Hypoglycemic Effects and Myocardial Protection of Sanghuangporus vaninii Polysaccharide on Diabetes Rats
-
摘要: 为探究杨树桑黄多糖(SP)对II型糖尿病大鼠降血糖效果及心肌保护作用,本文采用高糖高脂饲喂联合链脲佐菌素(STZ)诱导构建2型糖尿病(T2DM)大鼠模型,随机分为模型组(DM)、阳性对照组(MET)、低、中、高剂量杨树桑黄多糖组(SPL、SPM、SPH),以及正常组(CN),共六组进行饲养。4周灌胃连续干预后测定并记录大鼠的体重数据及多项生理生化指标,并对大鼠的胰腺及心肌组织进行病理学观察。结果表明,SP各剂量组与DM组相比均可改善T2DM大鼠体重下降,并可以显著降低空腹血糖值及血清胰岛素水平,改善其葡萄糖耐量(P<0.01或P<0.05)。SP组随着多糖剂量的增加,降低了血清总胆固醇(TC)、甘油三酯(TG)和低密度脂蛋白胆固醇(LDL-C)水平(P<0.01或P<0.05),高密度脂蛋白胆固醇(HDL-C)无明显变化;心肌酶乳酸脱氢酶(LDH)活力极显著下降(P<0.01);上调了总超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性(P<0.01或P<0.05),极显著下调了丙二醛(MDA)含量(P<0.01)。同时,SPM和SPH组降低了大鼠心肌组织中白介素-1β(IL-1β)和白介素-6(IL-6)的含量。HE染色结果表明,与DM组相比,SP各组的胰岛细胞数目明显增加,细胞更加完整;经SP干预后与DM组相比,心肌组织细胞间隙均匀,空泡化减少,其中SPH组改善效果最明显。综上所述,杨树桑黄多糖具有保护T2DM大鼠胰腺和心脏组织结构、调节血糖水平、降低血脂、减轻胰岛素抵抗等抗糖尿病作用。Abstract: To examine the hypoglycemic effects and myocardial protection of Sanghuangporus vaninii polysaccharide (SP) in T2DM rats, these effects were assessed in rats fed a high glucose and high fat diet combined with streptozotocin (STZ). The rats were randomly assigned to one of the following six groups: the diabetes mellitus (DM), metformin (MET), low-, medium-, and high-dose SP (SPL, SPM, and SPH), and control (CN) groups. Following 4 weeks of continuous intervention by gavage, the weights and multiple physiological and biochemical indicators of rats were measured and recorded, and performed pathological observations of the pancreatic and myocardial tissues of rats. Results revealed that SP at all assessed doses could reduce weight loss in T2DM rats compared to the DM group, significantly reduce fasting blood glucose and serum insulin levels, and improve glucose tolerance (P<0.01 or P<0.05). With an increase in the dosage of SP, serum total cholesterol (TC), triglyceride (TG), and low density lipoprotein cholesterol (LDL-C) levels in the SP-fed rats reduced (P<0.01 or P<0.05), whereas no significant changes in high-density lipoprotein cholesterol (HDL-C). Furthermore, there was a significant reduction in lactate dehydrogenase (LDH) activity (P<0.01), an upregulation of total superoxide dismutase (SOD) and catalase (CAT) activities (P<0.01 or P<0.05), and a significant reduction in malondialdehyde (MDA) content (P<0.01). Additionally, the SPM and SPH treatments reduced the levels of interleukin-1β (IL-1β) and interleukin-6 (IL-6) in rat myocardial tissues. HE staining revealed a significant increase in the number of pancreatic islet cells in SP group rats than in the DM group rats, and the cells were more complete. Compared with the DM group, the myocardial tissue showed uniform cell gaps and reduced vacuolization after SP intervention, with the SPH group exhibiting the most significant improvement. In summary, SP can protect the structure of pancreatic and cardiac tissues, regulate blood sugar levels, reduce blood lipid contents, reduce insulin resistance, and have anti-diabetic effects in T2DM rats.
-
桑黄别名桑臣、桑耳[1],是一种十分珍贵的大型药用真菌,在分类学上隶属锈革孔菌科桑黄孔菌属[2]。桑黄含有多糖[3]、黄酮[4]、三萜[5]和多酚[6]等多种活性成分,具有抗氧化、抗肿瘤、免疫调节、抗炎、降血糖等功效[7−8]。根据生树种不同,分为桑树桑黄(Sanghuangporus sanghuang)、杨树桑黄(Sanghuangporus vaninii,S. vaninii)、暴马桑黄(Sanghuangporus baumii)等19种[9−10]。目前对S.vaninii的研究主要集中在液体发酵[11]、提取方法、成分测定以及桑黄共有的药理活性[12]。桑黄在食品、药品等方面都有很好的开发应用价值[13]。液体发酵能够提供最佳的营养,使菌丝迅速繁殖[14],在短时间可达到一定生物量[15],是桑黄得以高效开发应用的有效方法之一。
