Research Progress on Preparation and Application of Protein Nanoparticles in Food Field
-
摘要: 蛋白质纳米颗粒即纳米级的蛋白质颗粒,由于蛋白质本身具有良好的生物相容性和生物降解性,与合成纳米材料相比,蛋白质纳米颗粒在生物活性物质的包埋和传递方面具有极大优势,近年来逐渐成为研究的热点。本文首先介绍了目前主要用于食品工业的动物蛋白纳米颗粒和植物蛋白纳米颗粒的常见类型,并对蛋白质纳米颗粒的常用制备方法进行了归纳总结,包括反溶剂沉淀法、盐析法、纳米喷雾干燥法、静电纺丝法、超临界流体法和热致聚集法等,分析了各种方法的原理及在安全性、适用性、产品质量和操作复杂程度等方面的优缺点,然后对蛋白质纳米颗粒在功能性食品的生产、食品的活性包装和食品Pickering乳液的稳定三个方面的应用进行了综述,最后归纳了蛋白质纳米颗粒应用安全性方面的研究现状,以期为蛋白质纳米颗粒的进一步研究提供理论参考。Abstract: Protein nanoparticles are nano-sized protein particles. Compared with synthetic nanomaterials, protein nanoparticles have great advantages in the embedding and transmission of bioactive substances due to their good biocompatibility and biodegradability. In recent years, protein nanoparticles have gradually become a research hotspot. In this paper, the common types of animal protein nanoparticles and plant protein nanoparticles which are currently mainly used in food industry are firstly introduced, and the common preparation methods of protein nanoparticles are also summarized, including anti-solvent precipitation method, salting-out method, nano spray drying method, electrospray method, supercritical fluid method and thermally induced aggregation method. The mechanisms of various methods as well as their advantages and disadvantages in terms of safety, applicability, product quality and operation complexity are analyzed. In addition, the applications of protein nanoparticles in the production of functional foods, the active packaging of foods and the stabilization of food Pickering emulsions are reviewed. Finally, the research status on application safety of protein nanoparticles is concluded. It is hoped to provide theoretical reference for further research on protein nanoparticles.
-
Key words:
- nanoparticle /
- protein /
- preparation technology /
- functional food /
- active packaging /
- Pickering emulsion
-
表 1 蛋白质纳米颗粒的制备方法、性质、粒径及应用
Table 1. Preparation, properties, size and application of protein nanoparticles
-
[1] 邓苏梦, 王健, 邹立强, 等. 食品级纳米粒子的合成及其应用[J]. 食品工业科技,2017(7):365−370. [DENG Sumeng, WANG Jian, ZOU Liqiang, et al. Synthesis and applications of nanoparticles in food[J]. Science and Technology of Food Industry,2017(7):365−370. doi: 10.13386/j.issn1002-0306.2017.07.062 [2] 刘晓飞, 李祥, 连洁, 等. 淀粉纳米颗粒的制备及应用研究进展[J]. 食品工业科技,2022,43(21):480−486. [LIU Xiaofei, LI Xiang, LIAN Jie, et al. Research progress on preparation and application of starch nanoparticles[J]. Science and Technology of Food Industry,2022,43(21):480−486. [3] ELZOGHBY A O, ELGOHARY M M, KAMEL N M. Implications of protein-and peptide-based nanoparticles as potential vehicles for anticancer drugs[J]. Advances in Protein Chemistry and Structural Biology,2015,98:169−221. [4] ANWAR M, MUHAMMAD F, AKHTAR B. Biodegradable nanoparticles as drug delivery devices[J]. Journal of Drug Delivery Science and Technology,2021,64:102638. doi: 10.1016/j.jddst.2021.102638 [5] 葛思彤, 贾睿, 刘回民, 等. 玉米醇溶蛋白基纳米颗粒的制备及应用研究进展[J]. 