• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020

基于反演法计算不同温度下小麦面团的水分扩散系数

李望铭 马荣琨 贾庆超 张杰 赵学伟

李望铭,马荣琨,贾庆超,等. 基于反演法计算不同温度下小麦面团的水分扩散系数[J]. 食品工业科技,2023,44(11):111−117. doi:  10.13386/j.issn1002-0306.2022070354
引用本文: 李望铭,马荣琨,贾庆超,等. 基于反演法计算不同温度下小麦面团的水分扩散系数[J]. 食品工业科技,2023,44(11):111−117. doi:  10.13386/j.issn1002-0306.2022070354
LI Wangming, MA Rongkun, JIA Qingchao, et al. Calculation of Moisture Diffusivity of Wheat Dough at Different Temperatures Based on Inversion Method[J]. Science and Technology of Food Industry, 2023, 44(11): 111−117. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022070354
Citation: LI Wangming, MA Rongkun, JIA Qingchao, et al. Calculation of Moisture Diffusivity of Wheat Dough at Different Temperatures Based on Inversion Method[J]. Science and Technology of Food Industry, 2023, 44(11): 111−117. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022070354

基于反演法计算不同温度下小麦面团的水分扩散系数

doi: 10.13386/j.issn1002-0306.2022070354
详细信息
    作者简介:

    李望铭(1994−),男,硕士,助教,研究方向:速冻面制品加工,食品加工过程模拟,E-mail:a551722069@163.com

  • 中图分类号: TS213.2

Calculation of Moisture Diffusivity of Wheat Dough at Different Temperatures Based on Inversion Method

  • 摘要: 水分扩散系数是食品加工过程中重要的物理参数。估算水分扩散系数的主要方法是基于第二菲克定律,但在应用这些定律的方式上存在显著差异。本研究采用Peleg、Weibull、双指数这三种常用的食品水分吸附动力学模型拟合了冻干面团在20、30及40 ℃时的吸湿曲线。在此基础上,通过COMSOL软件分别建立了瞬时平衡、对流、平行指数边界三种条件下的面团吸湿模型,并通过反演法计算出对应模型下的水分扩散系数。结果表明,Weibull模型和双指数模型决定系数均在0.999以上,较为适合冻干面团吸湿曲线的拟合;平行指数边界模型能较好的模拟出不同温度条件下冻干面团的吸附水分变化规律。同时证明了水分扩散系数随温度升高而变大,且不能被当作一个常数。
  • 1  冻干圆柱体面团在不同温度下的吸湿曲线及三个模型的拟合曲线

    1.  Moisture absorption curves of freeze-dried cylindrical dough at different temperatures and fitted curves of three models

    图  2  三种模型在不同温度下水分含量的变化

    Figure  2.  Variation of moisture content of three models at different temperatures

    图  3  不同温度下平行指数模型的水分扩散系数随面团内水分浓度的变化

    Figure  3.  Variation of moisture diffusivity under parallel exponential model with water concentration in dough at different temperatures

    图  4  平行指数模型(20 ℃)在0、15000、30000、57600 s的水分分布

    Figure  4.  Water distribution of parallel exponential model (20 ℃) at 0, 15000, 30000, 57600 s

    图  5  水分扩散系数为常数对吸附水分的影响

    Figure  5.  Effects of constant moisture diffusivity on adsorbed water

    表  1  3种模型拟合吸湿曲线所得的参数及分析指标

    Table  1.   Parameters and analytical indexes obtained by fitting the moisture absorption curves of three models

    模型参数温度(℃)
    203040
    PelegMe(kg)6.19×10−56.63×10−57.07×10−5
    k14302.698024.525940.25
    R20.99480.99430.9933
    SSE8.85×10−107.32×10−109.54×10−10
    WeibullMe(kg)5.18×10−55.18×10−56.01×10−5
    a1.080.990.98
    b15362.9510129.427866.26
    R20.99990.99980.9997
    SSE1.98×10−112.07×10−113.97×10−11
    双指数k/a11.6511.6511.65
    b5.83×10−54.94×10−55.70×10−5
    c-9.08×10−122.33×10−124.27×10−12
    d5.73×10−51.02×10−41.33×10−4
    R20.99990.99990.9998
    SSE2.33×10−111.61×10−112.78×10−11
    下载: 导出CSV

    表  2  三种边界条件模型参数值

    Table  2.   Values of some parameters in the three boundary models

    温度(℃)瞬时边界对流边界平行指数边界
    D0(m2/s)kD0(m2/s)kkvD0(m2/s)kτ
    201.04×10−80.03111.18×10−80.03290.00095.83×10−80.025214548
    301.72×10−80.03361.29×10−80.04160.00117.72×10−80.03059589
    404.83×10−80.04091.8×10−80.04290.00129.49×10−80.03197158
    下载: 导出CSV
  • [1] 张梦超. 非油炸方便型马铃薯热干面的品质改良及其干燥特性研究[D]. 武汉: 华中农业大学, 2019