全球公共卫生问题最严重之一便是2型糖尿病(type 2 diabetes,T2DM),据2021年统计,全球有5.37亿人患有此病[16]。目前中国糖尿病患者约占全球糖尿病患者的1/4,其中绝大多数为T2DM患者[17]。T2DM的患病率与死亡率不断上升,给国家以及个人都带来了繁重负担[18]。糖尿病可导致多种并发症,如糖尿病心血管疾病、糖尿病足、神经病变等[19],其中造成糖尿病患者死亡的主要原因之一是糖尿病心脏病[20−21],是较为严重的慢性并发症之一[22],主要表现为糖尿病伴发或并发的心脏微血管、大血管、心肌病及心脏自主神经功能紊乱的病变,数据显示,约3/4糖尿病患者死亡原因与其相关[23−25]。糖尿病患者患心血管疾病的概率是非糖尿病患者的四倍[26]。糖尿病心脏病往往会对患者的多个器官造成损害,严重降低生活质量,甚至威胁生命[26]。
目前糖尿病药物多为化学合成类药物,其副作用逐渐显现。因此,从膳食中获得有效、安全的抗糖尿病成分对防治T2DM及其并发症具有重要意义。Feng等[27]发现,桑黄多糖可改善耐糖量并显著降低糖尿病小鼠空腹血糖水平。Hu等[28]发现桑黄多糖减轻了糖尿病小鼠的病理变化,并下调了白介素-1β(interleukin-1β,IL-1β)和白介素-6(interleukin-6,IL-6)水平。王朝瑞[29]发现桑黄多糖能缓解T2DM模型大鼠血糖升高的糖尿病症状。刘梦凡等[30]发现桑黄粗多糖具有抗氧化和降血糖的能力。诸多研究表明桑黄多糖对糖尿病有治疗效果,但是对糖尿病患者心肌是否具有保护作用却不明确,因此本研究拟通过链脲佐菌素(streptozotocin,STZ)与高糖高脂饲料诱导构建T2DM大鼠模型,明确杨树桑黄多糖(Sanghuangporus vaninii polysaccharide,SP)对T2DM大鼠心脏的保护作用,以期为该食用菌的临床应用提供实验依据。
1. 材料与方法
1.1 材料与仪器
48只(180~200 g)SPF级SD雄性大鼠 生产许可证号:SCXK(辽)2020-0001,辽宁长生生物技术股份有限公司;由20%蛋白、20%碳水化合物、60%脂肪组成的高糖高脂饲料 戴茨生物科技(无锡)有限公司;S. vaninii 菌种保存于延边大学食(药)用真菌研究所,编号ST;10%福尔马林固定液 北京索莱宝生物科技有限公司;链脲佐菌素 纯度≥98.0%,美国Sigma公司;盐酸二甲双胍片 中美上海施贵宝制药有限公司;胰岛素试剂盒 上海酶联生物科技有限公司;二甲苯 分析纯,泉瑞科技(苏州)有限公司;苏木素染色、伊红染色 福州飞净生物科技有限公司。
安稳+血糖仪 三诺生物传感股份有限公司;HH-6数显恒温水浴锅 金坛区科析仪器有限公司;5804R冷冻离心机 德国Eppendorf公司;KD-BM、BL冷冻包埋机、KD-3358组织切片机、KD-P摊片机、KD-H烘片机 金华科迪仪器设备有限公司;MLS-3020高压灭菌锅 三洋工业株式会社;U-1800紫外可见光分光光度计 日本高新技术公司;GP-2-500电热恒温干燥箱 湖北黄石市医疗器械厂;BX53显微镜 日本奥林巴斯公司。
1.2 实验方法
1.2.1 桑黄多糖的制备
按照王皓等[31]的方法经过简化获取粗多糖SP。在试管中取约0.5 cm2的ST菌块放在平板培养基中活化,等菌丝长满平板时取直径0.5 cm菌块接入种子培养基中放入振荡培养箱中培养7 d后取出,将种子培养基和菌球匀浆处理,将种子液接入发酵基础培养基中培养7 d。培养基配方如下:
平板培养基:200 g马铃薯,20 g葡萄糖,20 g琼脂,1000 mL蒸馏水,121 ℃灭菌,15 min。
种子液培养基:200 g马铃薯,20 g葡萄糖,0.5 g MgSO4,1 g KH2PO4,1000 mL蒸馏水,121 ℃灭菌,15 min,发酵周期7 d。
发酵基础培养基:200 g马铃薯,20 g葡萄糖,0.5 g MgSO4 ,1 g KH2PO4,1000 mL蒸馏水,121 ℃灭菌,15 min,发酵周期7 d。
将发酵后的菌丝球滤出,60 ℃烘干至恒重,烘干后的菌丝体进行粉碎,过40目筛,称取菌丝体粉末0.5 g置于50 mL离心管,固定1:30料液比,进行热水浸提。设定浸提时间为 2.5 h,浸提温度为95 ℃,过滤收集滤液,重复提取两次,合并滤液,旋转蒸发至1/5体积。在浓缩后的滤液中加入4倍的95%乙醇,4 ℃过夜,3000 r/min离心20 min,弃上清液,取沉淀,60 ℃烘干至恒重后备用。
1.2.2 模型建立
水与饲料不限量供给大鼠,鼠房保持干燥、通风、安静。适应性喂养一周普通饲料。本研究已经延边大学实验动物科学中心伦理委员会批准。随机选取8只作为正常对照组(control group,CN)饲喂普通饲料,其余40只供给高糖高脂饲料为造模组。喂食四周后,禁食12 h。禁食后,造模组大鼠接受40 mg/kg STZ溶液的腹膜内注射,而CN组大鼠腹腔注射等量的柠檬酸缓冲液[32]。注射后给大鼠饮用10%蔗糖水溶液1 d,避免胰岛素快速释放造成低血糖死亡[33]。7 h内密切观察大鼠情况,在造模一周后测得空腹血糖(fasting blood glucose,FBG)浓度>11.1 mmol/L视为造模成功[34],对FPG<11.1 mmol/L大鼠再次腹腔注射STZ(40 mg/kg)[35]。
1.2.3 干预方法
将造模成功的T2DM大鼠随机分为以下5组:模型组(diabetes mellitus group,DM)、阳性对照组(metformin group,MET)、杨树桑黄多糖低剂量(S. vaninii polysaccharide low dose group,SPL)、杨树桑黄多糖中剂量(S. vaninii polysaccharide middle dose group,SPM)、杨树桑黄多糖高剂量(S. vaninii polysaccharide high dose group,SPH)。干预组分别采用杨树桑黄多糖水溶液(25、50、100 mg/kg)与二甲双胍水溶液(150 mg/kg)进行灌胃[36],CN 组和DM组给予相同量的超纯水,灌胃剂量为0.2 mL/10 g,干预持续4周[36]。
1.2.4 体重、胰岛素水平与FBG值的测定
造模成功后1次/周测定各组体重和FBG浓度,测量当天大鼠禁食半天,水正常供应,采用大鼠尾部采血[37],并用血糖仪测量FBG。使用试剂盒测量血清胰岛水平。计算大鼠胰岛素抵抗指数(homeostasis model assessment insulin resistance index,HOMA-IR)[38],如公式(1)所示。
HOMA-IR=血清胰岛素水平(mIU/L)×空腹血糖浓度(mmol/L)22.5 (1) 1.2.5 葡萄糖耐量测试(OGTT)
干预28 d后,禁食(不禁水)12 h,对6组大鼠进行口服葡萄糖抵抗测试。首先测量FBG,然后通过灌胃给予2 g/kg葡萄糖溶液,随后在30、60、120、180 min测量血糖水平。时间-血糖曲线下面积(Area under the time blood glucose curve,AUC)采用梯形面积计算,如公式(2)。
