Renal-protection Effect and the Potential Mechanism of Phloretin in Mice with Type-2 Diabetic Nephropathy
-
摘要: 为探究根皮素对2型糖尿病肾病小鼠肾损伤的分子保护作用及潜在机制,将小鼠随机分为正常对照组、糖尿病模型组、阳性药物组(二甲双胍500 mg/kg)、根皮素低、中、高剂量组(100、200、400 mg/kg·d)。造模成功后,各组小鼠灌胃给予相应药物,12周后,观察肾脏肥大指数、肾脏病理形态学变化,测定血尿素氮(BUN)、肌酐(Scr)和尿β2-微球蛋白(β2-MG)、血清白细胞介素-1β(IL-1β)和白细胞介素-18(IL-18)等指标,并检测肾组织丙二醛(MDA)含量、谷胱甘肽过氧化物酶(GSH-Px)活性和转录因子E2相关因子2(Nrf2)/血红素加氧酶-1(HO-1)/核苷酸结合寡聚化结构域样受体蛋白3(NLRP3)通路相关蛋白表达。结果显示:与模型组比较,根皮素中、高剂量组小鼠肾脏肥大指数极显著减小(P<0.01);HE染色和Masson染色见肾小球体积明显减小、系膜增生明显减少,肾小球和肾间质纤维化明显减轻;血BUN、Scr、IL-1β、IL-18和肾组织MDA含量、α-平滑肌肌动蛋白(α-SMA)、胶原蛋白Ι(Collagen Ι)、NLRP3、IL-1β和Gasdermin D(GSDMD)蛋白表达显著降低(P<0.05或P<0.01);肾组织GSH-Px活性、Nrf2、HO-1、钙粘附蛋白-E(E-cadherin)蛋白表达显著升高(P<0.05)。结果表明:根皮素能保护2型糖尿病肾病小鼠肾功能改善肾纤维化,可能与调控Nrf2/HO-1/NLRP3通路改善氧化应激与炎症反应有关。
-
关键词:
- 糖尿病肾病 /
- 根皮素 /
- 转录因子E2相关因子2/血红素加氧酶-1/核苷酸结合寡聚化结构域样受体蛋白3通路 /
- 氧化应激 /
- 炎症
Abstract: To study the protective effect of phloretin against renal injury in mice with type-2 diabetic nephropathy and determine its potential mechanism at the molecular level, mice were randomized into a normal control group, diabetes model group, positive drug group (metformin, 500 mg/kg), and low-, medium-, and high-dose phloretin groups (100, 200, and 400 mg/kg·d, respectively). After successful modeling, mice in each group were administered the corresponding drugs via the intragastric route. Kidney hypertrophy index and renal pathomorphological changes were observed after 12 weeks. Blood urea nitrogen (BUN), serum creatinine (Scr), urine β2-microglobulin, serum interleukin (IL)-1β and IL-18 levels were determined. Malondialdehyde (MDA) level, glutathione peroxidase (GSH-Px) activity, and nuclear factor E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1)/nucleotide binding oligomerization domain-like receptor protein 3 (NLRP3) pathway-related protein expression in renal tissues were also determined. Compared with the model group, the medium- and high-dose phloretin groups showed a significant decrease in the kidney hypertrophy index of mice (P<0.01). An obvious reduction in glomerular volume was determined using Hematoxylin and Eosin staining and Masson staining, and a significant decrease in mesangial proliferation and an apparent alleviation in glomerular and renal interstitial fibrosis were noted. Significant reductions in BUN, Scr, IL-1β, and IL-18 levels in the blood, in MDA levels in renal tissues, and in the protein expression of α-smooth muscle actin, Collagen I, NLRP3, IL-1β, and Gasdermin D were noted (P<0.05 or P<0.01). A significant increase in GSH-Px activity and in the expression of Nrf2, HO-1, and E-cadherin in renal tissues (P<0.05) was also founded. The results indicated that phloretin could protect renal function and alleviate renal fibrosis in mice with type-2 diabetic nephropathy. Its mechanism may be related to the regulation of the Nrf2/HO-1/NLRP3 pathway to improve oxidative stress and alleviate the inflammatory response.-