食品科学,2021,42(15):285−292. [GE Sitong, JIA Rui, LIU Huimin, et al. Progress in preparation and application of zein-based nanoparticles[J]. Food Science,2021,42(15):285−292. doi: 10.7506/spkx1002-6630-20210127-297 [6] VERMA M L, DHANYA B S, RANI V, et al. Carbohydrate and protein based biopolymeric nanoparticles: Current status and biotechnological applications[J]. International Journal of Biological Macromolecules,2020,154:390−412. doi: 10.1016/j.ijbiomac.2020.03.105 [7] 钱雪丽, 陶宁萍, 王锡昌. 食品中纳米颗粒的制备、表征及其应用的研究进展[J]. 食品工业科技,2018,39(16):313−317, 324. [QIAN Xueli, TAO Ningping, WANG Xichang. Research progress on the preparation, characterization and application of nanoparticles in food[J]. Science and Technology of Food Industry,2018,39(16):313−317, 324. doi: 10.13386/j.issn1002-0306.2018.16.056 [8] PATHAKOTI K, MANUBOLU M, HWANG H M. Nanostructures: Current uses and future applications in food science[J]. Journal of Food and Drug Analysis,2017,25(2):245−253. doi: 10.1016/j.jfda.2017.02.004 [9] 花春阳, 李卓烨, 金鹏, 等. 香芹酚-酪蛋白纳米颗粒制备及其对枇杷果实炭疽病的抑制作用[J]. 食品科学,2020,41(15):282−287. [HUA Chunyang, LI Zhuoye, JIN Peng, et al. Preparation of carvacrol-loaded casein nanoparticles and its inhibitory activity against colletotrichum acutatum on loquat fruit (Eriobotrya japonica)[J]. Food Science,2020,41(15):282−287. doi: 10.7506/spkx1002-6630-20190625-312 [10] LEE E J, KHAN S A, PARK J K, et al. Studies on the characteristics of drug-loaded gelatin nanoparticles prepared by nanoprecipitation[J]. Bioprocess and Biosystems Engineering,2012,35(1):297−307. [11] LÓPEZ-RUBIO A, LAGARON J M. Whey protein capsules obtained through electrospraying for the encapsulation of bioactives[J]. Innovative Food Science & Emerging Technologies,2012,13:200−206. [12] JAIN I. Crosslinking albumin for drug release from spray dried particles[D]. Louisville: University of Louisville, 2014. [13] LAMMEL A S, HU X, PARK S H, et al. Controlling silk fibroin particle features for drug delivery[J]. Biomaterials,2010,31(16):4583−4591. doi: 10.1016/j.biomaterials.2010.02.024 [14] MADALENA D A, RAMOS Ó L, PEREIRA R N, et al. In vitro digestion and stability assessment of β-lactoglobulin/riboflavin nanostructures[J]. Food Hydrocolloids,2016,58:89−97. doi: 10.1016/j.foodhyd.2016.02.015 [15] 汪晶晶, 祁冰洁, 李宏漫, 等. 含姜黄素奶茶凝珠的研制及特性研究[J]. 现代食品,2020(24):120−124. [WANG Jingjing, QI Bingjie, LI Hongman, et al. Study on the preparation and characteristics of curcumin milk tea beads[J]. Modern Food,2020(24):120−124. doi: 10.16736/j.cnki.cn41-1434/ts.2020.24.034 [16] GULFAM M, KIM J, LEE J M, et al. Anticancer drug-loaded gliadin nanoparticles induce apoptosis in breast cancer cells[J]. Langmuir,2012,28(21):8216−8223. doi: 10.1021/la300691n [17] SHAO Y, TANG C H. Gel-like pea protein Pickering emulsions at pH3 as a potential intestine-targeted and sustained-release delivery system for β-carotene[J]. Food Research International,2016,79(Jan.):64−72. [18] KIANFAR E. Protein nanoparticles in drug delivery: Animal protein, plant proteins and protein cages, albumin nanoparticles[J]. Journal of