• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020

根皮素对2型糖尿病肾病小鼠的肾保护作用及机制

王兴红 马永超 孙缦利 李超敏 李海霞

王兴红,马永超,孙缦利,等. 根皮素对2型糖尿病肾病小鼠的肾保护作用及机制[J]. 食品工业科技,2023,44(11):418−426. doi:  10.13386/j.issn1002-0306.2022120211
引用本文: 王兴红,马永超,孙缦利,等. 根皮素对2型糖尿病肾病小鼠的肾保护作用及机制[J]. 食品工业科技,2023,44(11):418−426. doi:  10.13386/j.issn1002-0306.2022120211
WANG Xinghong, MA Yongchao, SUN Manli, et al. Renal-protection Effect and the Potential Mechanism of Phloretin in Mice with Type-2 Diabetic Nephropathy[J]. Science and Technology of Food Industry, 2023, 44(11): 418−426. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022120211
Citation: WANG Xinghong, MA Yongchao, SUN Manli, et al. Renal-protection Effect and the Potential Mechanism of Phloretin in Mice with Type-2 Diabetic Nephropathy[J]. Science and Technology of Food Industry, 2023, 44(11): 418−426. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022120211

根皮素对2型糖尿病肾病小鼠的肾保护作用及机制

doi: 10.13386/j.issn1002-0306.2022120211
基金项目: 河南省高等学校重点科研项目(20B310007,22B550010);河南省重点研发与推广专项(科技攻关)项目(232102310501);河南省科技发展计划项目(科技攻关)(1721023610312);河南省高等学校青年骨干教师培养计划资助项目(2018GGJS258)
详细信息
    作者简介:

    王兴红(1981−),女,硕士,副教授,研究方向:糖尿病肾病发病机制与防治,E-mail:xinghong0124@163.com

    通讯作者:

    马永超(1976−),男,博士,副教授,研究方向:炎症与肿瘤发生,E-mail:13839527381@163.com

  • 中图分类号: TS201.4

Renal-protection Effect and the Potential Mechanism of Phloretin in Mice with Type-2 Diabetic Nephropathy

  • 摘要: 为探究根皮素对2型糖尿病肾病小鼠肾损伤的分子保护作用及潜在机制,将小鼠随机分为正常对照组、糖尿病模型组、阳性药物组(二甲双胍500 mg/kg)、根皮素低、中、高剂量组(100、200、400 mg/kg·d)。造模成功后,各组小鼠灌胃给予相应药物,12周后,观察肾脏肥大指数、肾脏病理形态学变化,测定血尿素氮(BUN)、肌酐(Scr)和尿β2-微球蛋白(β2-MG)、血清白细胞介素-1β(IL-1β)和白细胞介素-18(IL-18)等指标,并检测肾组织丙二醛(MDA)含量、谷胱甘肽过氧化物酶(GSH-Px)活性和转录因子E2相关因子2(Nrf2)/血红素加氧酶-1(HO-1)/核苷酸结合寡聚化结构域样受体蛋白3(NLRP3)通路相关蛋白表达。结果显示:与模型组比较,根皮素中、高剂量组小鼠肾脏肥大指数极显著减小(P<0.01);HE染色和Masson染色见肾小球体积明显减小、系膜增生明显减少,肾小球和肾间质纤维化明显减轻;血BUN、Scr、IL-1β、IL-18和肾组织MDA含量、α-平滑肌肌动蛋白(α-SMA)、胶原蛋白Ι(Collagen Ι)、NLRP3、IL-1β和Gasdermin D(GSDMD)蛋白表达显著降低(P<0.05或P<0.01);肾组织GSH-Px活性、Nrf2、HO-1、钙粘附蛋白-E(E-cadherin)蛋白表达显著升高(P<0.05)。结果表明:根皮素能保护2型糖尿病肾病小鼠肾功能改善肾纤维化,可能与调控Nrf2/HO-1/NLRP3通路改善氧化应激与炎症反应有关。
  • 图  1  根皮素对各组小鼠肾脏病理学的影响(HE染色,200×)

    Figure  1.  Effect of phloretin on renal pathology in mouse (HE staining, 200×)

    注:A:正常对照组;B:糖尿病模型组;C:二甲双胍组;D、E、F:根皮素低、中、高剂量组;图2~图7同。

    图  2  根皮素对各组小鼠肾脏病理学改变的影响(Masson染色,400×)

    Figure  2.  Effect of phloretin on pathological changes of kidney in mouse (Masson stain, 400×)

    注:与正常对照组比较:P<0.05,▲▲P<0.01;与糖尿病模型组比较:*P<0.05,**P<0.01;图3~图7表1~表2同。

    图  3  根皮素对各组小鼠肾脏α-SMA蛋白表达的影响(免疫组化SP法,400×)

