• 中国科技期刊卓越行动计划项目资助期刊
  • 中国精品科技期刊
  • 首都科技期刊卓越行动计划
  • EI
  • Scopus
  • CAB Abstracts
  • Global Health
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国科技核心期刊CSTPCD
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国开放获取期刊数据库COAJ
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
李民,杨展,刘凯龙,等. 发酵体系pH控制对短双歧杆菌分裂周期的影响J. 食品工业科技,2025,46(18):232−239. doi: 10.13386/j.issn1002-0306.2024110022.
引用本文: 李民,杨展,刘凯龙,等. 发酵体系pH控制对短双歧杆菌分裂周期的影响J. 食品工业科技,2025,46(18):232−239. doi: 10.13386/j.issn1002-0306.2024110022.
LI Min, YANG Zhan, LIU Kailong, et al. Effect of pH Control in Fermentation System on Division Cycle of Bifidobacterium breveJ. Science and Technology of Food Industry, 2025, 46(18): 232−239. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024110022.
Citation: LI Min, YANG Zhan, LIU Kailong, et al. Effect of pH Control in Fermentation System on Division Cycle of Bifidobacterium breveJ. Science and Technology of Food Industry, 2025, 46(18): 232−239. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024110022.

发酵体系pH控制对短双歧杆菌分裂周期的影响

Effect of pH Control in Fermentation System on Division Cycle of Bifidobacterium breve

  • 摘要: pH控制是双歧杆菌高密度培养过程中关键的调控手段之一,但关于pH调控菌体分裂增殖机制的研究较少。本研究以短双歧杆菌B2798为研究对象,基于细胞增殖荧光探针(Carboxyfluorescein Diacetate,Succinimidyl ester,CFDA-SE)对菌体细胞进行标记,采用流式细胞术检测该菌株在不同发酵体系pH条件下的菌体分裂进程,采用实时荧光定量PCR(Real-time Quantitative Polymerase Chain Reaction,qPCR)技术对菌体分裂过程中关键基因进行定量检测,探究不同发酵体系pH对其分裂周期的影响。结果表明:在pH5.30的发酵体系中菌体分裂数可达7次,高于其他pH条件的试验组,进一步测定活菌数达(1.39±0.04)×1010 CFU/mL,显著大于其他pH条件试验组(P<0.05),说明在此pH条件下菌体不仅分裂旺盛,且存活率高。发酵体系pH5.30时,分裂相关基因ftsZ与sepF表达量较pH6.30试验组显著上调61.86%与131.36%(P<0.05),较pH4.30组显著上调78.13%和80.31%(P<0.05)。综上所述,发酵体系pH通过调控菌体分裂,影响活菌数量以及调控分裂相关基因的表达,共同作用形成了一个有利于菌体快速分裂增殖的环境,为精准发酵提供理论支持。

     

    Abstract: pH control was a key regulatory strategy in the high-density cultivation of Bifidobacteria. However, research into the mechanisms by which pH regulates cell division and proliferation remains limited. In this study, Bifidobacterium breve B2798 was used as the model organism. Cells were labeled with the fluorescent proliferation probe Carboxyfluorescein diacetate succinimidylester (CFDA-SE), and flow cytometry was utilized to monitor bacterial division dynamics under varying fermentation pH conditions. Quantitative real-time PCR (qPCR) was applied to measure the expression levels of key genes involved in cell division, aiming to investigate the influence of fermentation pH on its division cycle. The results showed that at a fermentation pH of 5.30, cells underwent up to 7 division cycles, a higher number than observed at other pH levels. The viable cell count at this pH was (1.39±0.04)×1010 CFU/mL, significantly higher than that at other pH (P<0.05), indicating that cells not only divide actively but also maintain high viability. At pH5.30, the expression of division-related genes ftsZ and sepF was upregulated by 61.86% and 131.36%, respectively, compared to pH6.30 (P<0.05), and by 78.13% and 80.31%, respectively, compared to pH4.30 (P<0.05). In conclusion, fermentation pH regulates cell division by influencing viable cell counts and regulating the expression of division-related genes, collectively creating an optimal environment for rapid cellular proliferation. This mechanistic insight provides theoretical support for precision fermentation in achieving high-density cultivation and yield optimizatio

     

/

返回文章
返回