• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
谷传凯,褚璇,刘洪利,等. 基于高光谱技术的金线莲多糖与黄酮含量的无损检测[J]. 食品工业科技,2025,46(7):1−9. doi: 10.13386/j.issn1002-0306.2023100154.
引用本文: 谷传凯,褚璇,刘洪利,等. 基于高光谱技术的金线莲多糖与黄酮含量的无损检测[J]. 食品工业科技,2025,46(7):1−9. doi: 10.13386/j.issn1002-0306.2023100154.
GU Chuankai, CHU Xuan, LIU Hongli, et al. Non-destructive Detection of Polysaccharide and Flavonoid Contents in Anoectochilus roxburghii Using Hyperspectral Technology[J]. Science and Technology of Food Industry, 2025, 46(7): 1−9. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023100154.
Citation: GU Chuankai, CHU Xuan, LIU Hongli, et al. Non-destructive Detection of Polysaccharide and Flavonoid Contents in Anoectochilus roxburghii Using Hyperspectral Technology[J]. Science and Technology of Food Industry, 2025, 46(7): 1−9. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023100154.

基于高光谱技术的金线莲多糖与黄酮含量的无损检测

Non-destructive Detection of Polysaccharide and Flavonoid Contents in Anoectochilus roxburghii Using Hyperspectral Technology

  • 摘要: 为了无损、快速地实现金线莲叶片中多糖与黄酮含量水平的判别,本研究以在不同光周期下(10、12、14、16、18、20 h/d)栽培的金线莲为样本,通过高光谱技术获取叶片像素光谱数据,运用传统机器学习(PCA-LDA与PCA-SVM)与深度学习方法(1D CNN及其优化方法)构建了相应的判别模型。结果表明,1D CNN模型在训练集、验证集与独立测试集上的判别准确率优于PCA-LDA与PCA-SVM模型,分别为99.99%与99.89%,99.98%与99.78%,91.62%与87.92%。通过在1D CNN模型中引入Dropout层,模型的泛化能力得到增强,多糖与黄酮含量水平在独立验证集上的判别准确率分别提升至98.92%与95.67%。基于此,本研究进一步构建了多糖与黄酮含量水平的可视化图像,通过颜色直观展示了不同含量水平的判别结果。研究证实了高光谱技术可用于评估金线莲叶片中多糖与黄酮的含量水平,研究结果可为金线莲的品质控制提供技术支撑。

     

    Abstract: This study aimed to rapidly and non-destructively evaluate the levels of polysaccharides and flavonoids in A. roxburghii leaves under various photoperiods (10, 12, 14, 16, 18, and 20 h/d). Hyperspectral imaging was employed to acquire pixel-level spectral data from the leaves, and discriminant models for content levels were developed using traditional machine learning methods (PCA-LDA and PCA-SVM) and deep learning approaches (1D CNN and its optimized version). The findings revealed that the 1D CNN model outperforms the PCA-LDA and PCA-SVM models in terms of discrimination accuracy on the training, validation, and independent test sets, achieving 99.99% and 99.89%, 99.98% and 99.78%, and 91.62% and 87.92%, respectively. The introduction of a Dropout layer in the 1D CNN model enhances its generalization capability, increasing the discrimination accuracy for polysaccharide and flavonoid content levels on the independent test set to 98.92% and 95.67%, respectively. Additionally, visualization images depicting the discrimination results for different compound levels were constructed, providing an intuitive representation. This study validates the feasibility of hyperspectral imaging in evaluating polysaccharide and flavonoid levels in A. roxburghii leaves cultivated under various photoperiods, and the research results can provide technical support for the quality control of A. roxburghii.

     

/

返回文章
返回