavailability
-
表 1 基于天然大分子的纳米颗粒对黄酮类化合物的运载效果
Table 1. Effect of nanocarriers based on natural macromolecules on the delivery of flavonoids
材料 纳米颗粒 运载物质
(溶解度)[30,80–82]粒径(nm) 制备方法 应用效果 文献 乳清蛋白 β-Lg纳米颗粒 AC 129.13~351.85 去溶剂法 AC包封率达77%,纳米颗粒提升了AC的热稳定性和在体外模拟消化实验中的稳定性 [41] 乳清蛋白浓缩物纳米颗粒 柑橘皮提取物 189.8 离子交联法 纳米颗粒能控制黄酮类化合物的释放,并在体外模拟消化条件下保持其抗氧化活性 [42] 乳清蛋白纳米颗粒 大豆异黄酮 54.09~59.96 乳化蒸发法 封装提高了大豆异黄酮的稳定性、抗氧化活性和生物
可及性[43] 明胶 明胶纳米颗粒 GEN(9.54)、ICA(185) 257~392 两步去溶剂法 纳米颗粒能有效的提升并在室温下保持黄酮类化合物的生物活性 [46] 明胶纳米颗粒 儿茶素 <200 混合 保护儿茶素的抗氧化活性,还能保护明胶免受
胰蛋白酶的降解[47] 明胶纳米颗粒 原花青素 22~138 混合 原花青素的抗氧化活性得到保护,在体外模拟消化中
可保持稳定[48] 酪蛋白 β-酪蛋白胶束 NAR(17.85) 28 酪蛋白自组装特性和酶促交联 NAR的包封率达89.7%,NAR在交联胶束的释放速度较慢,
并且显示出对胃蛋白酶活性的部分抗性,在模拟胃液中
NAR的释放被延缓[53] 酪蛋白纳米颗粒 QUE(0.529) 200 酪蛋白的自组
装特性包封率大于80%,纳米颗粒中的QUE口服时血浆中药物水平显著提升,相对生物利用度为溶液中的9倍 [54] 玉米醇溶蛋白 玉米醇溶蛋白-酪蛋白酸盐纳米颗粒 DMY(3710) 206.4 去溶剂法 DMY的包封率达90.2%,纳米颗粒显著提高了DMY的稳定性和在模拟消化液中的扩散速度,相较于混悬液的生物利用度提高了1.95倍 [57] 玉米醇溶蛋白纳米颗粒 QUE(0.529) 300 去溶剂法 QUE的包封率达80.7%,纳米颗粒提高了QUE的生物利用率,在动物实验中能持续提供高水平的QUE [58] 玉米醇溶蛋白纳米颗粒 橙子提取物 159.26 纳米沉淀法 该纳米颗粒具有高抗氧化能力,具有正的Zeta电位,研究人员认为这能促进其被细胞摄取。 [59] 壳聚糖 壳聚糖纳米颗粒 NAR(17.85) 407.47 离子凝胶法 封装在纳米颗粒中的NAR纳米颗粒在抗氧化、自由基清除活性和抗癌活性等方面均优于游离NAR [64] 壳聚糖纳米颗粒 P. alkekengi L提取物 167 离子凝胶法 在纳米颗粒中,提取物的稳定性及其抗氧化性能得到了提高 [65] 海藻酸盐/壳聚糖纳米颗粒 QUE(0.529) 172 ~254 离子凝胶法 QUE的包封率达82.4%,运载系统显著增强了QUE从纳米颗粒中释放的持续性,在酸性介质中稳定 [66] 淀粉 木薯淀粉纳米颗粒 MY(1.39) 55.27 高速射流 吸附MY的纳米颗粒具有生物相容性且无毒,在模拟消化液中能持续释放活性物质,其对自由基的清除效率得到了提升 [69] 藜麦淀粉纳米颗粒 芦丁(660) 107 超声处理 芦丁的包封率约64%,体外的模拟消化实验中,纳米颗粒能有效控制芦丁的释放,增加其生物利用度,显著提高其体外抗氧化活性 [71] 玉米淀粉纳米颗粒 222 马铃薯淀粉 QUE(0.529) 137.8 纳米沉淀法 三种纳米颗粒中QUE的抗氧化活性都得到了提升,其中马铃薯淀粉纳米颗粒负载率最高、提升效果最好,其次是豌豆淀粉,玉米淀粉的则最差,这可能是不同来源淀粉中支链淀粉含量的差异造成的 [72] 豌豆淀粉 165.3 玉米淀粉 214.3 藜麦淀粉纳米颗粒 QUE(0.529) 166.25 纳米沉淀法 QUE的储存稳定性和抗氧化活性得到了提升,QUE的存在由于抑制了淀粉酶的活性,减少了淀粉纳米颗粒的酶解 [73] 果胶 柑橘果胶纳米颗粒 柑橘皮提取物 271.2 离子凝胶法 纳米颗粒的包封提高了控释能力,且能使黄酮类化合物更容易被肠道吸收,并提升了其抗氧化活性 [78] 柑橘果胶纳米颗粒 ICA(185) 594~667 混合 ICA的生物可及性和稳定性都得到了显著改善 [79] 注:表中溶解度指纯该运载物质在298.15 K下水中的摩尔分数溶解度,单位为10−8 mol/mol。 -
[1] 王雪, 乔博, 张健鑫, 等. 黄酮类化合物的应用研究进展[J]. 中国食品添加剂,2020,31(4):159−163. [WANG X, QIAO B, ZHANG J, et al. Study progress of application of flavonoids[J]. China Food Additives,2020,31(4):159−163. doi: 10.19804/j.issn1006-2513.2020.04.020 [2] 刘婷, 刘芳, 陈亮, 等. 植物黄酮类化合物在化妆品功效应用中的研究进展[J]. 广东化工,2020,47(9):105−107. [LIU T, LIU F, CHEN L, et al. Research progress of plant flavonoids in the application of cosmetics[J]. Guangdong Chemical Industry,2020,47(9):105−107. doi: 10.3969/j.issn.1007-1865.2020.09.046 [3] CHEN L, CAO H, HUANG Q, et al. Absorption, metabolism and bioavailability of flavonoids: A review[J]. Critical Reviews in Food Science and Nutrition,2022,62(28):7730−7742. doi: 10.1080/10408398.2021.1917508 [4] HE X, DENG H, HWANG H M. The current application of nanotechnology in food and agriculture[J]. Journal of Food and Drug Analysis,2019,27(1):1−21. doi: 10.1016/j.jfda.2018.12.002 [5] HE X, HWANG H M. Nanotechnology in food science: Functionality, applicability, and safety assessment[J]. Journal of Food and Drug Analysis,2016,24(4):671−681. doi: 10.1016/j.jfda.2016.06.001 [6] HSIEH D S, LU H C, CHEN C C, et al. The preparation and characterization of gold-conjugated polyphenol nanoparticles as a novel delivery system[J]. International Journal of Nanomedicine,2012,7:1623−1633. [7] ARRIAGADA F, GÜNTHER G, MORALES J. Nanoantioxidant-based silica particles as flavonoid carrier for drug delivery applications[J]. Pharmaceutics,2020,12(4):302. doi: 10.3390/pharmaceutics12040302 [8] JACOB J, HAPONIUK J T, THOMAS S, et al. Biopolymer based nanomaterials in drug delivery systems: A review[J]. Materials Today Chemistry,2018,9:43−55. doi: 10.1016/j.mtchem.2018.05.002 [9] HU B, LIU X, ZHANG C, et al. Food macromolecule based nanodelivery systems for enhancing the bioavailability of polyphenols[J]. Journal of Food and Drug Analysis,2017,25(1):3−15. doi: 10.1016/j.jfda.2016.11.004 [10] SAMPATHKUMAR K, TAN K X, LOO S C J. Developing nano-delivery systems for agriculture and food applications with nature-derived polymers[J]. IScience,2020,23(5):101055. doi: 10.1016/j.isci.2020.101055 [11] PANCHE A N, DIWAN A D, CHANDRA S R. Flavonoids: An overview[J]. Journal of Nutritional Science,2016,5(E47):1−15. [12] SERAFINI M, PELUSO I, RAGUZZINI A. Flavonoids as anti-inflammatory agents[J]. Proceedings of the Nutrition Society,2010,69(3):273−278. doi: 10.1017/S002966511000162X [13] ABOTALEB M, SAMUEL S M, VARGHESE E, et al. Flavonoids in cancer and apoptosis[J]. Cancers,2019,11(1):28. [14] BIRT D F, HENDRICH S, WANG W. Dietary agents in cancer prevention: Flavonoids and isoflavonoids[J]. Pharmacology & Therapeutics,2001,90(2):157−177. [15] HERTOG M G L, FESKENS E J M, KROMHOUT D, et al. Dietary antioxidant flavonoids and risk of coronary heart disease: The Zutphen elderly study[J]. The Lancet,1993,342(8878):1007−1011. doi: 10.1016/0140-6736(93)92876-U [16] CIUMĂRNEAN L, MILACIU M V, RUNCAN O, et al. The effects of flavonoids in cardiovascular diseases[J]. Molecules,2020,25(18):4320. doi: 10.3390/molecules25184320 [17] MAHER P. The potential of flavonoids for the treatment of neurodegenerative diseases[J]. International Journal of Molecular Sciences,2019,20(12):3056. doi: 10.3390/ijms20123056 [18] BADSHAH S L, FAISAL S, MUHAMMAD A, et al. Antiviral activities of flavonoids[J]. Biomedicine and Pharmacotherapy,2021,140:111596. doi: 10.1016/j.biopha.2021.111596 [19] RUSSO M, MOCCIA S, SPAGNUOLO C, et al. Roles of flavonoids against coronavirus infection[J]. Chemico-Biological Interactions,2020,328:109211. doi: 10.1016/j.cbi.2020.109211 [20] VAN DE WIER B, KOEK G H, BAST A, et al. The potential of flavonoids in the treatment of non-alcoholic fatty liver disease[J]. Critical Reviews in Food Science and Nutrition,2017,57(4):834−855. doi: 10.1080/10408398.2014.952399 [21] CORCORAN M P, MCKAY D L, BLUMBERG J B. Flavonoid basics: Chemistry, sources, mechanisms of action, and safety[J]. Journal of Nutrition in Gerontology and Geriatrics,2012,31(3):176−189. doi: 10.1080/21551197.2012.698219 [22] SHEN N, WANG T, GAN Q, et al. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity[J]. Food Chemistry,2022,383:132531. doi: 10.1016/j.foodchem.2022.132531 [23] GARCÍA-LAFUENTE A, GUILLAMÓN E, VILLARES A, et al. Flavonoids as anti-inflammatory agents: Implications in cancer and cardiovascular disease[J]. Inflammation Research,2009,58(9):537−552. doi: 10.1007/s00011-009-0037-3 [24] CHUN O K, CHUNG S J, SONG W O. Estimated dietary flavonoid intake and major food sources of U. S. adults[J]. The Journal of Nutrition,2007,137(5):1244−1252. doi: 10.1093/jn/137.5.1244 [25] JUN S, SHIN S, JOUNG H. Estimation of dietary flavonoid intake and major food sources of Korean adults[J]. British Journal of Nutrition,2016,115(3):480−489. doi: 10.1017/S0007114515004006 [26] ZHAO J, YANG J, XIE Y. Improvement strategies for the oral bioavailability of poorly water-soluble flavonoids: An overview[J]. International Journal of Pharmaceutics,2019,570:118642. doi: 10.1016/j.ijpharm.2019.118642 [27] CHUANG S Y, LIN Y K, LIN C F, et al. Elucidating the skin delivery of aglycone and glycoside flavonoids: How the structures affect cutaneous absorption[J]. Nutrients,2017,9(12):1304. doi: 10.3390/nu9121304 [28] YAO Y, LIN G, XIE Y, et al. Preformulation studies of myricetin: a natural antioxidant flavonoid[J]. Die Pharmazie-An International Journal of Pharmaceutical Sciences,2014,69(1):19−26. [29] DANG Y, LIN G, XIE Y, et al. Quantitative determination of myricetin in rat plasma by ultra performance liquid chromatography tandem mass spectrometry and its absolute bioavailability[J]. Drug Research,2014,64(10):516−522. [30] ZHANG H, WANG M, CHEN L, et al. Structure-solubility relationships and thermodynamic aspects of solubility of some flavonoids in the solvents modeling biological media[J]. Journal of Molecular Liquids,2017,225:439−445. doi: 10.1016/j.molliq.2016.11.036 [31] 刘钰, 曹亚楠, 彭镰心, 等. 加工方式对苦荞中黄酮类化合物的影响研究进展[J]. 食品工业科技, 2021, 42(15): 351−357.LIU Y, CAO Y, PENG L, et al. Research progress on the effects of processing methods of flavonoids in tartary buckwheat[J], Science and Technology of Food Industry, 2021, 42(15): 351−357. [32] BIESAGA M. Influence of extraction methods on stability of flavonoids[J]. Journal of Chromatography A,2011,1218(18):2505−2512. doi: 10.1016/j.chroma.2011.02.059 [33] QIAO L, SUN Y, CHEN R, et al. Sonochemical effects on 14 flavonoids common in citrus: Relation to stability[J]. Plos One,2014,9(2):e87766. doi: 10.1371/journal.pone.0087766 [34] CHAABAN H, IOANNOU I, CHEBIL L, et al. Effect of heat processing on thermal stability and antioxidant activity of six flavonoids[J]. Journal of Food Processing and Preservation,2017,41(5):e13203. doi: 10.1111/jfpp.13203 [35] XIANG D, WANG C, WANG W, et al. Gastrointestinal stability of dihydromyricetin, myricetin, and myricitrin: An in vitro investigation[J]. International Journal of Food Sciences and Nutrition,2017,68(6):704−711. doi: 10.1080/09637486.2016.1276518 [36] ROSS J A, KASUM C M. Dietary flavonoids: Bioavailability, metabolic effects, and safety[J]. Annual Review of