    Figure  3.  Effect of phloretin on α- SMA protein expression in mouse kidney (immunohistochemical SP method, 400×)

    图  4  根皮素对各组小鼠肾脏Collagen Ι蛋白表达的影响(免疫组化SP法,400×)

    Figure  4.  Effect of phloretin on Collagen Ι protein expression in mouse kidney (immunohistochemical SP method, 400×)

    图  5  根皮素对各组小鼠肾脏E-cadherin蛋白表达的影响(免疫组化SP法,400×)

    Figure  5.  Effect of phloretin on E-cadherin protein expression in mouse kidney (immunohistochemical SP method, 400×)

    图  6  根皮素对各组小鼠肾脏Nrf2、HO-1蛋白表达的影响

    Figure  6.  Effect of phloretin on Nrf2 and HO-1 protein expression in mouse kidney

    图  7  根皮素对各组小鼠肾脏NLRP3、IL-1β和GSDMD蛋白表达的影响

    Figure  7.  Effect of phloretin on NLRP3, IL-1β and GSDMD protein expression in mouse kidney

    表  1  根皮素对各组小鼠MDA、GSH-Px、BUN和Scr含量的影响

    Table  1.   Effect of phloretin on MDA, GSH-Px, BUN and Scr content of mice in each group

    组别剂量(mg/kg)MDA(μmol/L)GSH-Px(U/mL)BUN(mmol/L)Scr(μmol/L)
    正常对照组组11.13±1.86175.88±19.896.99±0.5642.2±4.0
    糖尿病模型组21.21±4.03▲▲138.13±12.12▲▲16.23±1.4261.7±7.6
    二甲双胍组50014.87±2.43**151.22±12.78*11.87±0.87**51.8±5.1**
    根皮素低剂量组10020.71±2.86139.32±13.7615.34±1.0260.0±7.1
    根皮素中剂量组20014.91±2.66**159.31±14.89*11.04±0.99**50.9±5.5**
    根皮素高剂量组40013.88±2.01**167.88±16.99*10.23±0.98**49.8±4.9**
    下载: 导出CSV

    表  2  根皮素对各组小鼠血清IL-1β、IL-18、肾肥大指数和尿β2-MG含量的影响

    Table  2.   Effect of phloretin on serum IL-1β, IL-18, renal hypertrophy index and urine β2-MG content of mice in each group

    组别剂量(mg/kg)IL-1β(pg/mL)IL-18(ng/mL)肾脏肥大指数(×10−3β2-MG(mg/24 h)
    正常对照组2.24±0.1435.13±2.012.6±0.515.67±2.25
    糖尿病模型组5.67±0.2498.77±6.146.7±0.642.46±8.67
    二甲双胍组5003.36±0.14**52.718±4.89**3.8±0.1**24.11±7.34**
    根皮素低剂量组1005.54±0.2591.67±6.576.1±0.544.21±8.35
    根皮素中剂量组2003.34±0.15**52.718±4.87**3.8±0.3**24.87±7.75**
    根皮素高剂量组4003.21±0.12**49.49±4.77**3.7±0.2**23.23±6.99**
    下载: 导出CSV
  • [1] CHEN Y, LEE K, NI Z, et al. Diabetic kidney disease: Challenges, advances, and opportunities[J]. Kidney Diseases,2020,6(4):215−225. doi:  10.1159/000506634
    [2] SELBY N, TAAL M. An updated overview of diabetic nephropathy: Diagnosis, prognosis, treatment goals and latest guidelines[J]. Diabetes Obes Metab,2020,22:3−15.
    [3] DU L, LI Q, YI H, et al. Gut microbiota-derived metabolites as key actors in type 2 diabetes mellitus[J]. Biomed Pharmacother,2022,149:112839. doi:  10.1016/j.biopha.2022.112839
    [4] 李璞泽. 根皮素缓解小鼠溃疡性结肠炎的肠道微生态机理研究[D]. 新乡: 新乡医学院, 2020.