Nanobiotechnology,2021,19(159):1−32. [19] AMOABEDINY G, HAGHIRALSADAT F, NADERINEZHAD S, et al. Overview of preparation methods of polymeric and lipid-based (niosome, solid lipid, liposome) nanoparticles: A comprehensive review[J]. International Journal of Polymeric Materials and Polymeric Biomaterials,2018,67(6):383−400. doi: 10.1080/00914037.2017.1332623 [20] RIVAS C J M, TARHINI M, BADRI W, et al. Nanoprecipitation process: From encapsulation to drug delivery[J]. International Journal of Pharmaceutics,2017,532(1):66−81. doi: 10.1016/j.ijpharm.2017.08.064 [21] CHEN J J, ZHENG J K, MCCLEMENTS D J, et al. Tangeretin-loaded protein nanoparticles fabricated from zein/β-lactoglobulin: Preparation, characterization, and functional performance[J]. Food Chemistry,2014,158:466−472. doi: 10.1016/j.foodchem.2014.03.003 [22] JOYE I J, MCCLEMENTS D J. Production of nanoparticles by anti-solvent precipitation for use in food systems[J]. Trends in Food Science & Technology,2013,34(2):109−123. [23] DAVIDOV-PARDO G, JOYE I J, MCCLEMENTS D J. Food-grade protein-based nanoparticles and microparticles for bioactive delivery: Fabrication, characterization, and utilization[J]. Advances in Protein Chemistry and Structural Biology,2015,98:293−325. [24] ZHAO Z, LI Y, XIE M B. Silk fibroin-based nanoparticles for drug delivery[J]. International Journal of Molecular Sciences,2015,16(3):4880−4903. doi: 10.3390/ijms16034880 [25] ANNISH J, SINGH S K, ARYA S K, et al. Protein nanoparticles: Promising platforms for drug delivery applications[J]. ACS Biomaterials Science & Engineering, 2018, 4(12). [26] LEE S H, HENG D, NG W K, et al. Nano spray drying: A novel method for preparing protein nanoparticles for protein therapy[J]. International Journal of Pharmaceutics,2011,403(1-2):192−200. doi: 10.1016/j.ijpharm.2010.10.012 [27] JAFARI S M, ARPAGAUS C, CERQUEIRA M A, et al. Nano spray drying of food ingredients; materials, processing and applications[J]. Trends in Food Science & Technology,2021,109:632−646. [28] JAYAPRAKASH P, MAUDHUIT A, GAIANI C, et al. Encapsulation of bioactive compounds using competitive emerging techniques: Electrospraying, nano spray drying, and electrostatic spray drying[J]. Journal of Food Engineering,2023,339:4−6. [29] ARPAGAUS C, COLLENBERG A, RÜTTI D, et al. Nano spray drying for encapsulation of pharmaceuticals[J]. International Journal of Pharmaceutics,2018,546(1-2):194−214. doi: 10.1016/j.ijpharm.2018.05.037 [30] WANG W, WANG Y J, WANG D Q. Dual effects of Tween 80 on protein stability[J]. International Journal of Pharmaceutics,2008,347(1-2):31−38. doi: 10.1016/j.ijpharm.2007.06.042 [31] SALAMA R O, TRAINI D, CHAN H K, et al. Preparation and evaluation of controlled release microparticles for respiratory protein therapy[J]. Journal of Pharmaceutical Sciences,2009,98(8):2709−2717. [32] LANGRISH T A G, MARQUEZ N, KOTA K. An investigation and quantitative assessment of particle shape in milk powders from a laboratory-scale spray dryer[J]. Drying Technology,2006,24(12):1619−1630. doi: 10.1080/07373930601031133 [33] WANG J F, ZHANG Y T, ZHANG W, et al. Research progress of electrostatic spray technology over the last two decades[J]. Journal of Energy Engineering,2021,147(4):03121003. doi: 10.1061/(ASCE)EY.1943-7897.0000763 [34] 苗笑雨, 谷大海, 程志斌, 等. 