Key words:
- diabetic nephropathy /
- phloretin /
- Nrf2/HO-1/NLRP3 pathway /
- oxidative stress /
- inflammation
-
表 1 根皮素对各组小鼠MDA、GSH-Px、BUN和Scr含量的影响
Table 1. Effect of phloretin on MDA, GSH-Px, BUN and Scr content of mice in each group
组别 剂量(mg/kg) MDA(μmol/L) GSH-Px(U/mL) BUN(mmol/L) Scr(μmol/L) 正常对照组组 − 11.13±1.86 175.88±19.89 6.99±0.56 42.2±4.0 糖尿病模型组 − 21.21±4.03▲▲ 138.13±12.12▲▲ 16.23±1.42▲ 61.7±7.6▲ 二甲双胍组 500 14.87±2.43** 151.22±12.78* 11.87±0.87** 51.8±5.1** 根皮素低剂量组 100 20.71±2.86 139.32±13.76 15.34±1.02 60.0±7.1 根皮素中剂量组 200 14.91±2.66** 159.31±14.89* 11.04±0.99** 50.9±5.5** 根皮素高剂量组 400 13.88±2.01** 167.88±16.99* 10.23±0.98** 49.8±4.9** 表 2 根皮素对各组小鼠血清IL-1β、IL-18、肾肥大指数和尿β2-MG含量的影响
Table 2. Effect of phloretin on serum IL-1β, IL-18, renal hypertrophy index and urine β2-MG content of mice in each group
组别 剂量(mg/kg) IL-1β(pg/mL) IL-18(ng/mL) 肾脏肥大指数(×10−3) β2-MG(mg/24 h) 正常对照组 − 2.24±0.14 35.13±2.01 2.6±0.5 15.67±2.25 糖尿病模型组 − 5.67±0.24▲ 98.77±6.14▲ 6.7±0.6▲ 42.46±8.67▲ 二甲双胍组 500 3.36±0.14** 52.718±4.89** 3.8±0.1** 24.11±7.34** 根皮素低剂量组 100 5.54±0.25 91.67±6.57 6.1±0.5 44.21±8.35 根皮素中剂量组 200 3.34±0.15** 52.718±4.87** 3.8±0.3** 24.87±7.75** 根皮素高剂量组 400 3.21±0.12** 49.49±4.77** 3.7±0.2** 23.23±6.99** -
[1] CHEN Y, LEE K, NI Z, et al. Diabetic kidney disease: Challenges, advances, and opportunities[J]. Kidney Diseases,2020,6(4):215−225. doi: 10.1159/000506634 [2] SELBY N, TAAL M. An updated overview of diabetic nephropathy: Diagnosis, prognosis, treatment goals and latest guidelines[J]. Diabetes Obes Metab,2020,22:3−15. [3] DU L, LI Q, YI H, et al. Gut microbiota-derived metabolites as key actors in type 2 diabetes mellitus[J]. Biomed Pharmacother,2022,149:112839. doi: 10.1016/j.biopha.2022.112839 [4] 李璞泽. 根皮素缓解小鼠溃疡性结肠炎的肠道微生态机理研究[D]. 新乡: 新乡医学院, 2020.LI P Z. The anti-inflammation effect of phloretin on ulcerative colitis mice and its intestinal micro-ecological mechanism[D]. Xinxiang: Xinxiang Medical University, 2020. [5] 杨胜楠. 根皮苷和根皮素对HepG2细胞氧化应激损伤的比较[D]. 天津: 天津科技大学, 2019YANG S N. Comparison of oxidative stress damage of HepG2 cells between phlorizin and phloretin[D]. Tianjin: Tianjin University of Science & Technology, 2019. [6] 黎博. 根皮素对人舌癌Tca8113细胞增殖和凋亡的影响及机制研究[D]. 锦州: 锦州医科大学, 2019LI B. Effect and mechanism of phloretin oproliferation and apoptosis of human tongue cancer Tca8113 cells[D]. Jinzhou: Jinzhou Medical University, 2019. [7] 李潭, 孙一涵, 李国峰. 根皮素对脂多糖诱导的RAW264.7细胞的体外抗炎作用机制[J]. 中国免疫学杂志,2021,37(7):812−818. [LI T, SUN Y H, LI G F. Anti inflammatory mechanism of phloretin on RAW264.7 cells induced by lipopolysaccharide in vitro[J]. Chin J Immunol,2021,37(7):812−818. doi: 10.3969/j.issn.1000-484X.2021.07.008 [8] HARDEEP S T, PRANGYA R, ABHISHEK C, et al. Phloretin, as a potent anticancer compound: From chemistry to cellular interactions[J]. Molecules,2022,27(24):8819. doi: 10.3390/molecules27248819 [9] 夏琛. 