• 中国科技期刊卓越行动计划项目资助期刊
  • 中国精品科技期刊
  • 首都科技期刊卓越行动计划
  • EI
  • Scopus
  • CAB Abstracts
  • Global Health
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国科技核心期刊CSTPCD
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国开放获取期刊数据库COAJ
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
李泽林,高子琪,杨芳,等. 不同初加工小粒咖啡生豆判别及可溶性固形物含量预测J. 食品工业科技,2025,46(18):56−66. doi: 10.13386/j.issn1002-0306.2025010192.
引用本文: 李泽林,高子琪,杨芳,等. 不同初加工小粒咖啡生豆判别及可溶性固形物含量预测J. 食品工业科技,2025,46(18):56−66. doi: 10.13386/j.issn1002-0306.2025010192.
LI Zelin, GAO Ziqi, YANG Fang, et al. Discrimination and Soluble Solids Content Prediction of Different Primary Processed Arabica Coffee BeansJ. Science and Technology of Food Industry, 2025, 46(18): 56−66. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2025010192.
Citation: LI Zelin, GAO Ziqi, YANG Fang, et al. Discrimination and Soluble Solids Content Prediction of Different Primary Processed Arabica Coffee BeansJ. Science and Technology of Food Industry, 2025, 46(18): 56−66. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2025010192.

不同初加工小粒咖啡生豆判别及可溶性固形物含量预测

Discrimination and Soluble Solids Content Prediction of Different Primary Processed Arabica Coffee Beans

  • 摘要: 为探究不同初加工小粒咖啡生豆判别方法及预测其可溶性固形物(Soluble solids content,SSC)含量,利用手持式折光仪和傅里叶红外光谱仪(Fourier transform infrared spectroscopy,FT-IR)对水洗、日晒及蜜处理三种不同初加工小粒咖啡生豆进行检测,并建立了判别方法和SSC回归预测模型。结果表明,蜜处理咖啡豆SSC含量最高,为4.86%。二维相关光谱(Two-dimensional correlation spectroscopy,2D-COS)能准确识别不同样品间的光谱特征的差异。采用多元统计分析处理SG平滑(Savitzky-Golay smoothing,SG)、均值归一化(Normalization method,NM)、去趋势化(De-trend,DT)、多元散射校正(Multiple scattering correction,MSC)4种预处理方式FT-IR光谱数据可以实现对不同初加工样本的准确判别。进一步使用主成分回归(Principal component regression,PCR)、偏最小二乘回归(Partial least squares regression,PLSR)、支持向量机回归(Support vector regression,SVR)3种机器学习模型实现了对三种不同初加工咖啡生豆SSC的预测,其中原始数据-PCR模型组合预测效果最好R2c为0.67,R2p为0.64。本研究为不同初加工方式咖啡豆品质评价、优选、提升及完善咖啡产业体系提供了前期基础。

     

    Abstract: To investigate the discrimination methods for arabica green coffee beans processed by different primary methods and to predict their soluble solids content (SSC). A handheld refractometer and Fourier transform infrared spectroscopy (FT-IR) were employed to analyze washed, sun-dried, and honey-processed coffee beans in this study. The discriminant methods and SSC regression prediction models were further developed based on the collected data. The results showed that the SSC content of honey processed coffee beans was the highest (4.86%). Two-dimensional correlation spectroscopy (2D-COS) could accurately identify the difference in spectral features between different samples. The FT-IR spectral data processed by four pretreatment methods, namely Savitzky-Golay smoothing (SG), normalization method (NM), detrending (DT), and multiple scattering correction (MSC), could accurately discriminated different primary processing samples through multivariate statistical analysis. Furthermore, three machine learning models-principal component regression (PCR), partial least squares regression (PLSR), and support vector regression (SVR)—were utilized to predict the SSC of three distinct types of green coffee beans following their primary processing. Notably, the integration of raw data with the PCR model yielded the most accurate predictions, achieving coefficients of determination for calibration (R2c) and prediction (R2p) of 0.67 and 0.64, respectively. This study would provide a foundation for evaluating, selecting, enhancing, and improve the quality of coffee beans with different primary processing methods, as well as for perfecting the coffee industry system.

     

/

返回文章
返回