    LI P Z. The anti-inflammation effect of phloretin on ulcerative colitis mice and its intestinal micro-ecological mechanism[D]. Xinxiang: Xinxiang Medical University, 2020.
    [5] 杨胜楠. 根皮苷和根皮素对HepG2细胞氧化应激损伤的比较[D]. 天津: 天津科技大学, 2019

    YANG S N. Comparison of oxidative stress damage of HepG2 cells between phlorizin and phloretin[D]. Tianjin: Tianjin University of Science & Technology, 2019.
    [6] 黎博. 根皮素对人舌癌Tca8113细胞增殖和凋亡的影响及机制研究[D]. 锦州: 锦州医科大学, 2019

    LI B. Effect and mechanism of phloretin oproliferation and apoptosis of human tongue cancer Tca8113 cells[D]. Jinzhou: Jinzhou Medical University, 2019.
    [7] 李潭, 孙一涵, 李国峰. 根皮素对脂多糖诱导的RAW264.7细胞的体外抗炎作用机制[J]. 中国免疫学杂志,2021,37(7):812−818. [LI T, SUN Y H, LI G F. Anti inflammatory mechanism of phloretin on RAW264.7 cells induced by lipopolysaccharide in vitro[J]. Chin J Immunol,2021,37(7):812−818. doi:  10.3969/j.issn.1000-484X.2021.07.008
    [8] HARDEEP S T, PRANGYA R, ABHISHEK C, et al. Phloretin, as a potent anticancer compound: From chemistry to cellular interactions[J]. Molecules,2022,27(24):8819. doi:  10.3390/molecules27248819
    [9] 夏琛. 根皮素纳米粒子对糖尿病大鼠的肾脏保护作用研究[D]. 杭州: 浙江大学, 2021