超临界流体萃取技术及其在食品工业中的应用[J]. 食品研究与开发,2018,39(5):209−218. [MIAO Xiaoyu, GU Dahai, CHENG Zhibin, et al. Applying the technology of supercritical fluid extraction in food industry[J]. Food Research and Development,2018,39(5):209−218. doi: 10.3969/j.issn.1005-6521.2018.05.038 [35] SUO Q L, HE W Z, HUANG Y C, et al. Micronization of the natural pigment-bixin by the SEDS process through prefilming atomization[J]. Powder Technology,2005,154(2-3):110−115. doi: 10.1016/j.powtec.2005.05.001 [36] KANG Y Q, YIN G F, OUYANG P, et al. Preparation of PLLA/PLGA microparticles using solution enhanced dispersion by supercritical fluids (SEDS)[J]. Journal of Colloid and Interface Science,2008,322(1):87−94. doi: 10.1016/j.jcis.2008.02.031 [37] ZHAO Z, CHEN A Z, LI Y, et al. Fabrication of silk fibroin nanoparticles for controlled drug delivery[J]. Journal of Nanoparticle Research,2012,14(4):1−10. [38] 林长春, 孙丽君, 赵亚平. 超临界二氧化碳抗溶剂法制备玉米蛋白纳米颗粒[J]. 食品工业科技,2010,31(9):216−219, 222. [LIN Changchun, SUN Lijun, ZHAO Yaping. Preparation of zein nanoparticles by supercritical CO2 anti-solvent precipitation[J]. Science and Technology of Food Industry,2010,31(9):216−219, 222. doi: 10.13386/j.issn1002-0306.2010.09.069 [39] 王琳, 许大壮, 代奇轩, 等. 基于超临界流体技术制备药物制剂的研究进展[J]. 科学通报,2021,66(10):1187−1194. [WANG Lin, XU Dazhuang, DAI Qixuan, et al. Research progress in the preparation of pharmaceutical formulations based on supercritical fluid technology[J]. Science Bulletin,2021,66(10):1187−1194. [40] 姚磊, 杨秋萍. 大豆蛋白纳米粒子的制备及其在食品领域的应用进展[J]. 大豆科技,2019(3):32−37. [YAO Lei, YANG Qiuping. Progress in soy protein nanoparticles preparation and its application in food industry[J]. Soybean Bulletin,2019(3):32−37. doi: 10.3969/j.issn.1674-3547.2019.03.006 [41] DESETA M L, SPONTON O E, ERBEN M, et al. Nanocomplexes based on egg white protein nanoparticles and bioactive compounds as antifungal edible coatings to extend bread shelf life[J]. Food Research International,2021,148:110597. doi: 10.1016/j.foodres.2021.110597 [42] XIAO J, GONZALEZ A J P, HUANG Q R. Kafirin nanoparticles-stabilized pickering emulsions: Microstructure and rheological behavior[J]. Food Hydrocolloids,2016,54:30−39. doi: 10.1016/j.foodhyd.2015.09.008 [43] 姚惠芳, 董学艳, 景浩. 牛血清白蛋白与花青素纳米颗粒的特性及稳定性研究[J]. 食品科学,2014,35(1):1−6. [YAO Huifang, DONG Xueyan, JING Hao. Characteristics of bovine serum albumin-anthocyanin bioactive nanoparticles[J]. Food Science,2014,35(1):1−6. doi: 10.7506/spkx1002-6630-201401001 [44] 李媛, 傅玉颖, 李泽亚, 等. 乳清分离蛋白纤维-多糖复合纳米颗粒负载β-胡萝卜素特性研究[J]. 