Nutrition,2002,22:19−34. doi: 10.1146/annurev.nutr.22.111401.144957 [37] FANG Y, CAO W, XIA M, et al. Study of structure and permeability relationship of flavonoids in Caco-2 cells[J]. Nutrients,2017,9(12):1301. doi: 10.3390/nu9121301 [38] TIAN X J, YANG X W, YANG X, et al. Studies of intestinal permeability of 36 flavonoids using Caco-2 cell monolayer model[J]. International Journal of Pharmaceutics,2009,367(1):58−64. [39] EZZAT H M, ELNAGGAR Y S R, ABDALLAH O Y. Improved oral bioavailability of the anticancer drug catechin using chitosomes: Design,in-vitro appraisal and in-vivo studies[J]. International Journal of Pharmaceutics,2019,565:488−498. doi: 10.1016/j.ijpharm.2019.05.034 [40] HA H K, KIM J W, LEE M R, et al. Cellular uptake and cytotoxicity of β-lactoglobulin nanoparticles: The effects of particle size and surface charge[J]. Asian-Australasian Journal of Animal Sciences,2015,28(3):420−427. doi: 10.5713/ajas.14.0761 [41] SALAH M, MANSOUR M, ZOGONA D, et al. Nanoencapsulation of anthocyanins-loaded β-lactoglobulin nanoparticles: Characterization, stability, and bioavailability in vitro[J]. Food Research International,2020,137:109635. doi: 10.1016/j.foodres.2020.109635 [42] HU Y, KOU G, CHEN Q, et al. Protection and delivery of mandarin (Citrus reticulata Blanco) peel extracts by encapsulation of whey protein concentrate nanoparticles[J]. LWT,2019,99:24−33. doi: 10.1016/j.lwt.2018.09.044 [43] LIU Q, SUN Y, CHENG J, et al. Development of whey protein nanoparticles as carriers to deliver soy isoflavones[J]. LWT,2022,155:112953. doi: 10.1016/j.lwt.2021.112953 [44] REN S, JIMÉNEZ-FLORES R, GIUSTI M M. The interactions between anthocyanin and whey protein: A review[J]. Comprehensive Reviews in Food Science and Food Safety,2021,20(6):5992−6011. doi: 10.1111/1541-4337.12854 [45] HAUG I J, DRAGET K I. Gelatin[M]//Handbook of hydrocolloids. Woodhead Publishing, 2009: 142−163. [46] SONG X, GAN K, QIN S, et al. Preparation and characterization of general-purpose gelatin-based co-loading flavonoids nano-core structure[J]. Scientific Reports,2019,9(1):6365. doi: 10.1038/s41598-019-42909-0 [47] CHEN Y C, YU S H, TSAI G J, et al. Novel technology for the preparation of self-assembled catechin/gelatin nanoparticles and their characterization[J]. Journal of Agricultural and Food Chemistry,2010,58(11):6728−6734. doi: 10.1021/jf1005116 [48] CARMELO-LUNA F J, MENDOZA-WILSON A M, RAMOS-CLAMONT M G, et al. Synthesis and experimental/computational characterization of sorghum procyanidins–gelatin nanoparticles[J]. Bioorganic & Medicinal Chemistry,2021,42:116240. [49] LIN D, XIAO L, WEN Y, et al. Comparison of apple polyphenol-gelatin binary complex and apple polyphenol-gelatin-pectin ternary complex: Antioxidant and structural characterization[J]. LWT,2021,148:111740. doi: 10.1016/j.lwt.2021.111740 [50] ZHAO Y, SUN Z. Effects of gelatin-polyphenol and gelatin-genipin cross-linking on the structure of gelatin hydrogels[J]. International Journal of Food Properties,2017,20(sup3):S2822−S2832. doi: 