• EI
  • Scopus
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • DOAJ
  • EBSCO
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • JST China
  • FSTA
  • 中国精品科技期刊
  • 中国农林核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020
苏贤坤,孙振春,杨慧,等. 光谱法与计算机辅助研究α-西柏三烯二醇与牛血清白蛋白的相互作用[J]. 食品工业科技,2024,45(11):1−10. doi: 10.13386/j.issn1002-0306.2023080128.
引用本文: 苏贤坤,孙振春,杨慧,等. 光谱法与计算机辅助研究α-西柏三烯二醇与牛血清白蛋白的相互作用[J]. 食品工业科技,2024,45(11):1−10. doi: 10.13386/j.issn1002-0306.2023080128.
SU Xiankun, SUN Zhenchun, YANG Hui, et al. Multispectroscopic and Computational Study of the Interaction between α-Cembrenediol and Bovine Serum Albumin[J]. Science and Technology of Food Industry, 2024, 45(11): 1−10. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023080128.
Citation: SU Xiankun, SUN Zhenchun, YANG Hui, et al. Multispectroscopic and Computational Study of the Interaction between α-Cembrenediol and Bovine Serum Albumin[J]. Science and Technology of Food Industry, 2024, 45(11): 1−10. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023080128.

光谱法与计算机辅助研究α-西柏三烯二醇与牛血清白蛋白的相互作用

Multispectroscopic and Computational Study of the Interaction between α-Cembrenediol and Bovine Serum Albumin

  • 摘要: α-西柏三烯二醇具有抗菌、抗肿瘤和神经保护等广泛生物活性,研究其与牛血清白蛋白(BSA)相互作用,有助于了解α-西柏三烯二醇在体内的转运、分布以及消除等信息。本研究通过紫外吸收光谱、荧光光谱、圆二色谱、分子对接模拟、分子动力学模拟等方法,在分子水平上研究了BSA与α-西柏三烯二醇在体外生理条件下的相互作用。结果表明,BSA与α-西柏三烯二醇发生了明显相互作用,且在293、303和310 K三个温度条件下,荧光淬灭常数KSV值和结合常数Kb值随着温度升高逐渐降低,α-西柏三烯二醇与BSA通过静态猝灭机制发生相互作用,三个不同温度下两者结合位点数n≈1,在BSA上只存在一个α-西柏三烯二醇的特异性结合位点;BSA与α-西柏三烯二醇的结合是自发进行的(ΔG<0),氢键和范德华力为主要驱动力(ΔH<0和ΔS<0);在Sudlow位点I处α-西柏三烯二醇与BSA发生结合;BSA与α-西柏三烯二醇结合导致其构象也会发生改变。本研究结果提供了α-西柏三烯二醇与BSA相互作用的基本信息,这将有助于进一步了解α-西柏三烯二醇的药代动力学特性。

     

    Abstract: α-Cembrenediol displays a diverse array of biological activities, encompassing antibacterial, antitumor, and neuroprotective effects. To comprehensively understand the in vivo transport, distribution, and elimination mechanisms associated with α-cembrenediol, its interaction with bovine serum albumin (BSA) was investigated. In this study, the interaction between α-cembrenediol and BSA was explored using various techniques, including UV absorption, steady-state fluorescence, circular dichroism spectrum, molecular docking, and molecular dynamics simulation. The results showed that there was a clear interaction between BSA and α-cembrenediol. Specifically, the KSV and Kb decreased with increasing temperature at 293, 303, and 310 K, indicating that α-cembrenediol interacted with BSA through a static quenching mechanism. Furthermore, the number of binding sites was approximately 1 at the three temperatures, suggesting the presence of a single specific binding site for α-cembrenediol on BSA. Moreover, the binding process occurred spontaneously (ΔG<0), primarily driven by hydrogen bonds and van der Waals forces (ΔH<0 and ΔS<0). α-Cembrenediol bound to the Sudlow site I of BSA. Binding of BSA to α-cembrenediol also caused its conformation to change. This study provides essential insights into the interaction between α-cembrenediol and BSA, contributing to a better understanding of the pharmacokinetic properties of the compound.

     

/

返回文章
返回