    XIA C. Study on the renal protective effect ofphloretin nano particles on diabetic rats[D]. Hangzhou: Zhejiang University, 2021.
    [10] BALAHA M, KANDEEL S, KABEL A. Phloretin either aloneor in combination with duloxetine alleviates the STZ-induced diabetic neuropathy in rats[J]. Biomed Pharmacother,2018,101:821−832. doi:  10.1016/j.biopha.2018.02.135
    [11] TESCH G H. Diabetic nephropathy- is this an immune disorder?[J]. Clinical Science (London, England: 1979),2017,131:2183−2199. doi:  10.1042/CS20160636
    [12] 王兴红, 常陆林, 王桂叶, 等. 槲皮素对2型糖尿病大鼠肾脏肥大的影响机制[J]. 中国中医基础医学杂志,2015,21(10):1248−1250. [WANG X H, CHANG L L, WANG G Y, et al. Influencing mechanism of quercetin on kidney hypertrophy in type 2 diabetic rats[J]. Chinese Journal of Basic Medicine of Traditional Chinese Medicine,2015,21(10):1248−1250. doi:  10.19945/j.cnki.issn.1006-3250.2015.10.023
    [13] 王兴红, 郑亚萍, 孙缦利, 等. 槲皮素对糖尿病大鼠肾脏p38MAPK/NF-κB信号通路的影响[J]. 中药药理与临床,2016,32(1):79−82. [WANG X H, ZHENG Y P, SUN M L, et al. Effect of quercetin on renal p38MAPK/NF-κB signal path in diabetes rats[J]. Pharmacology and Clinics of Chinese Materia Medica,2016,32(1):79−82. doi:  10.13412/j.cnki.zyyl.2016.01.022
    [14] 王晶, 刘艳玲, 刘倩, 等. 尿β2-MG及其miRNA表达水平在慢性肾脏病肾功能评价中的价值研究[J]. 国际检验医学杂志,2020,41(4):500−503. [WANG J, LIU Y L, LIU Q, et al. The value of urine β2-MG and its miRNA expression levels in the evaluation of renal function in chronic kidney disease[J]. Int J lab Med,2020,41(4):500−503. doi:  10.3969/j.issn.1673-4130.2020.04.031
    [15] AL-SAEEDI F J. Mangiferin protect oxidative stress against deoxynivalenol induced damages through Nrf2 signalling pathways in endothelial cells[J]. Clin Exp Pharmacol Physiol,2021,48(3):389−400. doi:  10.1111/1440-1681.13432
    [16] LI J, JIN S Y, BARATI M T, et al. ERK and p38 MAPK inhibition controls NF-E2 degradation and profibrotic signaling in renal proximal tubule cells[J]. Life Sci,2021,287:120092. doi:  10.1016/j.lfs.2021.120092
    [17] KOPEL J, PENA-HERNANDEZ C, NUGENT K. Evolving spectrum of diabetic nephropathy[J]. World Journal of Diabetes,2019,10:269−279. doi:  10.4239/wjd.v10.i5.269
    [18] VEIGA G, ALVES B, PEREZ M, et al. NGAL and SMAD1 gene expression in the early detection of diabetic nephropathy by liquid biopsy[J]. Clin Pathol,2020,73:713−721. doi:  10.1136/jclinpath-2020-206494
    [19] PRISCILA C, GEORGINA H. Macrophage phenotype and fibrosis in diabetic nephropathy[J]. Mol Sci,2020,21(8):2806. doi:  10.3390/ijms21082806
    [20] EL-DAWLA N, SALLAM A, EL-HEFNAWY M, et al. E-cadherin and periostin in early detection and progression of diabetic nephropathy: Epithelial-to-mesenchymal transition[J]. Clin Exp Nephrol,2019,23:1050−1057. doi:  10.1007/s10157-019-01744-3
    [21] SHARMA A, TATE M, MATHEW G, et al. Oxidative stress and NLRP3-inflammasome activity as significant drivers of diabetic cardiovascular complications: Thera-peutic implications[J]. Front Physiol,2018,9:114. doi:  10.3389/fphys.2018.00114
    [22] MA L Y, WU F, SHAO Q Q, et al. Baicalin alleviates oxidative stress and inflammation in diabetic nephropathy via Nrf2 and MAPK signaling pathway[J]. Drug Des Devel Ther,2021,21(15):3207−3221.
    [23] FANG R, HARA H, SAKAI S, et al. Type I interferon signalingregulates activation of the absent in melanoma 2 inflammasomeduring streptococcus pneumoniae infection[J]. Infection and Immunity,2014,82(6):2310−2317. doi:  10.1128/IAI.01572-14
    [24] GONG W, LI J, CHEN Z, et al. Polydatin promotes Nrf2-AREanti-oxidative pathway through activating CKIP-l to resist HG-induced up-regulation of FN and ICAM-1 in GMCs and diabeticmice kidneys[J]. Free Radic Biol Med,2017,106:393−405. doi:  10.1016/j.freeradbiomed.2017.03.003
    [25] HU R, WANG M Q, NI S H, et al. Salidroside ameliorates endothelial inflammation and oxidative stress by regulating the AMPK/NF-κB/NLRP3 signaling pathway in AGEs-induced HUVECs[J]. Eur J Pharmacol,2020,867:172797. doi:  10.1016/j.ejphar.2019.172797
    [26] THORNTON S J, SULLIVAN J, VAN E E, et al. Lifetime benefits of early detection and treatment of diabetic kidney disease[J]. PloS One,2019,14:e0217487. doi:  10.1371/journal.pone.0217487
    [27] 张茹, 曲中原, 杜娟. 葡萄籽原花青素通过 Nrf2/HO-1通路减轻镉诱导的幼龄大鼠认知功能损伤[J]. 中药药理与临床,2021,37(4):32−36. [ZHANG R, QU Z Y, DU J. Proanthocyanidins in grape seeds protects against cadmium-induced cognitive impairment in young rats by regulating Nrf-2/HO-1 pathway[J]. Pharmacology and Clinics of Chinese Materia Medica,2021,37(4):32−36.
    [28] UMANATH K, LEWIS J B. Update on diabetic nephropathy: Core curriculum 2018[J]. Am J Kidney Dis,2018(71):884−895.
    [29] 刘红艳, 乔玉峰, 薛福平. 干预氧化应激通路靶向治疗糖尿病肾病的新进展[J]. 中国免疫学杂志,2020,36(17):2174−2177. [LIU H Y, QIAO Y F, XUE F P. New progress of intervention oxidative stress pathway targeting in treatment ofdiabetic nephropathy[J]. Chin J Immunol,2020,36(17):2174−2177. doi:  10.3969/j.issn.1000-484X.2020.17.026
    [30] HOU Y, LIN S, QIU J, et al. NLRP3 inflammasome negative-ly regulates podocyte autophagy in diabetic nephropathy[J]. Biochemical and Biophysical Research Communications,2020,521(3):791−798. doi:  10.1016/j.bbrc.2019.10.194
    [31] WANG C, GAO Y, ZHANG Z, et al. Ursolic acid protects chondrocytes, exhibits anti-inflammatory properties via regulation of the NF-kappaB/NLRP3 inflammasome pathway andameliorates osteoarthritis[J]. Biomed Pharmacother,2020,130:110568. doi:  10.1016/j.biopha.2020.110568
    [32] 高丝娜, 李英, 迟雁青, 等. 白藜芦醇对糖尿病肾病小鼠肾脏氧化应激及肾组织Nrf2通路蛋白表达的影响[J]. 山东医药,2019,59(11):44−47, 52. [GAO S N, LI Y, CHI Y Q, et al. Effects of resveratrol on oxidative stress and Nrf2 signal pathway expression inkidney of mice with diabetic nephropathy[J]. Shandong Pharmaceutical,2019,59(11):44−47, 52. doi:  10.3969/j.issn.1002-266X.2019.11.011
    [33] HICKEY F B, MARTIN F. Role of the immune system in diabetic kidney disease[J]. Curr Diab Rep,2018(18):20.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  126
  • HTML全文浏览量:  28
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-28
  • 网络出版日期:  2023-04-05
  • 刊出日期:  2023-06-01

目录

    /

    返回文章
    返回