中国食品学报,2021,21(12):25−32. [LI Yuan, FU Yuying, LI Zeya, et al. Studies on characteristic of β-carotene loaded by whey protein nanofibrils-polysaccharide composite nanoparticles[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(12):25−32. [45] CHUACHAROEN T, SABLIOV C M. The potential of zein nanoparticles to protect entrapped β-carotene in the presence of milk under simulated gastrointestinal (GI) conditions[J]. LWT-Food Science and Technology,2016,72:302−309. doi: 10.1016/j.lwt.2016.05.006 [46] FANG Z X, ZHAO Y Y, WARNER R D, et al. Active and intelligent packaging in meat industry[J]. Trends in Food Science & Technology,2017,61:60−71. [47] YAN X J, MA C C, CUI F Z, et al. Protein-stabilized pickering emulsions: Formation, stability, properties, and applications in foods[J]. Trends in Food Science & Technology,2020,103:293−303. [48] 鲍莹, 宋雨婷, 刘清玲, 等. 蛋白质颗粒稳定的Pickering乳液及其在食品中的应用[J]. 粮食与油脂,2022,35(7):5−9. [BAO Ying, SONG Yuting, LIU Qingling, et al. Protein granule stabilized Pickering emulsion and its application in food[J]. Cereals & Oils,2022,35(7):5−9. doi: 10.3969/j.issn.1008-9578.2022.07.002 [49] ZENG T, WU Z L, ZHU J Y, et al. Development of antioxidant Pickering high internal phase emulsions (HIPEs) stabilized by protein/polysaccharide hybrid particles as potential alternative for PHOs[J]. Food Chemistry,2017,231:122−130. doi: 10.1016/j.foodchem.2017.03.116 [50] BERTON C, ROPERS M-H L N, GUIBERT D, et al. Modifications of interfacial proteins in oil-in-water emulsions prior to and during lipid oxidation[J]. Journal of Agricultural and Food Chemistry,2012,60(35):8659−8671. doi: 10.1021/jf300490w [51] 蓝妙传, 李媛, 马良, 等. 高内相Pickering乳液替代脂肪对肉糜制品特性的影响[J]. 食品科学,2021,42(18):28−36. [LAN Miaochuan, LI Yuan, MA Liang, et al. Effect of high internal phase pickering emulsion as a fat substitute on the quality characteristics of minced meat products[J]. Food Science,2021,42(18):28−36. doi: 10.7506/spkx1002-6630-20200615-195 [52] MWANGI W W, HUI P L, LIANG E L, et al. Food-grade pickering emulsions for encapsulation and delivery of bioactives[J]. Trends in Food Science & Technology,2020,100:320−332. [53] FRENZEL M, KROLAK E, WAGNER A E, et al. Physicochemical properties of WPI coated liposomes serving as stable transporters in a real food matrix[J]. LWT-Food Science and Technology,2015,63(1):527−534. doi: 10.1016/j.lwt.2015.03.055 [54] YI J, LAM T I, YOKOYAMA W, et al. Beta-carotene encapsulated in food protein nanoparticles reduces peroxyl radical oxidation in Caco-2 cells[J]. Food Hydrocolloids,2015,43:31−40. doi: 10.1016/j.foodhyd.2014.04.028 [55] YU H, PARK J Y, CHANG W K, et al. An overview of nanotechnology in food science: Preparative methods, practical applications, and safety[J]. Journal of Chemistry,2018,2018(15):1−10. [56] MCCLEMENTS D J, XIAO H. Is nano safe in foods? Establishing the factors impacting the gastrointestinal fate and toxicity of organic and inorganic food-grade nanoparticles[J]. Npj Science of Food,2017,1(1):6. doi: 10.1038/s41538-017-0005-1 [57] MILLER III E R, PASTOR-BARRIUSO R, DALAL D, et al. Meta-analysis: High-dosage vitamin E supplementation may increase all-cause mortality[J]. Annals of Internal Medicine,2005,142(1):37−46. doi: 10.7326/0003-4819-142-1-200501040-00110 -