AUCOGTT(mmol/(L⋅h))=30×G0+2G30+3G60+4G120+2G1802×160 (2) 式中,G0、G30、G60、G120、G180分别为对应时间点的血糖值。
1.2.6 血清、血脂水平测定
经过28 d干预后,眼眶取血收集血清,检测血清中总胆固醇(Total cholesterol,TC)、甘油三酯(Triglyceride,TG)、低密度脂蛋白胆固醇(Low-density lipoprotein cholesterol,LDL-C)、高密度脂蛋白胆固醇(High-density lipoprotein cholesterol,HDL-C)、心肌酶乳酸脱氢酶(Lactate dehydrogenase,LDH)活力水平[39]。
1.2.7 形态病理学观察
收集血清后,脱颈处死并解剖大鼠,取出胰腺和心脏组织,清理后置于4%中性福尔马林中固定[40]。按照HE染色法制片[41],在显微镜下观察胰腺组织病理形态结构。
1.2.8 心肌氧化应激水平的测定
在心肌组织中加入生理盐水,制备10%组织匀浆,组织中超氧化物歧化酶(Superoxide dismutase,SOD)、过氧化氢酶(Catalase,CAT)活性[38]和脂质过氧化物产物丙二醛(Malondialdehyde,MDA)含量使用试剂盒测定。
1.2.9 心肌组织炎症水平测定
大鼠心肌组织中IL-1β和IL-6水平由相应试剂盒测定。
1.3 数据处理
实验数据用平均值±标准偏差表示,采用SPSS软件进行数据统计处理。P<0.05表示显著差异,P<0.01表示极显著差异[42]。
2. 结果与分析
2.1 杨树桑黄多糖对大鼠体重、FBG浓度及胰岛素水平的调节
造模成功后大鼠毛发粗糙、行动缓慢,“三多一少”症状明显。如表1所示,在造模成功的28 d内,大鼠体重迅速减轻,CN组大鼠体重增加,与DM组相比,经二甲双胍和SP干预的大鼠体重下降速度减缓,同时与干预初相比大鼠更为活泼,毛发更为顺滑。可见SP可以有效减缓体重下降。
表 1 杨树桑黄多糖对大鼠体重的影响Table 1. Effects of S.vaninii polysaccharide on body weight of rats组别 体重 0 d 7 d 14 d 21 d 28 d CN 394.33±4.93Bc 404.33±7.77ABbc 409.00±12.49ABbc 421.33±15.01ABab 434.00±16.52Aa DM 469.33±56.54Aa 450.67±46.92Aa 438.00±45.53Aa 421.67±58.07Aa 410.00±60.03Aa MET 428.33±56.98Aab 456.33±17.39Aa 431.67±12.10Aab 414.00±8.54Aab 400.67±5.13Ab SPL 382.25±19.74Aa 401.25±41.24Aa 387.50±34.03Aa 378.50.32.38Aa 368.75±27.87Aa SPM 395.50±49.13Aa 443.50±61.34Aa 427.75±62.61Aa 412.50.±65.29Aa 396.50±60.35Aa SPH 394.25±45.23Aa 409.00±59.44Aa 395.50±59.79Aa 388.00±61.82Aa 376.75±57.09Aa 注:大写字母和小写字母皆表示数据之间横向比较具有差异,差异显著用不同小写字母表示(P<0.05),差异极显著用不同大写字母表示(P<0.01)。 HOMA-IR变化与胰岛素抵抗水平呈正相关,可用于评价个体胰岛素抵抗水平[36]。如图1 所示,与CN组大鼠相比,DM组大鼠的FBG和HOMA-IR值极显著增加(P<0.01)。经二甲双胍干预后大鼠FBG值极显著下降(P<0.01)。同时HOMA-IR值也极显著减小(P<0.01)。与DM组大鼠相比SP干预组FBG有所降低,其中SPL和SPM两组呈显著差异(P<0.05),HOMA-IR值则呈现极显著下降(P<0.01)。可见SP在一定程度上缓解了由T2DM引发的血糖值升高,并可以显著抑制胰岛素抵抗水平,呈现的治疗效果与传统治疗糖尿病药物二甲双弧相近。
2.2 杨树桑黄多糖对大鼠葡萄糖耐量的影响
口服葡萄糖耐量试验是一种比FBG值更准确的测量糖代谢功能是否异常的方法,同时也可评价葡萄糖代谢和胰岛β细胞功能,因此两种方法可互相补充。图2可观察到,干预初始(0 min),糖尿病大鼠FBG升高且糖耐量受损,DM组大鼠的FBG为21.58 mmol/L,比CN组高6.29倍,且MET组和SP组大鼠FBG均低于DM组。前30 min,所有大鼠血糖水平迅速升高。30 min后,除CN组外其他各组血糖浓度达到峰值,随后逐渐降低,至120 min时恢复到初始值附近。120 min后,CN组血糖浓度达到峰值,随后逐渐降低,与其他组不同,DM组此时血糖浓度开始徒增,是因为其胰岛素抵抗与胰岛β细胞功能障碍,胰岛素合成或分泌减少,进而促使血清胰岛素水平的降低[43−44],同时血糖波动也是糖尿病并发症的独立危险因素[45]。180 min时各组均恢复到初始值附近。
为了更直观观察干预效果,制作了AUCOGTT。如图2所示,与CN组相比,DM组大鼠 AUCOGTT上升呈极显著差异(P<0.01);与DM组相比,MET组和SP组的AUCOGTT均有不同程度的下降,其中MET组无显著性差异,SP组差异显著(P<0.05),且SPM组治疗效果最佳,可见SP在降低T2DM大鼠FBG值和改善糖耐量受损上具有较好的治疗效果。
2.3 杨树桑黄多糖对大鼠脂代谢的影响
TC、TG、LDL-C和HDL-C是血脂的重要组成。如图3所示,与CN组相比,患病组的四个指标表现出不同程度的升高,说明长期高糖高脂饮食导致了大鼠脂质代谢紊乱。与DM组相比,MET组的四个指标均极显著下降(P<0.01),SPL组的TG和TC极显著升高(P<0.01),LDL-C和HDL-C呈上升趋势;SPM组的TC和HDL-C呈下降趋势,TG显著上升(P<0.05),LDL-C呈上升趋势;SPH组的TG水平极显著下降(P<0.01),TC和LDL-C水平显著降低(P<0.05),HDL-C水平也出现下降趋势。这与高伟华等[46]对2型糖尿病小鼠脂代谢的研究结果一致。表明SPM已经对T2DM大鼠有了一定的改善效果,随着多糖剂量的增加,对于TG、TC和LDL-C的改善效果越明显,呈现出剂量依赖关系。
2.4 杨树桑黄多糖对大鼠血清 LDH 的影响
如图4所示,DM组大鼠的血清LDH活性与CN组大鼠相比极显著增加(P<0.01),LDH因心肌损伤而从心肌细胞逸出。与DM组相比,干预组可降低LDH活性呈极显著状态(P<0.01),说明SP可以对心肌组织产生保护作用,以缓减心肌损伤,进而降低LDH从心肌细胞外逸。
2.5 杨树桑黄多糖对大鼠胰腺和心肌组织形态结构的影响
HE 染色后,胰腺组织在光学显微镜下观察到(图5):发现DM组大鼠胰岛细胞数量与CN组相比减少,胰岛形状不规则、变形受损严重、边界模糊。与DM组相比,干预组大鼠的胰岛细胞数目明显增加,细胞更加完整。SP组内SPM和SPH的胰岛细胞恢复的比MET组更好。