10.1080/10942912.2017.1381111 [51] DE KRUIF C G, HUPPERTZ T, URBAN V S, et al. Casein micelles and their internal structure[J]. Advances in Colloid and Interface Science,2012,171-172:36−52. doi: 10.1016/j.cis.2012.01.002 [52] LI M, FOKKINK R, NI Y, et al. Bovine beta-casein micelles as delivery systems for hydrophobic flavonoids[J]. Food Hydrocolloids,2019,96:653−662. doi: 10.1016/j.foodhyd.2019.06.005 [53] LI M, KEMBAREN R, NI Y, et al. Effect of enzymatic cross-linking of naringenin-loaded β-casein micelles on their release properties and fate in vitro digestion[J]. Food Chemistry,2021,352:129400. doi: 10.1016/j.foodchem.2021.129400 [54] PEÑALVA R, ESPARZA I, MORALES-GRACIA J, et al. Casein nanoparticles in combination with 2-hydroxypropyl-β-cyclodextrin improves the oral bioavailability of quercetin[J]. International Journal of Pharmaceutics,2019,570:118652. doi: 10.1016/j.ijpharm.2019.118652 [55] PACHECO A F C, NUNES N M, DE PAULA H M C, et al. β-Casein monomers as potential flavonoids nanocarriers: Thermodynamics and kinetics of β-casein-naringin binding by fluorescence spectroscopy and surface plasmon resonance[J]. International Dairy Journal,2020,108:104728. doi: 10.1016/j.idairyj.2020.104728 [56] 葛思彤, 贾睿, 刘回民, 等. 玉米醇溶蛋白基纳米颗粒的制备及应用研究进展[J]. 食品科学, 2021, 42(15): 285-292.GE S T, JIA R, LIU H M, et al. Progress in preparation and application of zein-based nanoparticles[J], Food Science, 2021, 42(15): 285-292. [57] SUN C C, SU H, ZHENG G D, et al. Fabrication and characterization of dihydromyricetin encapsulated zein-caseinate nanoparticles and its bioavailability in rat[J]. Food Chemistry,2020,330:127245. doi: 10.1016/j.foodchem.2020.127245 [58] PENALVA R, GONZÁLEZ-NAVARRO C J, GAMAZO C, et al. Zein nanoparticles for oral delivery of quercetin: Pharmacokinetic studies and preventive anti-inflammatory effects in a mouse model of endotoxemia[J]. Nanomedicine:Nanotechnology, Biology, and Medicine,2017,13(1):103−110. doi: 10.1016/j.nano.2016.08.033 [59] LUQUE-ALCARAZ A G, VELAZQUEZ-ANTILLÓN M, HERNÁNDEZ-TÉLLEZ C N, et al. Antioxidant effect of nanoparticles composed of zein and orange (Citrus sinensis) extract obtained by ultrasound-assisted extraction[J]. Materials,2022,15(14):4838. doi: 10.3390/ma15144838 [60] LI R, HUANG L, ZHANG Z, et al. Integrated multispectroscopic analysis and molecular docking analyses of the structure-affinity relationship and mechanism of the interaction of flavonoids with zein[J]. Food Chemistry,2022,386:132839. doi: 10.1016/j.foodchem.2022.132839 [61] 中华人民共和国国家卫生和计划生育委员会. GB 29941-2013 食品安全国家标准 食品添加剂 脱乙酰甲壳素(壳聚糖)[S]. 北京: 中国标准出版社.The State Health and Family Planning Commission of the People’s Republic of China. GB 29941-2013 National food safety standard. Food additive. Deacetylated chitin (Chitosan)[S]. Beijing: China Standards Press. [62] SONIN D, POCHKAEVA E, ZHURAVSKII S, et al. Biological safety and biodistribution of chitosan nanoparticles[J]. Nanomaterials,2020,10(4):810. doi: 10.3390/nano10040810 [63] CALVO P, REMUÑÁN-LÓPEZ C, VILA-JATO J L, et al. Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers[J]. Journal of Applied Polymer Science,1997,63(1):125−132. doi: 10.1002/(SICI)1097-4628(19970103)63:1<125::AID-APP13>3.0.CO;2-4 [64] KUMAR S P, BIRUNDHA K, KAVERI K, et al. Antioxidant studies of chitosan nanoparticles containing naringenin and their cytotoxicity effects in lung cancer cells[J]. International Journal of Biological Macromolecules,2015,78:87−95. doi: 10.1016/j.ijbiomac.2015.03.045 [65] MAHMOUDI R, TAJALI ARDAKANI M, HAJIPOUR VERDOM B, et al. Chitosan nanoparticles containing Physalis alkekengi-L extract: Preparation, optimization and their antioxidant activity[J]. Bulletin of Materials Science,2019,42(3):131. doi: 10.1007/s12034-019-1815-3 [66] NALINI T, BASHA S K, MOHAMED SADIQ A M, et al. Development and characterization of alginate/chitosan nanoparticulate system for hydrophobic drug encapsulation[J]. Journal of Drug Delivery Science and Technology,2019,52:65−72. doi: 10.1016/j.jddst.2019.04.002 [67] PEDROSO-SANTANA S, FLEITAS-SALAZAR N. Ionotropic gelation method in the synthesis of nanoparticles/microparticles for biomedical purposes[J]. Polymer International,2020,69(5):443−447. doi: 10.1002/pi.5970 [68] CAMPELO P H, SANT’ANA A S, PEDROSA SILVA CLERICI M T. Starch nanoparticles: Production methods, structure, and properties for food applications[J]. Current Opinion in Food Science,2020,33:136−140. doi: 10.1016/j.cofs.2020.04.007 [69] XIA W, ZHENG B, LI T, et al. Fabrication, characterization and evaluation of myricetin adsorption onto starch nanoparticles[J]. Carbohydrate Polymers,2020,250:116848. doi: 10.1016/j.carbpol.2020.116848 [70] XIA W, HE D, FU Y, et al. Advanced technology for nanostarches preparation by high speed jet and its mechanism analysis[J]. Carbohydrate Polymers,2017,176:127−134. doi: 10.1016/j.carbpol.2017.08.072 [71] REMANAN M K, ZHU F. Encapsulation of rutin using quinoa and maize starch nanoparticles[J]. Food Chemistry,2021,353:128534. doi: 10.1016/j.foodchem.2020.128534 [72] FARRAG Y, IDE W, MONTERO B, et al. Preparation of starch nanoparticles loaded with quercetin using nanoprecipitation technique[J]. International Journal of Biological Macromolecules,2018,114:426−433. doi: 10.1016/j.ijbiomac.2018.03.134 [73] JIANG F, DU C, ZHAO N, et al. Preparation and characterization of quinoa starch nanoparticles as quercetin carriers[J]. Food Chemistry,2022,369:130895. doi: 10.1016/j.foodchem.2021.130895 [74] MAXWELL E G, BELSHAW N J, WALDRON K W, et al. Pectin–An emerging new bioactive food polysaccharide[J]. Trends in Food Science & Technology,2012,24(2):64−73. [75] DE MOURA F A, MACAGNAN F T, DOS SANTOS L R, et al. Characterization and physicochemical properties of pectins extracted from agroindustrial by-products[J]. Journal of Food Science and Technology,2017,54(10):3111−3117. doi: 10.1007/s13197-017-2747-9 [76] FATHI M, MARTÍN Á, MCCLEMENTS D J. Nanoencapsulation of food ingredients using carbohydrate based delivery systems[J]. Trends