    ZHANG M C. Study on the quality improvement and drying characteristics of non-fried instant potato hot dry noodles[D]. Wuhan: Huazhong Agricultural University, 2019.
    [2] GONZALEZ J E, LOPEZ E M, OCHOA C E, et al. Mass transfer and morphometric characteristics of fresh and osmodehydrated white mushroom pilei during convective drying[J]. Journal of Food Engineering,2019,262(12):181−188.
    [3] KAVEH M, JAHANBAKHSHI A, ABBASPOUR G Y, et al. The effect of ultrasound pre-treatment on quality, drying, and thermodynamic attributes of almond kernel under convective dryer using ANNs and ANFIS network[J]. Journal of Food Process Engineering,2018,41(7):1−14.
    [4] FRANCISCO J T, CHAIYAN W, PHAM Q T. Drying modeling and water diffusivity in beef meat[J]. Journal of Food Engineering,2007,78(1):74−85. doi:  10.1016/j.jfoodeng.2005.09.010
    [5] KHAN M I, KUMAR C, JOARDDER M U, et al. Determination of appropriate effective diffusivity for different food materials[J]. Drying Technology,2016,29(4):335−346.
    [6] BARROZO M A, SOUZA A M, COSTA S M, et al. Simultaneous heat and mass transfer between air and soybean seeds in a concurrent moving bed[J]. International Journal of Food Science and Technology,2001,36(4):393−399. doi:  10.1046/j.1365-2621.2001.00470.x
    [7] TARMIAN A, REMOND R, DASHTI H, et al. Moisture diffusion coefficient of reaction woods: compression wood of Picea abies L. and tension wood of Fagus sylvatica L.[J]. Wood Science and Technology,2012,10(3):405−417.
    [8] KARATHANOS V T, VILLOALOBOS G, SARAVACOS G D, et al. Comparison of two methods of estimation of the effective moisture diffusivity from drying data[J]. Journal of Food Science,1990,55(1):218−223. doi:  10.1111/j.1365-2621.1990.tb06056.x
    [9] HAMDAMI N, MONTEAU J, BAIL A L, et al. Moisture diffusivity and water activity of part-baked bread at above and sub-freezing temperatures[J]. International Journal of Food Science and Technology,2006,41(1):33−44. doi:  10.1111/j.1365-2621.2005.00984.x
    [10] 李望铭, 赵学伟, 张艳艳, 等. 反演法求小麦面团在冻结温度范围内的热导率[J]. 食品工业科技,2020,41(1):1−5. [LI W M, ZHAO X W, ZHANG Y Y, et al. Thermal conductivity of wheat flour dough determined by an inversion method within freezing temperature[J]. Science and Technology of Food Industry,2020,41(1):1−5.
    [11] KIANI H, KARIMI F, LABBAFI M, et al. A novel inverse numerical modeling method for the estimation of water and salt mass transfer coefficients during ultrasonic assisted-osmotic dehydration of cucumber cubes[J]. Ultrasonics Sonochemistry,2018,44(3):171−180.
    [12] FABBRI A, CEVOLI C, TRONCOSO R, et al. Moisture diffusivity coefficient estimation in solid food by inversion of a numerical model[J]. Food Research International,2014,56:63−67. doi:  10.1016/j.foodres.2013.12.002
    [13] THORELL A, WADOSO L, et al. Determination of external mass transfer coefficients in dynamic sorption (DVS) measurements[J]. Drying Technology: An International Journal,2018,26(6):139−157.
    [14] 张华, 段瑞谦, 赵学伟, 等. 根据等温吸附模型进行水分状态分析的可行性—以糯米粉的水分解吸为例[J]. 食品科学,2018,39(5):57−66. [ZHANG H, DUAN R Q, ZHAO X W, et al. Feasibility of characterizing water states based on isothermal adsorption models: A case study of water desorption of glutinous rice flour[J]. Food Science,2018,39(5):57−66. doi:  10.7506/spkx1002-6630-201805009
    [15] 杨薇, 王雅洁, 汤成成, 等. 三七提取物吸湿性及其数学模型研究[J]. 中药材,2018,41(3):670−676. [YANG W, WANG Y J, TANG C C, et al. Study on hygroscopicity and mathematical models of panax notoginseng extract[J]. Journal of Chinese Medicinal Materials,2018,41(3):670−676.
    [16] ZHU G, JIN Q, LIU Y, et al. Moisture sorption and thermodynamic properties of Camellia oleifera seeds as influenced by oil content[J]. International Journal of Agricultural and Biological Engineering,2021,14(1):251−258. doi:  10.25165/j.ijabe.20211401.5457
    [17] 张雪峰, 黎斌, 彭桂兰, 等. 种用油菜籽真空干燥动力学特性及对Weibull模型的解析[J]. 食品与发酵工业,2019,45(4):66−73. [ZHANG X F, LI B, PENG G L, et al. Analysis of vacuum drying kinetics of rapeseed and analysis of Weibull model[J]. Food and Fermentation Industries,2019,45(4):66−73.
    [18] 韩鹏军, 薛志峰, 张丽娜, 等. 3种中药颗粒剂的吸湿性及数学模型拟合[J]. 天津中医药大学学报,2018,37(4):326−331. [HAN P J, XUE Z F, ZHANG L N, et al. Mathematical model fitting and moisture adsorption kinetics of three kinds of traditional Chinese herbal granule[J]. Journal of Tianjin University of Traditional Chinese Medicine,2018,37(4):326−331.
    [19] GREIBY I, MISHRA D K, DOLAN K D, et al. Inverse method to sequentially estimate temperature-dependent thermal conductivity of cherry pomace during nonisothermal heating[J]. Journal of Food Engineering,2014,12(7):6−23.
    [20] LONG F A, RICHMAN D. Concentration gradients for diffusion of vapors in glassy polymers and their relation to time dependent diffusion phenomena[J]. Journal of the American Chemical Society,1960,82(7):513−519.
    [21] 蒋超, 刘显茜, 蒋仕飞, 等. Crank公式估算豌豆水分扩散系数可靠性分析[J]. 新技术新工艺,2014,1(6):128−131. [JIANG C, LIU X X, JIANG S F, et al. Estimation and reliability analysis of moisture diffusion coefficient[J]. New Technology and New Process,2014,1(6):128−131. doi:  10.3969/j.issn.1003-5311.2014.06.041
    [22] ZAIHAN J, HILL C A, CURLING S F, et al. The kinetics of water vapour sorption: Analysis using parallel exponential kinetics model on six Malaysian hardwoods[J]. Journal of Tropical Forest Science,2010,22(2):107−117.
    [23] KOHLER R, DUCK R, AUSPERGER B, et al. A numeric model for the kinetics of water vapor sorption on cellulosic reinforcement fibers[J]. Composite Interfaces,2003,10(2):255−276.
    [24] OLEK W, PERRE P, WERES J, et al. Inverse analysis of the transient bound water diffusion in wood[J]. Holzforschung,2005,59(1):38−45. doi:  10.1515/HF.2005.007
    [25] 牛利娇. 吸湿多孔物料冷冻干燥多相传递模型[D]. 大连: 大连理工大学, 2017