图 5 杨树桑黄多糖对大鼠胰腺组织病理形态的影响(200×)注:A:CN组,B:DM组,C:MET组,D:SPL组,E:SPM组,F:SPH组,图6同。Figure 5. Effects of polysaccharide from S. vaninii on the pathological morphology of pancreatic tissue in rats (200×)如图6,大鼠心肌组织染色结果所示,CN组大鼠组织正常且颜色深润,心肌细胞排列整齐,梭形细胞间隙均匀,心肌纤维连续。DM组心肌细胞排列紊乱明显,部分细胞破裂,细胞间隙不一,局部可见炎性细胞浸润并伴有空泡变性。二甲双胍和SP干预后,相较DM组各干预组心肌病变组织结构改善恢复明显,细胞排列及间隙趋于均匀,空泡化减少,且SP组呈现出明显的剂量依赖性,其中SPH组对心肌细胞的改善优于MET组。表明SP可以有效改善糖尿病引起的心肌炎症现象,缓解心肌组织损伤。
2.6 杨树桑黄多糖对大鼠心肌抗氧化水平的影响
氧化应激是糖尿病心肌并发症的重要发病机制之一,图7反映了大鼠氧化应激指标的变化。与CN组相比,DM组SOD和CAT活性明显下降,MDA含量明显升高,且呈现极显著差异(P<0.01)。经二甲双弧和SP干预后,与DM组相比,MET组SOD活性显著升高(P<0.05),CAT活性极显著升高(P<0.01);SP组SOD活性升高呈极显著状态(P<0.01),CAT活性在SPL组显著升高(P<0.05),在SPM和SPH组极显著升高(P<0.01),SP组内呈现剂量依赖性;MET组和SP组MDA含量较DM组极显著下降(P<0.01)。可见SP能有效提高T2DM大鼠的抗氧化能力,以缓解氧化应激反应对心肌组织的损伤。
2.7 杨树桑黄多糖对大鼠心肌炎症因子的影响
如图8所示,DM组和SP组大鼠心肌组织中IL-1β和IL-6的含量与CN组相比极显著增加(P<0.01),说明大鼠心肌组织已存在一定程度病变,炎症反应是导致T2DM大鼠心肌组织损伤的原因之一。MET组的IL-1β含量显著低于DM组(P<0.05),IL-6含量极显著低于DM组(P<0.01)。经SP干预后仅SPH组降低了T2DM大鼠心肌组织中IL-1β和IL-6的含量。以上结果说明,SP在降低炎症水平,缓解炎症损伤上效果不佳,且只有达到一定剂量才能够降低T2DM心肌组织的炎症细胞因子,起到改善效果。
3. 讨论与结论
T2DM是一种内分泌疾病,是胰岛素分泌减少和敏感性降低、相关生物功能障碍等多因素共同作用的结果,以血糖升高为主要临床表现[47]。血糖维持高状态时间长会诱发多种糖尿病并发症。桑黄多糖具有降血糖的功能,基于该功能本文推测杨树桑黄多糖可对由 T2DM 引发的心脏损伤有一定缓解作用。
本实验采用 STZ 联合高糖高脂饲料诱发大鼠产生 T2DM。造模成功后,灌胃杨树桑黄多糖水溶液观察其对 T2DM 大鼠的治疗作用。高血脂是引发胰岛素抵抗的主要原因之一,实验结果表明杨树桑黄多糖对 T2DM 大鼠的高血糖和胰岛素抵抗有明显的缓解作用,但对高血脂仅有缓解脂代谢紊乱的趋势且对剂量有依赖。胰岛β细胞占胰岛细胞数量的60%~80%,而胰岛素是胰岛β细胞分泌的重要激素,使血糖进入细胞内,对糖的代谢、脂肪的代谢、蛋白质的代谢等都起着重要的作用[48−49]。本实验通过观察大鼠胰腺HE染色切片发现,与CN组相比DM组的胰岛细胞数量减少,变形受损严重。实验证明杨树桑黄多糖可以缓解T2DM 大鼠的高血脂症状,增加T2DM大鼠的胰岛细胞,缓解胰腺组织的病变。Feng等[27]也有类似发现。
糖尿病心肌损伤是由糖尿病引发的心肌损害[48]。LDH 是评价心肌损伤的重要指标之一,其是一种存在于心肌细胞中的糖酵解酶[50]。本实验发现,LDH 在患病大鼠血清中显著增加,说明其心肌组织发生了一定程度病变。心肌损伤形成的机制是复杂的,其中糖尿病患者心肌损伤的重要发病机制是在持续的高血糖诱导而形成的炎症反应和氧化应激水平的增加[51−52]。综上所述,杨树桑黄多糖通过上调 T2DM 大鼠心肌中 SOD 和 CAT 水平,增强心肌抗氧化能力,其中 SOD 组内无明显变化;抑制 MDA 增加,减轻氧化应激损伤,随着杨树桑黄多糖剂量的增加大鼠 MDA 代谢逐渐恢复趋近 CN 组正常代谢水平;抑制 IL-6 和 IL-1β 的水平,缓解由于炎症造成的损伤。通过对大鼠心脏 HE 染色切片观察,发现 T2DM 会导致心肌组织出现局部炎性细胞浸润并伴有空泡化,经 SP 干预后,病变症状可以有效被缓解,从而抑制 LDH 向血液外逸,但在改善心肌组织炎症因子水平方面效果不佳并呈现剂量依赖性,综合表明 SP 可以发挥心肌组织保护作用。因此,杨树桑黄有望成为一种新型抗糖尿病的食用菌,同时为杨树桑黄的功能性产品开发提供理论依据,为进一步探讨 SP 对糖尿病心肌损伤的保护机制提供一定的理论基础,但具体的作用机制还需要进行进一步研究。
-
图 5 杨树桑黄多糖对大鼠胰腺组织病理形态的影响(200×)
注:A:CN组,B:DM组,C:MET组,D:SPL组,E:SPM组,F:SPH组,图6同。
Figure 5. Effects of polysaccharide from S. vaninii on the pathological morphology of pancreatic tissue in rats (200×)
表 1 杨树桑黄多糖对大鼠体重的影响
Table 1 Effects of S.vaninii polysaccharide on body weight of rats
组别 体重 0 d 7 d 14 d 21 d 28 d CN 394.33±4.93Bc 404.33±7.77ABbc 409.00±12.49ABbc 421.33±15.01ABab 434.00±16.52Aa DM 469.33±56.54Aa 450.67±46.92Aa 438.00±45.53Aa 421.67±58.07Aa 410.00±60.03Aa MET 428.33±56.98Aab 456.33±17.39Aa 431.67±12.10Aab 414.00±8.54Aab 400.67±5.13Ab SPL 382.25±19.74Aa 401.25±41.24Aa 387.50±34.03Aa 378.50.32.38Aa 368.75±27.87Aa SPM 395.50±49.13Aa 443.50±61.34Aa 427.75±62.61Aa 412.50.±65.29Aa 396.50±60.35Aa SPH 394.25±45.23Aa 409.00±59.44Aa 395.50±59.79Aa 388.00±61.82Aa 376.75±57.09Aa 注:大写字母和小写字母皆表示数据之间横向比较具有差异,差异显著用不同小写字母表示(P<0.05),差异极显著用不同大写字母表示(P<0.01)。 -
[1] 戴玉成, 崔宝凯. 药用真菌桑黄种类研究[J]. 北京林业大学学报,2014,36(5):1−7. [DAI Y C, CUI B K. Progress on the species of medicinal fungus Inonotus sanghuang[J]. Journal of Beijing Forestry University,2014,36(5):1−7.] DAI Y C, CUI B K. Progress on the species of medicinal fungus Inonotus sanghuang[J]. Journal of Beijing Forestry University, 2014, 36(5): 1−7.