in Food Science & Technology,2014,39(1):18−39. [77] YU C Y, WANG Y M, LI N M, et al. In vitro and in vivo evaluation of pectin-based nanoparticles for hepatocellular carcinoma drug chemotherapy[J]. Molecular Pharmaceutics,2014,11(2):638−644. doi: 10.1021/mp400412c [78] HU Y, ZHANG W, KE Z, et al. In vitro release and antioxidant activity of Satsuma mandarin (Citrus reticulata Blanco cv. unshiu) peel flavonoids encapsulated by pectin nanoparticles[J]. International Journal of Food Science & Technology,2017,52(11):2362−2373. [79] CHEN Y, JIANG Y, WEN L, et al. Structure, stability and bioaccessibility of icaritin-loaded pectin nanoparticle[J]. Food Hydrocolloids,2022,129:107663. doi: 10.1016/j.foodhyd.2022.107663 [80] WU J G, GE J, ZHANG Y P, et al. Solubility of genistein in water, methanol, ethanol, propan-2-ol, 1-butanol, and ethyl acetate from (280 to 333) K[J]. Journal of Chemical & Engineering Data,2010,55(11):5286−5288. [81] WANG N, FU Q, YANG G. Determination of the solubility, dissolution enthalpy and entropy of icariin in water, ethanol, and methanol[J]. Fluid Phase Equilibria,2012,324:41−43. doi: 10.1016/j.fluid.2012.03.022 [82] ZI J, PENG B, YAN W. Solubilities of rutin in eight solvents at T=283.15, 298.15, 313.15, 323.15, and 333.15 K[J]. Fluid Phase Equilibria,2007,261(1):111−114. [83] 中华人民共和国卫生部. 中华人民共和国卫生部公告2010年第17号[J]. 中国食品卫生杂志,2011,23(1):84. [Ministry of Health, PRC. Announcement No. 17, 2010 of the Ministry of Health of the People’s Republic of China[J]. Chinese Journal of Food Hygiene,2011,23(1):84. [84] 中华人民共和国国家卫生和计划生育委员会. 关于批准番茄籽油等9种新食品原料的公告[J]. 中国食品卫生杂志,2015,27(1):84. [The State Health and Family Planning Commission of the People’s Republic of China. Announcement on the approval of nine new food ingredients including tomato seed oil[J]. Chinese Journal of Food Hygiene,2015,27(1):84. [85] ҪIÇEK S S. Structure-dependent activity of plant-derived sweeteners[J]. Molecules,2020,25(8):1946. doi: 10.3390/molecules25081946 [86] 邢金锋, 王稳航. 天然色素的来源、分类、稳定化及其在可食包装中的应用[J]. 食品与发酵工业,2021,47(13):286−295. [XING J, WANG W. Source, classification, and stabilization of natural pigments and its application in edible packaging[J]. Food and Fermentation Industries,2021,47(13):286−295. doi: 10.13995/j.cnki.11-1802/ts.025546 [87] 李光辉, 孙思胜, 高雪丽, 等. 天然产物对食源性致病菌的抑菌机制研究进展[J]. 食品安全质量检测学报,2018,9(4):694−698. [LI G, SUN S, GAO X, et al. Research progress on the antibacterial mechanism of natural products to foodborne pathogenic bacteria[J]. Journal of Food Safety & Quality,2018,9(4):694−698. doi: 10.3969/j.issn.2095-0381.2018.04.002 [88] 王金梅, 韦翠兰, 欧阳颖. 一种水溶性的槲皮素纳米颗粒及其制备方法: CN201710717633.8[P]. 2017-12-15.WANG J, WEI C, OUYANG Y. A water-soluble quercetin nanoparticles and its preparation method: CN201710717633.8[P]. 2017-12-15. [89] 丁传波, 刘文丛, 郑毅男, 等. 一种花旗松素纳米微粒的制备及其在保健用品和食品中的应用: CN202010464381.4[P]. 2020-09-25.DING C, LIU W, ZHENG Y, et al. Preparation of a nano particle of Douglas fir and its application in health products and food: CN202010464381.4[P]. 2020-09-25. -