    NIU L J. Multiphase transport model for freeze-drying of hygroscopic porous media[D]. Dalian: Dalian University of Technology, 2017.
    [26] 王鹤, 慕松, 吴俊, 等. 基于Weibull分布函数的枸杞微波干燥过程模拟及应用[J]. 现代食品科技,2018,34(1):141−147. [WANG H, MU S, WU J, et al. Application and modeling microwave drying of Chinese wolfberry based on Weibull distribution[J]. Modern Food Science & Technology,2018,34(1):141−147. doi:  10.13982/j.mfst.1673-9078.2018.1.022
    [27] ZHAO X W, LI W M, ZHANG H, et al. Reaction-diffusion approach to modeling water diffusion in glutinous rice flour particles during dynamic vapor adsorption[J]. Journal of Food Science and Technology-mysore,2019,56(10):4605−4615. doi:  10.1007/s13197-019-03925-0
    [28] 李望铭. 水饺皮, 馅的物性测定及水饺浸渍冷冻过程模拟[D]. 郑州: 郑州轻工业大学, 2020

    LI W M. Determination of the physical properties of wrappers and fillings of dumplings and simulation of immersion freezing process of dumplings[D]. Zhengzhou: Zhengzhou University of Light Industry, 2020.
    [29] ZHAO X W, LI W M, ZHANG H, et al. Disparate dynamic viscoelastic responses of wheat flour doughs coated with different oils for preventing water evaporation during time sweeps and their mechanisms decoupled[J]. Journal of Food Science and Technology,2019,56(3):462−472.
    [30] WADSO L. Unsteady-state water vapor adsorption in wood: An experimental study[J]. Wood and Fiber Science,1994,26(1):36−50.
    [31] OLEK W, WERES J. Effects of the method of identification of the diffusion coefficient on accuracy of modeling bound water transfer in wood[J]. Transport in Porous Media,2007,66(1):135−144.
    [32] CHEN C, VENKITASAMY C, ZHANG W, et al. Effective moisture diffusivity and drying simulation of walnuts under hot air[J]. International Journal of Heat and Mass Transfer,2020,150(3):113−122.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  79
  • HTML全文浏览量:  20
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-02
  • 网络出版日期:  2023-04-20
  • 刊出日期:  2023-06-01

目录

    /

    返回文章
    返回