[2] 王雨阳, 李正鹏, 陈万超, 等. 栽培地域和木屑对瓦尼桑黄子实体化学成分及生物活性的影响[J]. 食用菌学报,2023,30(6):76−85. [WANG Y Y, LI Z P, CHEN W C, et al. Effects of cultivation area and sawdust type on chemical composition and biological activities of Sanghuangporus vaninii fruiting bodies[J]. Acta Edulis Fungi,2023,30(6):76−85.] WANG Y Y, LI Z P, CHEN W C, et al. Effects of cultivation area and sawdust type on chemical composition and biological activities of Sanghuangporus vaninii fruiting bodies[J]. Acta Edulis Fungi, 2023, 30(6): 76−85.
[3] LIN G L, LI Y Y, CHEN X H, et al. Extraction, structure and bioactivities of polysaccharides from Sanghuangporus spp.:A review[J]. Food Bioscience,2023,53:102587. doi: 10.1016/j.fbio.2023.102587
[4] 刘震, 侯万超, 牛华周, 等. 桑黄中黄嘌呤氧化酶抑制剂的筛选分离及质谱分析[J]. 中国食品添加剂,2023,34(12):8−17. [LIU Z, HOU W C, NIU H Z, et al. Screening, separation and mass spectrometry analysis of xanthine oxidase inhibitors in Phellinus igniarius[J]. China Food Additives,2023,34(12):8−17.] LIU Z, HOU W C, NIU H Z, et al. Screening, separation and mass spectrometry analysis of xanthine oxidase inhibitors in Phellinus igniarius[J]. China Food Additives, 2023, 34(12): 8−17.
[5] HUANG J, WANG K, ZUO S, et al. Unsaturated fatty acid promotes the production of triterpenoids in submerged fermentation of Sanghuangporus baumii[J]. Food Bioscience,2020,37:100712. doi: 10.1016/j.fbio.2020.100712
[6] ZHANG J J, CHEN B S, DAI H Q, et al. Sesquiterpenes and polyphenols with glucose-uptake stimulatory and antioxidant activities from the medicinal mushroom Sanghuangporus sanghuang[J]. Chinese Journal of Natural Medicines,2021,19(9):693−699. doi: 10.1016/S1875-5364(21)60101-2
[7] 祝梓旋, 张诗浩, 田兴, 等. 瓦尼桑黄核苷类成分的液体发酵工艺优化及其细胞毒活性[J]. 华中师范大学学报(自然科学版),2023,57(6):878−889. [ZHU Z X, ZHANG S H, TIAN X, et al. Optimization of liquid fermentation and cytotoxic activity of nucleosides from Sanghuangporus vaninii[J]. Joural of Central China Normal University (Nat. Sci),2023,57(6):878−889.] ZHU Z X, ZHANG S H, TIAN X, et al. Optimization of liquid fermentation and cytotoxic activity of nucleosides from Sanghuangporus vaninii[J]. Joural of Central China Normal University (Nat. Sci), 2023, 57(6): 878−889.
[8] 徐伟芳, 白国法, 杜佳慧, 等. 不同来源桑黄菌种的鉴定及主要化学成分比较[J]. 蚕学通讯,2023,43(1):27−35. [XU W F, BAI G F, DU J H, et al. Species identification of Sanghuang strains differing in origin and comparison of main chemical components[J]. Newsletter of Sericultural Science,2023,43(1):27−35.] doi: 10.3969/j.issn.1006-0561.2023.01.004 XU W F, BAI G F, DU J H, et al. Species identification of Sanghuang strains differing in origin and comparison of main chemical components[J]. Newsletter of Sericultural Science, 2023, 43(1): 27−35. doi: 10.3969/j.issn.1006-0561.2023.01.004
[9] 吴声华, 戴玉成. 药用真菌桑黄的种类解析[J]. 菌物学报,2020,39(5):781−794. [WU S H, DAI Y C. Species clarification of the medicinal fungus Sanghuang[J]. Mycosystema,2020,39(5):781−794.] WU S H, DAI Y C. Species clarification of the medicinal fungus Sanghuang[J]. Mycosystema, 2020, 39(5): 781−794.
[10] 侯伟男, 朝克吐, 图力古尔. 蒙古桑黄——中国桑黄孔菌属一新种[J]. 菌物学报,2023,42(4):874−882. [HOU W N, CHAO K T, TU L G E. A new species of Sanghuangporus (Hymenochaetales, Basidiomycota) from Inner Mongolia of China[J]. Mycosystema,2023,42(4):874−882.] HOU W N, CHAO K T, TU L G E. A new species of Sanghuangporus (Hymenochaetales, Basidiomycota) from Inner Mongolia of China[J]. Mycosystema, 2023, 42(4): 874−882.
[11] XIA Y J, YANG C Y, LIU X F, et al. Enhancement of triterpene production via in situ extractive fermentation of Sanghuangporus vaninii YC-1[J]. Biotechnology and Applied Biochemistry,2022,69(6):2561−2572. doi: 10.1002/bab.2305
[12] 宋吉玲. 杨树桑黄中活性成分及抗痛风作用机制研究[D]. 长春:长春师范大学, 2023. [SONG J L. Studies on the active constituents and anti-gout mechanism of Sanghuangporus vaninii[D]. Changchun:Changchun Normal University, 2023.] SONG J L. Studies on the active constituents and anti-gout mechanism of Sanghuangporus vaninii[D]. Changchun: Changchun Normal University, 2023.
[13] 杨焱, 陈晓华, 戴玉成, 等. 我国桑黄产业发展现状、问题及展望:桑黄产业发展千岛湖宣言[J]. 菌物学报,2023,42(4):855−873. [YANG Y, CHEN X H, DAI Y C, et al. Sanghuang industry in China:current status, challenges and perspectives:the Qiandao Lake declaration for sanghuang industry development[J]. Mycosystema,2023,42(4):855−873.] YANG Y, CHEN X H, DAI Y C, et al. Sanghuang industry in China: current status, challenges and perspectives: the Qiandao Lake declaration for sanghuang industry development[J]. Mycosystema, 2023, 42(4): 855−873.
[14] 张诗泉, 郭毓菲, 汪芷玥, 等. 茯苓液体发酵培养条件优化[J]. 食品工业,2020,41(4):135−138. [ZHANG S Q, GUO Y F, WANG Z Y, et al. Optimization of fermentation conditions for Poria cocos[J]. The Food Industry,2020,41(4):135−138.] ZHANG S Q, GUO Y F, WANG Z Y, et al. Optimization of fermentation conditions for Poria cocos[J]. The Food Industry, 2020, 41(4): 135−138.
[15] 刘海娟, 刘利娟, 郑素月, 等. 白灵菇液体发酵条件优化[J]. 北方园艺,2021(18):125−131. [LIU H J, LIU L J, ZHENG S Y, et al. Optimization of fermentation conditions for liquid spawn of Pleurotus nebrodensis[J]. Northern Horticulture,2021(18):125−131.] LIU H J, LIU L J, ZHENG S Y, et al. Optimization of fermentation conditions for liquid spawn of Pleurotus nebrodensis[J]. Northern Horticulture, 2021(18): 125−131.