根皮素纳米粒子对糖尿病大鼠的肾脏保护作用研究[D]. 杭州: 浙江大学, 2021XIA C. Study on the renal protective effect ofphloretin nano particles on diabetic rats[D]. Hangzhou: Zhejiang University, 2021. [10] BALAHA M, KANDEEL S, KABEL A. Phloretin either aloneor in combination with duloxetine alleviates the STZ-induced diabetic neuropathy in rats[J]. Biomed Pharmacother,2018,101:821−832. doi: 10.1016/j.biopha.2018.02.135 [11] TESCH G H. Diabetic nephropathy- is this an immune disorder?[J]. Clinical Science (London, England: 1979),2017,131:2183−2199. doi: 10.1042/CS20160636 [12] 王兴红, 常陆林, 王桂叶, 等. 槲皮素对2型糖尿病大鼠肾脏肥大的影响机制[J]. 中国中医基础医学杂志,2015,21(10):1248−1250. [WANG X H, CHANG L L, WANG G Y, et al. Influencing mechanism of quercetin on kidney hypertrophy in type 2 diabetic rats[J]. Chinese Journal of Basic Medicine of Traditional Chinese Medicine,2015,21(10):1248−1250. doi: 10.19945/j.cnki.issn.1006-3250.2015.10.023 [13] 王兴红, 郑亚萍, 孙缦利, 等. 槲皮素对糖尿病大鼠肾脏p38MAPK/NF-κB信号通路的影响[J]. 中药药理与临床,2016,32(1):79−82. [WANG X H, ZHENG Y P, SUN M L, et al. Effect of quercetin on renal p38MAPK/NF-κB signal path in diabetes rats[J]. Pharmacology and Clinics of Chinese Materia Medica,2016,32(1):79−82. doi: 10.13412/j.cnki.zyyl.2016.01.022 [14] 王晶, 刘艳玲, 刘倩, 等. 尿β2-MG及其miRNA表达水平在慢性肾脏病肾功能评价中的价值研究[J]. 国际检验医学杂志,2020,41(4):500−503. [WANG J, LIU Y L, LIU Q, et al. The value of urine β2-MG and its miRNA expression levels in the evaluation of renal function in chronic kidney disease[J]. Int J lab Med,2020,41(4):500−503. doi: 10.3969/j.issn.1673-4130.2020.04.031 [15] AL-SAEEDI F J. Mangiferin protect oxidative stress against deoxynivalenol induced damages through Nrf2 signalling pathways in endothelial cells[J]. Clin Exp Pharmacol Physiol,2021,48(3):389−400. doi: 10.1111/1440-1681.13432 [16] LI J, JIN S Y, BARATI M T, et al. ERK and p38 MAPK inhibition controls NF-E2 degradation and profibrotic signaling in renal proximal tubule cells[J]. Life Sci,2021,287:120092. doi: 10.1016/j.lfs.2021.120092 [17] KOPEL J, PENA-HERNANDEZ C, NUGENT K. Evolving spectrum of diabetic nephropathy[J]. World Journal of Diabetes,2019,10:269−279. doi: 10.4239/wjd.v10.i5.269 [18] VEIGA G, ALVES B, PEREZ M, et al. NGAL and SMAD1 gene expression in the early detection of diabetic nephropathy by liquid biopsy[J]. Clin Pathol,2020,73:713−721. doi: 10.1136/jclinpath-2020-206494 [19] PRISCILA C, GEORGINA H. Macrophage phenotype and fibrosis in diabetic nephropathy[J]. Mol Sci,2020,21(8):2806. doi: 10.3390/ijms21082806 [20] EL-DAWLA N, SALLAM A, EL-HEFNAWY M, et al. E-cadherin and periostin in early detection and progression of diabetic nephropathy: Epithelial-to-mesenchymal transition[J]. Clin Exp Nephrol,2019,23:1050−1057. doi: 10.1007/s10157-019-01744-3 [21] SHARMA A, TATE M, MATHEW G, et al. Oxidative stress and NLRP3-inflammasome activity as significant drivers of diabetic cardiovascular complications: Thera-peutic