• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020

牡蛎源肽锌纳米粒体外胃肠道消化稳定性及作用机制

惠森 朱旭浩 刘小玲 张自然

惠森,朱旭浩,刘小玲,等. 牡蛎源肽锌纳米粒体外胃肠道消化稳定性及作用机制[J]. 食品工业科技,2023,44(11):38−44. doi:  10.13386/j.issn1002-0306.2022110206
引用本文: 惠森,朱旭浩,刘小玲,等. 牡蛎源肽锌纳米粒体外胃肠道消化稳定性及作用机制[J]. 食品工业科技,2023,44(11):38−44. doi:  10.13386/j.issn1002-0306.2022110206
HUI Sen, ZHU Xuhao, LIU Xiaoling, et al. Stability and Mechanism of Oyster Peptide Hydrolysate Zinc Nanoparticles during in Vitro Gastrointestinal Digestion[J]. Science and Technology of Food Industry, 2023, 44(11): 38−44. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022110206
Citation: HUI Sen, ZHU Xuhao, LIU Xiaoling, et al. Stability and Mechanism of Oyster Peptide Hydrolysate Zinc Nanoparticles during in Vitro Gastrointestinal Digestion[J]. Science and Technology of Food Industry, 2023, 44(11): 38−44. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022110206

牡蛎源肽锌纳米粒体外胃肠道消化稳定性及作用机制

doi: 10.13386/j.issn1002-0306.2022110206
基金项目: 广西自然科学基金项目(2022GXNSFBA035555);高层次人才科研启动经费项目(2021KYQD09);中青年项目(2020KY10030)。
详细信息
    作者简介:

    惠森(1998−),女,硕士研究生,研究方向:食品工程,E-mail:huisen1234@163.com

    通讯作者:

    张自然(1984−),女,博士,讲师,研究方向:食物组分相互作用,E-mail:ziranzhang1984@126.com

  • 中图分类号: TS254

Stability and Mechanism of Oyster Peptide Hydrolysate Zinc Nanoparticles during in Vitro Gastrointestinal Digestion

  • 摘要: 本研究旨在探究体外模拟消化对牡蛎源肽锌纳米粒(OPH-Zn)稳定性及其结构的影响,揭示OPH-Zn在胃肠道消化过程中的动态变化规律。采用各种光谱仪(紫外、红外和荧光)、电镜(扫描和透射)以及粒度仪测定模拟消化液中OPH-Zn的锌含量、表面形貌、二级结构以及粒径分布变化。研究发现,OPH-Zn总锌含量高达228.89±2.53 mg/g;在模拟胃液消化过程中,OPH-Zn和ZnSO4对照中可溶性锌含量变化不大,且两个样品无显著差异(P>0.05);转为模拟肠液消化时,OPH-Zn和ZnSO4的锌溶解性分别降低了28.07%和55.31%(P<0.05),与ZnSO4相比,OPH-Zn可溶性锌含量显著高于ZnSO4P<0.05);光谱分析发现,OPH-Zn在模拟胃液和肠液中保持相对稳定,但在由胃液过渡到肠液时,Zn2+与肽键中氧原子和氮原子的配位作用发生变化,电镜结果显示不同消化程度的OPH-Zn表面微观结构和颗粒大小也存在一定差异。结果表明,OPH-Zn在模拟胃肠道消化中具有一定的稳定性,是一种有商业潜力的补锌剂,同时其结构变化的规律也为肽锌纳米粒的开发和后续研究提供了一定的研究基础。
  • 图  1  体外模拟胃肠道消化过程中牡蛎源肽锌纳米粒的锌含量变化

    Figure  1.  Changes in zinc content of oyster-derived peptide zinc nanoparticles during in vitro simulated gastrointestinal digestion

    注:不同的小写字母表示差异性显著(P<0.05)。

    图  2  牡蛎源肽锌纳米粒在不同消化程度下的紫外光谱

    Figure  2.  UV spectra of oyster-derived peptide zinc nanoparticles at different levels of digestion

    注:W 0 min、W 30 min、W 60 min、W 90 min分别表示牡蛎源肽锌纳米粒在胃部消化0、30、60、90 min的消化液;C 0 min、C 30 min、C 60 min、C 90 min、C 150 min分别表示牡蛎源肽锌纳米粒在肠部消化0、30、60、90、150 min的消化液,图3图6同。