[16] 李琪琪, 李天歌, 焦颖泽, 等. 具有DPP-Ⅳ抑制活性的酪蛋白糖肽分离纯化及其序列鉴定[J]. 中国乳品工业,2022,50(8):4−8,34. [LI Q Q, LI T G, JIAO Y Z, et al. Preparation and identification of casein glycopeptide with Dipeptidyl Peptidase-IV inhibitory activity[J]. China Dairy Industry,2022,50(8):4−8,34.] LI Q Q, LI T G, JIAO Y Z, et al. Preparation and identification of casein glycopeptide with Dipeptidyl Peptidase-IV inhibitory activity[J]. China Dairy Industry, 2022, 50(8): 4−8,34.
[17] 付姝颖. 基于骨骼肌和下丘脑转录组的急性运动改善GK大鼠高血糖的调控研究[D]. 广州:华南理工大学, 2022. [FU S Y. The regulatory study of acute exercise alleviating hyperglycemia in GK rats based on skeletal muscle and hypothalamic transcriptome[D]. Guangzhou:South China University of Technology, 2022.] FU S Y. The regulatory study of acute exercise alleviating hyperglycemia in GK rats based on skeletal muscle and hypothalamic transcriptome[D]. Guangzhou: South China University of Technology, 2022.
[18] 侯清涛, 李芸, 李舍予, 等. 全球糖尿病疾病负担现状[J]. 中国糖尿病杂志,2016,24(1):92−96. [HOU Q T, LI Y, LI S Y, et al. The global burden of diabetes mellitus[J]. Chinese Journal of Diabetes,2016,24(1):92−96.] doi: 10.3969/j.issn.1006-6187.2016.01.023 HOU Q T, LI Y, LI S Y, et al. The global burden of diabetes mellitus[J]. Chinese Journal of Diabetes, 2016, 24(1): 92−96. doi: 10.3969/j.issn.1006-6187.2016.01.023
[19] 郑尔昌, 邹金串, 薛成斌, 等. 糖尿病联合并发症发病风险计算与预测[J]. 华侨大学学报(自然科学版),2022,43(4):498−510. [ZHENG E C, ZOU J C, XUE C B, et al. Risk calculation and prediction of diabetes combined complications incidence[J]. Journal of Huaqiao University (Natural Science),2022,43(4):498−510.] doi: 10.11830/ISSN.1000-5013.202110012 ZHENG E C, ZOU J C, XUE C B, et al. Risk calculation and prediction of diabetes combined complications incidence[J]. Journal of Huaqiao University (Natural Science), 2022, 43(4): 498−510. doi: 10.11830/ISSN.1000-5013.202110012
[20] 郑敏, 李东密. 糖尿病心脏病的中药及其制备研究进展[J]. 广东化工,2023,50(20):62−63,71. [ZHENG M, LI D M. Research progress of chinese herbal and preparation method on the diabetic heat disease[J]. Guangdong Chemical Industry,2023,50(20):62−63,71.] doi: 10.3969/j.issn.1007-1865.2023.20.021 ZHENG M, LI D M. Research progress of chinese herbal and preparation method on the diabetic heat disease[J]. Guangdong Chemical Industry, 2023, 50(20): 62−63,71. doi: 10.3969/j.issn.1007-1865.2023.20.021
[21] MA C Y, LUO Y M, ZHANG T Y, et al. Predicting coronary heart disease in Chinese diabetics using machine learning[J]. Computers in Biology and Medicine,2024,169:107952. doi: 10.1016/j.compbiomed.2024.107952
[22] 柯爽, 李小娟. 从络论治消渴胸痹[J]. 实用中医内科杂志,2020,34(3):108−111. [KE S, LI X J. Treatment of xiaoke and chest painful impediment by collateral theory[J]. Journal of Practical Tradiyional Chinese Internal Medicine,2020,34(3):108−111.] KE S, LI X J. Treatment of xiaoke and chest painful impediment by collateral theory[J]. Journal of Practical Tradiyional Chinese Internal Medicine, 2020, 34(3): 108−111.
[23] YE Shiren, YE Jiangnan, YE Xinhua, et al. Interpretable prediction model for assessing diabetes complication risks in Chinese sufferers[J]. Diabetes Research and Clinical Practice,2024,209:111560. doi: 10.1016/j.diabres.2024.111560
[24] 王东, 陈庭燕, 周坤, 等. 糖化白蛋白与糖化血红蛋白对2型糖尿病患者冠状动脉疾病的影响分析[J]. 解放军医药杂志,2018,30(3):31−34. [WANG D, CHEN T Y, ZHOU K, et al. Effect analysis between glycated albumin and glycosylated hemoglobin on coronary artery diseasa in patiens with Type 2 Diabetes Mellitus[J]. Medical & Pharmaceutical Journal of Chinese People's Liberation Army,2018,30(3):31−34.] doi: 10.3969/j.issn.2095-140X.2018.03.008 WANG D, CHEN T Y, ZHOU K, et al. Effect analysis between glycated albumin and glycosylated hemoglobin on coronary artery diseasa in patiens with Type 2 Diabetes Mellitus[J]. Medical & Pharmaceutical Journal of Chinese People's Liberation Army, 2018, 30(3): 31−34. doi: 10.3969/j.issn.2095-140X.2018.03.008
[25] GHOSH N, FENTON S, VAN HOUT I, et al. Therapeutic knockdown of miR-320 improves deteriorated cardiac function in a pre-clinical model of non-ischemic diabetic heart disease[J]. Molecular Therapy - Nucleic Acids,2022,29:330−342. doi: 10.1016/j.omtn.2022.07.007
[26] 高菲菲, 高晟, 韩秀江, 等. 糖尿病性心脏病188例中医证候初步研究[J]. 内蒙古中医药,2023,42(5):152−154. [GAO F F, GAO S, HAN X J, et al. Preliminary study on tcm syndromes of 188 cases of diabetes heart disease[J]. Inner Mongolia of Traditional Chinese Medicine,2023,42(5):152−154.] GAO F F, GAO S, HAN X J, et al. Preliminary study on tcm syndromes of 188 cases of diabetes heart disease[J]. Inner Mongolia of Traditional Chinese Medicine, 2023, 42(5): 152−154.
[27] FENG H, ZHANG S, WAN J M F, et al. Polysaccharides extracted from Phellinus linteus ameliorate high-fat high-fructose diet induced insulin resistance in mice[J]. Carbohydrate Polymers,2018,200:144−153. doi: 10.1016/j.carbpol.2018.07.086
[28] HU T, LIN Q L, GUO T, et al. Polysaccharide isolated from Phellinus linteus mycelia exerts anti-inflammatory effects via MAPK and PPAR signaling pathways[J]. Carbohydrate Polymers,2018,200:487−497. doi: 10.1016/j.carbpol.2018.08.021
[29] 王朝瑞. 桑黄对糖尿病大鼠的干预效果及骨骼肌转录组学分析[D]. 武汉:华中农业大学, 2021. [WANG C R. Phellinus linteus intervention effect on diabetic rats and skeletal muscle transcriptomics analysis[D]. Wuhan:Huazhong Agricultural University, 2021.] WANG C R. Phellinus linteus intervention effect on diabetic rats and skeletal muscle transcriptomics analysis[D]. Wuhan: Huazhong Agricultural University, 2021.
