• 中国科技期刊卓越行动计划项目资助期刊
  • 中国精品科技期刊
  • EI
  • Scopus
  • CAB Abstracts
  • Global Health
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国科技核心期刊CSTPCD
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国开放获取期刊数据库COAJ
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
江睿钊,赵源,石林凡,等. 发酵谷朊粉对大豆分离蛋白膜理化性质的影响[J]. 食品工业科技,2025,46(11):93−99. doi: 10.13386/j.issn1002-0306.2024060238.
引用本文: 江睿钊,赵源,石林凡,等. 发酵谷朊粉对大豆分离蛋白膜理化性质的影响[J]. 食品工业科技,2025,46(11):93−99. doi: 10.13386/j.issn1002-0306.2024060238.
JIANG Ruizhao, ZHAO Yuan, SHI Linfan, et al. Effect of Fermented Wheat Gluten on the Physicochemical Properties of Soy Protein Isolate Films[J]. Science and Technology of Food Industry, 2025, 46(11): 93−99. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024060238.
Citation: JIANG Ruizhao, ZHAO Yuan, SHI Linfan, et al. Effect of Fermented Wheat Gluten on the Physicochemical Properties of Soy Protein Isolate Films[J]. Science and Technology of Food Industry, 2025, 46(11): 93−99. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024060238.

发酵谷朊粉对大豆分离蛋白膜理化性质的影响

Effect of Fermented Wheat Gluten on the Physicochemical Properties of Soy Protein Isolate Films

  • 摘要: 为改良大豆分离蛋白(soy protein isolate,SPI)膜的性质,利用发酵时间为0、2、4、8和24 h的谷朊粉(wheat gluten,WG)与SPI制备复合膜。通过测定膜的微观结构、傅里叶红外光谱、机械性能、水蒸气透过率和热稳定性等指标,探究不同发酵时间的WG对WG-SPI膜理化性质的影响。WG-SPI膜下表面的球形颗粒随WG发酵时间的延长逐渐消失,且含有发酵4 h WG的复合膜具有致密的网络结构。WG-SPI膜在傅里叶变换红外光谱中的酰胺A带吸收峰强度随着WG发酵时间的延长呈先增加后降低的趋势。随着WG发酵时间的增加,WG的高分子量聚合物(high-molecular-weight aggregate,HMWA)条带逐渐减弱,而在干燥形成的WG-SPI膜中HMWA条带呈先增强后减弱的趋势。当WG发酵时间从0 h延长至24 h时,WG-SPI膜的a*值从−3.24逐渐升高至-2.84,b*值从15.02降低至12.19。添加发酵4 h WG制备的WG-SPI膜的抗拉伸强度、上表面接触角和玻璃化转变温度分别达到4.99 MPa、99.67°和59.73 ℃的最高值,水蒸气透过率、透明度值和溶解度分别达到1.34×10−10 g·m−1·s−1·Pa−1、2.11和6.42%的最低值。研究结果表明,利用发酵处理4 h的WG能改善WG-SPI膜的抗拉伸强度、水蒸气阻隔能力和热稳定性,这将为利用WG改良SPI膜的理化性质提供新思路。

     

    Abstract: To improve the properties of soy protein isolate (SPI) films, composite films of wheat gluten (WG) and SPI were prepared with fermentation times of 0, 2, 4, 8 and 24 h. The effects of fermentation time on the physicochemical properties of the WG-SPI films were investigated through microstructural analysis of the material, Fourier transformed infrared spectroscopy, and measurements of mechanical properties, water vapor permeability and thermal stability. Spherical particles observed on the lower surface of the WG-SPI films gradually disappeared with increasing WG fermentation time. The WG-SPI films exhibited a dense network structure when WG was fermented for 4 h. The peak intensity of amide A in the WG-SPI films initially increased and then decreased as the WG fermentation time increased. With extended WG fermentation time, the intensity of the high-molecular-weight aggregate (HMWA) band in WG decreased, whereas that of the HMWA bands in WG-SPI films formed by drying first increased and then decreased. Over the fermentation period from 0 to 24 h for WG, the a* value of the WG-SPI films gradually increased from −3.24 to −2.84, while the b* value decreased from 15.02 to 12.19. The tensile strength, contact angle of the upper surface, and glass transition temperature of the WG-SPI films reached their maximum values—4.99 MPa, 99.67° and 59.73 ℃, respectively—when WG was fermented for 4 h. In contrast, the water vapor permeability, transparency value and solubility decreased to minimum values: 1.34×10−10 g·m−1·s−1·Pa−1, 2.11 and 6.42%, respectively. These results suggest that the addition of 4 h fermented WG significantly improves the physiochemical properties of SPI films, particularly in terms of tensile strength, water vapor permeability and thermal stability. This study provides a novel approach for enhancing the physicochemical properties of SPI films.

     

/

返回文章
返回