    图  3  牡蛎源肽锌纳米粒不同消化程度下的荧光光谱

    Figure  3.  Fluorescence spectra of oyster-derived peptide zinc nanoparticles at different levels of digestion

    图  4  牡蛎源肽锌纳米粒的扫描电镜图

    Figure  4.  Scanning electron microscopy (SEM) of oyster-derived peptide zinc nanoparticles

    注:消化前(A)、胃部消化90 min(B)、肠部消化150 min(C)。

    图  5  牡蛎源肽锌纳米粒的透射电镜图

    Figure  5.  Transmission electron micrographs (TEM) of oyster-derived peptide zinc nanoparticles

    注:胃消化90 min(A)和肠消化0 min(B)、30 min(C)、60 min(D)、90 min(E)、150 min(F)。

    图  6  牡蛎源肽锌纳米粒胃肠道消化动态过程粒径分布图

    Figure  6.  Particle size distribution of oyster-derived peptide zinc nanoparticles during gastrointestinal digestion

    图  7  牡蛎源肽锌纳米粒不同消化程度下的红外光谱

    Figure  7.  Infrared spectra of oyster-derived peptide zinc nanoparticles with different digestion degrees

    注:W 0 min、W 90 min分别表示牡蛎源肽锌纳米粒在胃部消化0、90 min的消化液;C 0 min、C 150 min分别表示牡蛎源肽锌纳米粒在肠部消化0、150 min的消化液;ZnSO4溶液为对照。

