• EI
  • Scopus
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • DOAJ
  • EBSCO
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • JST China
  • FSTA
  • 中国精品科技期刊
  • 中国农林核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020
葛珍珍,赵玉翔,胡乔乔,等. 基于荧光光谱法探究柿原花青素与黏蛋白的相互作用机制[J]. 食品工业科技,xxxx,x(x):1−9. doi: 10.13386/j.issn1002-0306.2024010146.
引用本文: 葛珍珍,赵玉翔,胡乔乔,等. 基于荧光光谱法探究柿原花青素与黏蛋白的相互作用机制[J]. 食品工业科技,xxxx,x(x):1−9. doi: 10.13386/j.issn1002-0306.2024010146.
GE Zhenzhen, ZHAO Yuxiang, HU Qiaoqiao, et al. Exploring the Interaction Mechanism between Persimmon Proanthocyanidins and Mucin Based on Fluorescence Spectroscopy[J]. Science and Technology of Food Industry, xxxx, x(x): 1−9. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024010146.
Citation: GE Zhenzhen, ZHAO Yuxiang, HU Qiaoqiao, et al. Exploring the Interaction Mechanism between Persimmon Proanthocyanidins and Mucin Based on Fluorescence Spectroscopy[J]. Science and Technology of Food Industry, xxxx, x(x): 1−9. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024010146.

基于荧光光谱法探究柿原花青素与黏蛋白的相互作用机制

Exploring the Interaction Mechanism between Persimmon Proanthocyanidins and Mucin Based on Fluorescence Spectroscopy

  • 摘要: 为了解黏蛋白(Mucin)对柿原花青素肠道消化释放的影响,借助激光粒度仪、差示扫描量热仪、傅里叶红外光谱、荧光光谱等技术对柿原花青素-黏蛋白复合物的理化特征及两者相互作用机制进行分析。结果表明:复合物的粒径、电位绝对值与柿原花青素及其结构单元(ECG、EGCG)的浓度呈正相关关系;柿原花青素酚羟基的引入使得黏蛋白的热稳定性、表面疏水性随其浓度的增加而减少;红外光谱显示,氢键及游离的氨基参与两者反应;柿原花青素及其结构单元可以有效猝灭黏蛋白的内源荧光,以静态猝灭为主;根据Van’t Hoff方程获得的热力学参数∆G<0,∆H<0,∆S<0,表明柿原花青素及其结构单元与黏蛋白的结合是吉布斯自由能减少的自发反应,主要由氢键及范德华力驱动。综上所述,柿原花青素及其结构单元的添加诱导黏蛋白结构发生变化,其与黏蛋白主要通过氢键和范德华力发生强烈的相互作用,该研究为设计提高柿原花青素在肠道中生物利用率的智能递送系统提供参考依据。

     

    Abstract: To determine the influence of mucin on the intestinal digestion and release of proanthocyanidins derived from persimmon, the physicochemical characteristics of persimmon proanthocyanidins-mucin complexes and the interaction mechanisms between persimmon proanthocyanidins and mucin were analyzed using laser particle size analyzer, differential scanning calorimetry, Fourier-transform infrared spectroscopy, and fluorescence spectroscopy. Results indicated that the particle size and absolute ζ-potential of the complexes were positively correlated with the concentrations of persimmon proanthocyanidins and their structural units (epicatechin gallate and epigallocatechin gallate). The introduction of phenolic hydroxyl groups from persimmon proanthocyanidins decreased the thermal stability and surface hydrophobicity of mucin with an increase in persimmon proanthocyanidins concentration. Infrared spectroscopy revealed that hydrogen bonding and free amino groups participated in the reaction between mucin and persimmon proanthocyanidins. It was also found that persimmon proanthocyanidins and their structural units effectively quenched the intrinsic fluorescence of mucin, with static quenching being the dominant mechanism. Thermodynamic parameter values obtained using the Van’t Hoff equation were ∆G<0, ∆H<0, ∆S<0, demonstrating that the binding of persimmon proanthocyanidins and their structural units with mucin was a spontaneous reaction with a decrease in Gibbs free energy and was primarily driven by hydrogen bonding and van der Waals forces. In summary, the addition of persimmon proanthocyanidins and their structural units induced changes in the mucin structure and strong interactions that were primarily attributed to hydrogen bonding and van der Waals forces. The findings can serve as a reference for the design of intelligent delivery systems to enhance the bioavailability of persimmon proanthocyanidins in the intestine.

     

/

返回文章
返回