implications[J]. Front Physiol,2018,9:114. doi: 10.3389/fphys.2018.00114 [22] MA L Y, WU F, SHAO Q Q, et al. Baicalin alleviates oxidative stress and inflammation in diabetic nephropathy via Nrf2 and MAPK signaling pathway[J]. Drug Des Devel Ther,2021,21(15):3207−3221. [23] FANG R, HARA H, SAKAI S, et al. Type I interferon signalingregulates activation of the absent in melanoma 2 inflammasomeduring streptococcus pneumoniae infection[J]. Infection and Immunity,2014,82(6):2310−2317. doi: 10.1128/IAI.01572-14 [24] GONG W, LI J, CHEN Z, et al. Polydatin promotes Nrf2-AREanti-oxidative pathway through activating CKIP-l to resist HG-induced up-regulation of FN and ICAM-1 in GMCs and diabeticmice kidneys[J]. Free Radic Biol Med,2017,106:393−405. doi: 10.1016/j.freeradbiomed.2017.03.003 [25] HU R, WANG M Q, NI S H, et al. Salidroside ameliorates endothelial inflammation and oxidative stress by regulating the AMPK/NF-κB/NLRP3 signaling pathway in AGEs-induced HUVECs[J]. Eur J Pharmacol,2020,867:172797. doi: 10.1016/j.ejphar.2019.172797 [26] THORNTON S J, SULLIVAN J, VAN E E, et al. Lifetime benefits of early detection and treatment of diabetic kidney disease[J]. PloS One,2019,14:e0217487. doi: 10.1371/journal.pone.0217487 [27] 张茹, 曲中原, 杜娟. 葡萄籽原花青素通过 Nrf2/HO-1通路减轻镉诱导的幼龄大鼠认知功能损伤[J]. 中药药理与临床,2021,37(4):32−36. [ZHANG R, QU Z Y, DU J. Proanthocyanidins in grape seeds protects against cadmium-induced cognitive impairment in young rats by regulating Nrf-2/HO-1 pathway[J]. Pharmacology and Clinics of Chinese Materia Medica,2021,37(4):32−36. [28] UMANATH K, LEWIS J B. Update on diabetic nephropathy: Core curriculum 2018[J]. Am J Kidney Dis,2018(71):884−895. [29] 刘红艳, 乔玉峰, 薛福平. 干预氧化应激通路靶向治疗糖尿病肾病的新进展[J]. 中国免疫学杂志,2020,36(17):2174−2177. [LIU H Y, QIAO Y F, XUE F P. New progress of intervention oxidative stress pathway targeting in treatment ofdiabetic nephropathy[J]. Chin J Immunol,2020,36(17):2174−2177. doi: 10.3969/j.issn.1000-484X.2020.17.026 [30] HOU Y, LIN S, QIU J, et al. NLRP3 inflammasome negative-ly regulates podocyte autophagy in diabetic nephropathy[J]. Biochemical and Biophysical Research Communications,2020,521(3):791−798. doi: 10.1016/j.bbrc.2019.10.194 [31] WANG C, GAO Y, ZHANG Z, et al. Ursolic acid protects chondrocytes, exhibits anti-inflammatory properties via regulation of the NF-kappaB/NLRP3 inflammasome pathway andameliorates osteoarthritis[J]. Biomed Pharmacother,2020,130:110568. doi: 10.1016/j.biopha.2020.110568 [32] 高丝娜, 李英, 迟雁青, 等. 白藜芦醇对糖尿病肾病小鼠肾脏氧化应激及肾组织Nrf2通路蛋白表达的影响[J]. 山东医药,2019,59(11):44−47, 52. [GAO S N, LI Y, CHI Y Q, et al. Effects of resveratrol on oxidative stress and Nrf2 signal pathway expression inkidney of mice with diabetic nephropathy[J]. Shandong Pharmaceutical,2019,59(11):44−47, 52. doi: 10.3969/j.issn.1002-266X.2019.11.011 [33] HICKEY F B, MARTIN F. Role of the immune system in diabetic kidney disease[J]. Curr Diab Rep,2018(18):20. -