  • [1] DEPCIUCH J, SOWA-KUCMA M, NOWAK G, et al. The role of zinc deficiency-induced changes in the phospholipid-protein balance of blood serum in animal depression model by Raman, FTIR and UV-vis spectroscopy[J]. Biomed Pharmacother,2017,89:549−558. doi:  10.1016/j.biopha.2017.01.180
    [2] WANG C, LI B, AO J. Separation and identification of zinc-chelating peptides from sesame protein hydrolysate using IMAC-Zn2+ and LC-MS/MS[J]. Food Chem,2012,134(2):1231−1238. doi:  10.1016/j.foodchem.2012.02.204
    [3] 曹玉惠, 张娟娟, 王再扬, 等. 牡蛎源类蛋白反应修饰肽的分离纯化及肽锌螯合物的结构表征[J]. 高等学校化学学报,2018,39(3):470−475. [CAO Y H, ZHANG J J, WANG Z Y, et al. Separation and identification of oyster peptide modified by plastein reaction and characterization of peptide-zinc complexes[J]. Chemical Journal of Chinese Universities,2018,39(3):470−475. doi:  10.7503/cjcu20170570
    [4] LIU X, WANG Z, YIN F, et al. Zinc-chelating mechanism of sea cucumber (Stichopus japonicus)-derived synthetic peptides[J]. Mar Drugs,2019,17(8):438. doi:  10.3390/md17080438
    [5] 王玉婷, 王志耕, 梅林, 等. 酪蛋白锌螯合工艺优化及其结合位点解[J]. 食品与发酵工业,2016,42(11):142−147. [WANG Y T, WANG Z G, MEI L, et al. Optimization of chelating process parameters of casein zinc and its binding sites analysis[J]. Food and Fermentation Industries,2016,42(11):142−147. doi:  10.13995/j.cnki.11-1802/ts.201611025
    [6] PRASAD A S. Zinc: An antioxidant and anti-inflammatory agent: Role of zinc in degenerative disorders of aging[J]. J Trace Elem Med Biol,2014,28(4):364−371. doi:  10.1016/j.jtemb.2014.07.019
    [7] MIQUEL E, FARRÉ R. Effects and future trends of casein phosphopeptides on zinc bioavailability[J]. Trends in Food Science & Technology,2007,18(3):139−143.
    [8] 王允茹, 蔡秋杏, 张晨晓, 等. 北部湾海区三种常见牡蛎的蛋白质及氨基酸营养分析与评价[J]. 食品工业科技,2022,43(7):310−316. [[WANG Y R, CAI Q X, ZHANG C X, et al. Analysis and evaluation of protein and amino acid nutrition of three common oysters in Beibu Gulf[J]. Science and Technology of Food Industry,2022,43(7):310−316. doi:  10.13386/j.issn1002-0306.2021070302
    [9] CHEN D, LIU Z, HUANG W, et al. Purification and characterisation of a zinc-binding peptide from oyster protein hydrolysate[J]. Journal of Functional Foods,2013,5(2):689−697. doi:  10.1016/j.jff.2013.01.012
    [10] ZHANG Z, ZHOU F, LIU X, et al. Particulate nanocomposite from oyster (Crassostrea rivularis) hydrolysates via zinc chelation improves zinc solubility and peptide activity[J]. Food Chem,2018,258:269−277. doi:  10.1016/j.foodchem.2018.03.030
    [11] LI C, BU G, CHEN F, et al. Preparation and structural characterization of peanut peptide-zinc chelate[J]. CyTA-Journal of Food,2020,18(1):409−416. doi:  10.1080/19476337.2020.1767695
    [12] SUN R, LIU X, YU Y, et al. Preparation process optimization, structural characterization and in vitro digestion stability analysis of Antarctic krill (Euphausia superba) peptides-zinc chelate[J]. Food Chem,2021,340:128056. doi:  10.1016/j.foodchem.2020.128056
    [13] 刘晶晶, 徐蕴桃, 朱晨慧, 等. 河蚬抗氧化肽—锌螯合物的制备及结构表征[J]. 食品与机械,2020,36(10):28−31, 48. [LIU J J, XUN Y T, ZHU C H, et al. Preparation and structural characterization of zinc-binding antioxidant peptides from Corbicula fluminea hydrolysate[J]. Food & Machinery,2020,36(10):28−31, 48. doi:  10.13652/j.issn.1003-5788.2020.10.006
    [14] SUN N, CUI P, LIN S, et al. Characterization of sea cucumber (Stichopus japonicus) ovum hydrolysates: Calcium chelation, solubility and absorption into intestinal epithelial cells[J]. J Sci Food Agric,2017,97(13):4604−4611. doi:  10.1002/jsfa.8330
    [15] 柯枭, 胡晓, 杨贤庆, 等. 罗非鱼皮胶原蛋白肽-锌螯合物的制备及结构表征与体外消化分析[J]. 食品与发酵工业,2021,47(14):38−44. [KE X, HU X, YANG X Q, et al. Preparation, structure characterization and in vitro gastrointestinal digestion of tilapia skin collagen peptide-zinc chelate[J]. Food and Fermentation Industries,2021,47(14):38−44. doi:  10.13995/j.cnki.11-1802/ts.026625
    [16] ZHANG Y, NIU Y, LUO Y, et al. Fabrication, characterization and antimicrobial activities of thymol-loaded zein nanoparticles stabilized by sodium caseinate-chitosan hydrochloride double layers[J]. Food Chem,2014,142:269−275. doi:  10.1016/j.foodchem.2013.07.058
    [17] WALCZAK A P, KRAMER E, HENDRIKSEN P J, et al. In vitro gastrointestinal digestion increases the translocation of polystyrene nanoparticles in an in vitro intestinal co-culture model[J]. Nanotoxicology,2015,9(7):886−894. doi:  10.3109/17435390.2014.988664