[30] 刘梦凡, 殷朝敏, 张琪, 等. 比较3种杨树桑黄提取物体外抗氧化、降血糖和抑菌活性[J]. 食品安全质量检测学报,2024,15(3):18−25. [LIU M F, YIN C M, ZHANG Q, et al. Comparison of in vitro antioxidant, hypoglycemic and antibacterial activities of different extracts from 3 kinds of Sanghuangporus vaninii[J]. Journal of Food Safety and Quality,2024,15(3):18−25.] LIU M F, YIN C M, ZHANG Q, et al. Comparison of in vitro antioxidant, hypoglycemic and antibacterial activities of different extracts from 3 kinds of Sanghuangporus vaninii[J]. Journal of Food Safety and Quality, 2024, 15(3): 18−25.
[31] 王皓, 刘迪, 陈功鑫, 等. 桑黄发酵培养不同时期菌丝体胞内单糖组成比较[J]. 中国食用菌,2021,40(4):61−67,74. [WANG H, LIU D, CHEN G X, et al. Comparative research on monosaccharide composition of Sanghuangporus vaninii in different fermentation periods[J]. Edible Fungi of China,2021,40(4):61−67,74.] WANG H, LIU D, CHEN G X, et al. Comparative research on monosaccharide composition of Sanghuangporus vaninii in different fermentation periods[J]. Edible Fungi of China, 2021, 40(4): 61−67,74.
[32] 蒋洁莹, 刘瑾. 鬼箭羽对糖尿病大鼠心肌组织氧化应激损伤及NFE2L2/HMOX1信号通路的影响[J]. 中医药导报,2022,28(11):6−11. [JIANG J Y, LIU J. Effects of guijianyu (euonymi ramulus) on oxidative stress injury and NFE2L2/HMOX1 signaling pathway in myocardial tissue of diabetes mellitus rats[J]. Guiding Journal of Traditional Chinese Medicine and Pharmacy,2022,28(11):6−11.] JIANG J Y, LIU J. Effects of guijianyu (euonymi ramulus) on oxidative stress injury and NFE2L2/HMOX1 signaling pathway in myocardial tissue of diabetes mellitus rats[J]. Guiding Journal of Traditional Chinese Medicine and Pharmacy, 2022, 28(11): 6−11.
[33] 吴华英, 邓凯, 李静, 等. 益气活血方调控cAMP/Epac1/Rap1信号改善冠心病气虚血瘀证大鼠实验[J]. 中国实验方剂学杂志,2024,30(18):107−116. [WU H Y, DENG K, LI J, et al. Effect of Yiqi huoxue prescription on cAMP/Epac1/Rap1 signaling pathway in rats with qi deficiency and blood stasis syndrome of coronary heart disease[J]. Chinese Journal of Experimental Traditional Medical Formulae,2024,30(18):107−116.] WU H Y, DENG K, LI J, et al. Effect of Yiqi huoxue prescription on cAMP/Epac1/Rap1 signaling pathway in rats with qi deficiency and blood stasis syndrome of coronary heart disease[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2024, 30(18): 107−116.
[34] 刘颖. 桑黄通泻方对2型糖尿病模型大鼠心肌损伤的保护作用及机制[D]. 唐山:华北理工大学, 2023. [LIU Y. Protective effect and mechanism of Sanghuang Tongxie Formula on myocardial injury in type 2 diabetes model rats[D]. Tangshan:North China University of Science and Technology, 2023.] LIU Y. Protective effect and mechanism of Sanghuang Tongxie Formula on myocardial injury in type 2 diabetes model rats[D]. Tangshan: North China University of Science and Technology, 2023.
[35] 黄荣江, 辛文彬, 倪向敏, 等. 外用鱼油促进2型糖尿病大鼠伤口创面的愈合[J]. 陆军军医大学学报,2024,46(6):535−543. [HUANG R J, XIN W B, NI X M, et al. Topical fish oil accelerates wound healing in rats with Type 2 Diabetes Mellitus[J]. Journal of Army Medical University,2024,46(6):535−543.] HUANG R J, XIN W B, NI X M, et al. Topical fish oil accelerates wound healing in rats with Type 2 Diabetes Mellitus[J]. Journal of Army Medical University, 2024, 46(6): 535−543.
[36] 吴睿婷, 付王威, 万敏, 等. 黑灵芝多糖对糖尿病大鼠血糖血脂调节及肠道菌群的影响[J]. 食品科学,2022,43(5):91−102. [WU R T, FU W W, WAN M, et al. Effect of polysaccharide from Ganoderma atrum on hyperglycemia, blood lipid and gut microbiota of diabetic rats[J]. Food Science,2022,43(5):91−102.] doi: 10.7506/spkx1002-6630-20201203-046 WU R T, FU W W, WAN M, et al. Effect of polysaccharide from Ganoderma atrum on hyperglycemia, blood lipid and gut microbiota of diabetic rats[J]. Food Science, 2022, 43(5): 91−102. doi: 10.7506/spkx1002-6630-20201203-046
[37] HUI Y H, HUANG N H, EBBERT L, et al. Pharmacokinetic comparisons of tail-bleeding with cannula- or retro-orbital bleeding techniques in rats using six marketed drugs[J]. Journal of Pharmacological and Toxicological Methods,2007,56(2):256−264. doi: 10.1016/j.vascn.2007.05.006
[38] 赵洪强, 时敬爱, 王金权, 等. 大豆异黄酮调节Nrf2/HO-1信号通路对多囊卵巢综合征大鼠卵巢组织损伤的影响[J]. 中国药学杂志,2023,58(8):699−707. [ZHAO H Q, SHI J A, WANG J Q, et al. Impact of soy isoflavones on ovarian tissue damage in rats with polycystic ovary syndrome by regula-ting Nrf2/HO-1 signaling pathway[J]. Chinese Pharmaceutical Journal,2023,58(8):699−707.] doi: 10.11669/cpj.2023.08.007 ZHAO H Q, SHI J A, WANG J Q, et al. Impact of soy isoflavones on ovarian tissue damage in rats with polycystic ovary syndrome by regula-ting Nrf2/HO-1 signaling pathway[J]. Chinese Pharmaceutical Journal, 2023, 58(8): 699−707. doi: 10.11669/cpj.2023.08.007
[39] 胡涛. 桑黄多糖抗炎与降脂功能的评估及其分子机理研究[D]. 长沙:中南林业科技大学, 2020. [HU T. The anti-inflammation and lipid-lowering effects and the potential molecular mechanism of Phellinus linteus[D]. Changsha:Central South University of Forestry and Technology, 2020.] HU T. The anti-inflammation and lipid-lowering effects and the potential molecular mechanism of Phellinus linteus[D]. Changsha: Central South University of Forestry and Technology, 2020.
[40] 程教擘, 李延啸, 王楠楠, 等. 瓜尔豆胶甘露寡糖对链脲佐菌素诱导2型糖尿病小鼠的降血糖作用[J]. 食品科学:2024, 45(16):113−120. [CHENG J B, LI Y X, WANG N N, et al. Hypoglycemic effect of guar gum manno-oligosaccharides on streptozotocin-induced diabetic mice[J]. Food Science, 2024, 45(16):113−120.] CHENG J B, LI Y X, WANG N N, et al. Hypoglycemic effect of guar gum manno-oligosaccharides on streptozotocin-induced diabetic mice[J]. Food Science, 2024, 45(16): 113−120.
