• 中国科技期刊卓越行动计划项目资助期刊
  • 中国精品科技期刊
  • EI
  • Scopus
  • CAB Abstracts
  • Global Health
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国科技核心期刊CSTPCD
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国开放获取期刊数据库COAJ
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
邹加利,吕俊丽,云月英,等. 没食子酸对α-淀粉酶的抑制机理[J]. 食品工业科技,2025,46(20):107−113. doi: 10.13386/j.issn1002-0306.2024110032.
引用本文: 邹加利,吕俊丽,云月英,等. 没食子酸对α-淀粉酶的抑制机理[J]. 食品工业科技,2025,46(20):107−113. doi: 10.13386/j.issn1002-0306.2024110032.
ZOU Jiali, LÜ Junli, YUN Yueying, et al. Mechanism of α-Amylase Inhibition by Gallic Acid[J]. Science and Technology of Food Industry, 2025, 46(20): 107−113. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024110032.
Citation: ZOU Jiali, LÜ Junli, YUN Yueying, et al. Mechanism of α-Amylase Inhibition by Gallic Acid[J]. Science and Technology of Food Industry, 2025, 46(20): 107−113. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024110032.

没食子酸对α-淀粉酶的抑制机理

Mechanism of α-Amylase Inhibition by Gallic Acid

  • 摘要: 为了探究没食子酸对α-淀粉酶的抑制特性,本研究通过抑制率、紫外光谱、荧光光谱及分子对接等方法研究了没食子酸对α-淀粉酶的抑制效果及其机制。结果表明,没食子酸对α-淀粉酶具有明显的抑制作用,IC50为0.06 mmol/L。紫外光谱显示,没食子酸的质量浓度从0.6×10−3 mol/L逐渐增加到1.2×10−3 mol/L,α-淀粉酶特征峰的位置并未发生明显偏移,但吸收峰的强度明显上升。通过荧光光谱发现,没食子酸与α-淀粉酶之间有1个结合位点,猝灭机制为静态猝灭。在1.2×10−3 mol/L浓度下,310 K时的荧光猝灭率比298 K时的荧光猝灭率下降了19.87%。热力学参数ΔH为318.08 kJ·mol−1、ΔS为1096.85 J·mol−1·K−1,没食子酸与α-淀粉酶之间存在疏水作用。分子对接结果显示,没食子酸与α-淀粉酶之间存在氢键、范德华力与疏水作用。以上结果不仅证实了没食子酸对α-淀粉酶的显著抑制作用(P<0.05),还通过多种实验方法揭示了其抑制机制,为Ⅱ型糖尿病患者功能食品的开发提供了理论依据。

     

    Abstract: To investigate the inhibitory properties of gallic acid on α-amylase, the inhibitory effect and mechanism of gallic acid on α-amylase were studied by means of inhibition rate, ultraviolet (UV) spectrum, fluorescence spectrum and molecular docking. Results showed that, gallic acid exhibited a significant inhibitory effect on α-amylase, with an IC50 value of 0.06 mmol/L. UV spectral analysis revealed that as the concentration of gallic acid increased from 0.6×10−3 mol/L to 1.2×10−3 mol/L, the position of the characteristic peak of α-amylase remained relatively unchanged, while the intensity of the absorption peak increased notably. Fluorescence spectroscopy demonstrated the presence of a binding site between gallic acid and α-amylase, with the quenching mechanism identified as static quenching. At a concentration of 1.2×10−3 mol/L, the fluorescence quenching rate at 310 K was 19.87% lower than at 298 K. Thermodynamic parameters, ΔH=318.08 kJ·mol−1 and ΔS=1096.85 J·mol−1·K−1, suggested a hydrophobic interaction between gallic acid and α-amylase. Molecular docking results further confirmed the presence of hydrogen bonds, van der Waals forces, and hydrophobic interactions between gallic acid and α-amylase. The aforementioned findings not only corroborated the substantial inhibitory effect of gallic acid on α-amylase (P<0.05), but also elucidated its inhibitory mechanism through diverse experimental methodologies. This research offers a theoretical foundation for the development of functional foods aimed at individuals with type Ⅱ diabetes.

     

/

返回文章
返回