    [18] 刘艳, 谷瑞增, 贾福怀, 等. 牡蛎肽螯合锌成分分析、结构表征及促细胞增殖作用[J]. 食品工业,2019,40(9):221−224. [LIU Y, GU R Z, JIA F H, et al. Composition analysis, structural characterization and promoting cell proliferation of oyster peptide-zinc chelates[J]. The Food Industry,2019,40(9):221−224.
    [19] 富天昕, 张舒, 盛亚男, 等. 绿豆多肽锌螯合物的制备及其结构与体外消化的分析[J]. 食品科学,2020,41(4):59−66. [FU T X, ZHANG S, SHENG Y N, et al. Preparation, structure and in vitro digestibility of zinc-chelating mung bean peptide[J]. Food Science,2020,41(4):59−66. doi:  10.7506/spkx1002-6630-20190710-137
    [20] LI J, GONG C, WANG Z, et al. Oyster-derived zinc-binding peptide modified by plastein reaction via zinc chelation promotes the intestinal absorption of zinc[J]. Mar Drugs,2019,17(6):341. doi:  10.3390/md17060341
    [21] WANG B, XIE N, LI B. Influence of peptide characteristics on their stability, intestinal transport, and in vitro bioavailability: A review[J]. J Food Biochem,2019,43(1):e12571. doi:  10.1111/jfbc.12571
    [22] CAETANO-SILVA M E, NETTO F M, BERTOLDO-PACHECO M T, et al. Peptide-metal complexes: Obtention and role in increasing bioavailability and decreasing the pro-oxidant effect of minerals[J]. Critical Reviews in Food Science and Nutrition,2021,61(9):1470−1489. doi:  10.1080/10408398.2020.1761770
    [23] ZHAO L, HUANG Q, HUANG S, et al. Novel peptide with a specific calcium-binding capacity from whey protein hydrolysate and the possible chelating mode[J]. J Agric Food Chem,2014,62(42):10274−10282. doi:  10.1021/jf502412f
    [24] WANG Y, LI M, XU X, et al. Formation of protein corona on nanoparticles with digestive enzymes in simulated gastrointestinal fluids[J]. J Agric Food Chem,2019,67(8):2296−2306. doi:  10.1021/acs.jafc.8b05702
    [25] ZHAO L, HUANG S, CAI X, et al. A specific peptide with calcium chelating capacity isolated from whey protein hydrolysate[J]. Journal of Functional Foods,2014,10:46−53. doi:  10.1016/j.jff.2014.05.013
    [26] BEYER R L, HOANG H N, APPLETON T G, et al. Metal clips induce folding of a short unstructured peptide into an alpha-helix via turn conformations in water. Kinetic versus thermodynamic products[J]. Journal of The American Chemical Society,2004,126(46):15096−150105. doi:  10.1021/ja0453782
    [27] CUI P, LIN S, HAN W, et al. The formation mechanism of a sea cucumber ovum derived heptapeptide-calcium nanocomposite and its digestion/absorption behavior[J]. Food Funct,2019,10(12):8240−8249. doi:  10.1039/C9FO01335K
    [28] SONTZ P A, SONG W J, TEZCAN F A. Interfacial metal coordination in engineered protein and peptide assemblies[J]. Curr Opin Chem Biol,2014,19:42−49. doi:  10.1016/j.cbpa.2013.12.013
    [29] CUI P, LIN S, JIN Z, et al. In vitro digestion profile and calcium absorption studies of a sea cucumber ovum derived heptapeptide-calcium complex[J]. Food Funct,2018,9(9):4582−4592. doi:  10.1039/C8FO00910D
    [30] PEREGO S, DEL FAVERO E, DE LUCA P, et al. Calcium bioaccessibility and uptake by human intestinal like cells following in vitro digestion of casein phosphopeptide-calcium aggregates[J]. Food Funct,2015,6(6):1796−1807. doi:  10.1039/C4FO00672K
    [31] CUI P, SUN N, JIANG P, et al. Optimised condition for preparing sea cucumber ovum hydrolysate-calcium complex and its structural analysis[J]. International Journal of Food Science & Technology,2017,52(8):1914−1922.
    [32] GUERIN J, KRIZNIK A, RAMALANJAONA N, et al. Interaction between dietary bioactive peptides of short length and bile salts in submicellar or micellar state[J]. Food Chem,2016,209:114−122. doi:  10.1016/j.foodchem.2016.04.047
    [33] ZHU S, ZHENG Y, HE S, et al. Novel Zn-binding peptide isolated from soy protein hydrolysates: Purification, structure, and digestion[J]. J Agric Food Chem,2021,69(1):483−490. doi:  10.1021/acs.jafc.0c05792
    [34] LIAO W, LAI T, CHEN L, et al. Synthesis and characterization of a walnut peptides-zinc complex and its antiproliferative activity against human breast carcinoma cells through the induction of apoptosis[J]. J Agric Food Chem,2016,64(7):1509−1519. doi:  10.1021/acs.jafc.5b04924
  • 加载中
图(7)
计量
  • 文章访问数:  80
  • HTML全文浏览量:  31
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-21
  • 网络出版日期:  2023-04-19
  • 刊出日期:  2023-06-01

目录

    /

    返回文章
    返回