[41] 郑马亮, 徐燕琴, 叶晶珠, 等. 大黄黄连泻心汤治疗2型糖尿病临床研究[J]. 光明中医,2023,38(24):4819−4822. [ZHENG M L, XU Y Q, YE J Z, et al. Dahuang huanglian xiexin decoction in the treatment of Type 2 Diabetes Mellitus[J]. Guangming Journal of Chinese Medicine,2023,38(24):4819−4822.] doi: 10.3969/j.issn.1003-8914.2023.24.033 ZHENG M L, XU Y Q, YE J Z, et al. Dahuang huanglian xiexin decoction in the treatment of Type 2 Diabetes Mellitus[J]. Guangming Journal of Chinese Medicine, 2023, 38(24): 4819−4822. doi: 10.3969/j.issn.1003-8914.2023.24.033
[42] 杜樱洁, 冶岱蔚. 千金黄连丸及其拆方治疗2型糖尿病胰岛素抵抗的实验研究[J]. 新疆中医药,2012,30(4):6−9. [DU Y J, YE D W. Experimental study on Qianjin Huanglian Pill and its decomposed prescription in the treatment of insulin resistance in Type 2 diabetes Mellitus[J]. Xinjiang Journal of Traditional Chinese Medicine,2012,30(4):6−9.] doi: 10.3969/j.issn.1009-3931.2012.04.002 DU Y J, YE D W. Experimental study on Qianjin Huanglian Pill and its decomposed prescription in the treatment of insulin resistance in Type 2 diabetes Mellitus[J]. Xinjiang Journal of Traditional Chinese Medicine, 2012, 30(4): 6−9. doi: 10.3969/j.issn.1009-3931.2012.04.002
[43] 张琳, 董鹏, 李友芳, 等. 口服葡萄糖耐量试验负荷后1小时血糖筛查糖调节受损和糖尿病的最佳切点值及糖调节受损患者转归的随访研究[J]. 现代生物医学进展,2023,23(19):3642−3645,3677. [ZHANG L, DONG P, LI Y F, et al. The best cut-off point value of impaired glucose regulation and diabetes in blood glucose screening 1 h after oral glucose tolerance test loading and the follow-up study of patients with impaired glucose regulation[J]. Progress in Modern Biomedicine,2023,23(19):3642−3645,3677.] ZHANG L, DONG P, LI Y F, et al. The best cut-off point value of impaired glucose regulation and diabetes in blood glucose screening 1 h after oral glucose tolerance test loading and the follow-up study of patients with impaired glucose regulation[J]. Progress in Modern Biomedicine, 2023, 23(19): 3642−3645,3677.
[44] 黄雨澄, 董爱梅, 黄有媛, 等. 口服葡萄糖耐量试验中1小时血糖升高的意义研究进展[J]. 中国全科医学,2022,25(35):4468−4472. [HUANG Y C, DONG A M, HUANG Y Y, et al. A review on the significance of elevated 1-hour post-load plasma glucose during the oral glucose tolerance test[J]. Chinese General Practice,2022,25(35):4468−4472.] HUANG Y C, DONG A M, HUANG Y Y, et al. A review on the significance of elevated 1-hour post-load plasma glucose during the oral glucose tolerance test[J]. Chinese General Practice, 2022, 25(35): 4468−4472.
[45] 刘肖肖, 李强, 何洪波, 等. 通过口服葡萄糖耐量试验估算平均血糖的数学模型[J]. 第三军医大学学报,2021,43(21):2389−2394. [LIU X X, LI Q, HE H B, et al. A mathematical model to estimate mean blood glucose by oral glucose tolerance test[J]. Journal of Army Medical University,2021,43(21):2389−2394.] LIU X X, LI Q, HE H B, et al. A mathematical model to estimate mean blood glucose by oral glucose tolerance test[J]. Journal of Army Medical University, 2021, 43(21): 2389−2394.
[46] 高伟华, 刘鹭, 王芬, 等. 乳酸菌对高糖高脂2型糖尿病小鼠血脂的影响[J]. 食品科学,2019,40(9):179−187. [GAO W H, LIU L, WANG F, et al. Effect of Lactobacillus on blood lipids in Type 2 Diabetic Mice fed High-Glucose and High-Fat Diet[J]. Food Science,2019,40(9):179−187.] doi: 10.7506/spkx1002-6630-20180122-296 GAO W H, LIU L, WANG F, et al. Effect of Lactobacillus on blood lipids in Type 2 Diabetic Mice fed High-Glucose and High-Fat Diet[J]. Food Science, 2019, 40(9): 179−187. doi: 10.7506/spkx1002-6630-20180122-296
[47] TRITSCHLER S, THEIS F J, LICKERT H, et al. Systematic single-cell analysis provides new insights into heterogeneity and plasticity of the pancreas[J]. Molecular Metabolism,2017,6(9):974−990. doi: 10.1016/j.molmet.2017.06.021
[48] GU X M, SHI Y J, CHEN X J, et al. Isoliquiritigenin attenuates diabetic cardiomyopathy via inhibition of hyperglycemia-induced inflammatory response and oxidative stress[J]. Phytomedicine,2020,78:153319. doi: 10.1016/j.phymed.2020.153319
[49] DING T Q, WEN B, CHEN J, et al. Excess homocysteine inhibits pancreatic β-cell secretory function by repressing Zbtb20 expression[J]. Molecular and Cellular Endocrinology,2024,586:112195. doi: 10.1016/j.mce.2024.112195
[50] 魏柯健, 俞静静, 苏洁, 等. 探讨保元汤加减方通过AMPK/SIRT1/PGC-1α通路对小鼠的抗疲劳作用[J]. 北京中医药大学学报,2023,46(12):1716−1727. [WEI K J, YU J J, SU J, et al. Study on the anti-fatigue effect of modified Baoyuan Decoction through the AMPK/SIRT1/PGC-1α pathway[J]. Journal of Beijing University of Traditional Chinese Medicine,2023,46(12):1716−1727.] doi: 10.3969/j.issn.1006-2157.2023.12.012 WEI K J, YU J J, SU J, et al. Study on the anti-fatigue effect of modified Baoyuan Decoction through the AMPK/SIRT1/PGC-1α pathway[J]. Journal of Beijing University of Traditional Chinese Medicine, 2023, 46(12): 1716−1727. doi: 10.3969/j.issn.1006-2157.2023.12.012
[51] FARIA A, PERSAUD S J. Cardiac oxidative stress in diabetes:Mechanisms and therapeutic potential[J]. Pharmacology & Therapeutics,2017,172:50−62.
[52] YANG T G, ZHANG D Q. Research progress on the effects of novel hypoglycemic drugs in diabetes combined with myocardial ischemia/reperfusion injury[J]. Ageing Research Reviews,2023,86:101884. doi: 10.1016/j.arr.2023.101884