• 中国科技期刊卓越行动计划项目资助期刊
  • 中国精品科技期刊
  • EI
  • Scopus
  • CAB Abstracts
  • Global Health
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国科技核心期刊CSTPCD
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国开放获取期刊数据库COAJ
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
胡方洋,张得祥,何玲玲,等. 芒果不同组织部位膳食纤维含量及凝胶性质[J]. 食品工业科技,2025,46(20):309−318. doi: 10.13386/j.issn1002-0306.2024110163.
引用本文: 胡方洋,张得祥,何玲玲,等. 芒果不同组织部位膳食纤维含量及凝胶性质[J]. 食品工业科技,2025,46(20):309−318. doi: 10.13386/j.issn1002-0306.2024110163.
HU Fangyang, ZHANG Dexiang, HE Lingling, et al. Dietary Fiber Content and Gel Properties in Different Tissue Parts of Mango[J]. Science and Technology of Food Industry, 2025, 46(20): 309−318. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024110163.
Citation: HU Fangyang, ZHANG Dexiang, HE Lingling, et al. Dietary Fiber Content and Gel Properties in Different Tissue Parts of Mango[J]. Science and Technology of Food Industry, 2025, 46(20): 309−318. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024110163.

芒果不同组织部位膳食纤维含量及凝胶性质

Dietary Fiber Content and Gel Properties in Different Tissue Parts of Mango

  • 摘要: 为拓展芒果及其副产物资源的开发利用,本文以‘台农’、‘金煌’和‘桂七’芒果果实不同组织部位为原料制粉,对芒果果皮、果肉和果核粉中膳食纤维含量、颗粒形态及凝胶性质等进行探究。结果表明,果皮与果核中膳食纤维含量丰富(40.42~55.87 g/100 g),果肉中相对较低为11.02~25.41 g/100 g。其中果皮可溶性膳食纤维(Soluble Dietary Fiber,SDF)含量最高为8.42~11.48 g/100 g,占果皮总膳食纤维的20%以上,果核中不溶性膳食纤维(Insoluble Dietary Fiber,IDF)含量最高为38.19~52.57 g/100 g。不同组织部位的芒果粉能较好的保留原有色泽,但颗粒形态各异,粒径大小为果肉>果皮>果核。不同组织部位的芒果粉具有良好的持水性和持油性,芒果核粉形成凝胶后的凝胶强度、硬度、咀嚼度、冻融稳定性最好,且随冻融循环次数的增加析水率均降低,5次冻融后芒果核粉析水率较0次降低了45.08%~95.91%。相关性分析结果表明,不同组织部位芒果粉性质与其SDF与IDF含量有关。SDF含量越高,芒果皮粉持水性与溶解度越好,形成的凝胶结构相对松散而具有较低凝胶强度。IDF含量越高,粉碎后芒果核粉能形成更小的颗粒填充至凝胶内部增强凝胶强度。以上研究结果可为芒果粉在食品中的应用提供理论基础,拓展富含膳食纤维新型产品的开发以实现芒果及其副产物的高值化利用。

     

    Abstract: This study aimed to promote the advancement and use of mango and its by-product resources by examining the dietary fiber content, particle morphology, and gel properties of mango peel, sarcocarp and kernel powder, employing different tissue parts from 'Tainong', 'Jinhuang' and 'Guiqi' mango fruits as the raw materials. Results showed that the mango peel and kernel contained a high level of dietary fiber ranging from 40.42 to 55.87 g/100 g, whereas the sarcocarp had a significantly lower dietary fiber content, between 11.02 and 25.41 g/100 g. The mango peel contains soluble dietary fiber (SDF) level ranging from 8.42 to 11.48 g/100 g, which represented over 20% of its total dietary fiber, while the kernel has insoluble dietary fiber (IDF) levels between 38.19 and 52.57 g/100 g. Mango powder retained its color across different tissue parts, yet its morphology varies showing particle sizes decreased in the order: sarcocarp>peel>kernel. The water and oil holding capacity of mango powder also varied by tissue, with the kernel outperforming the sarcocarp and peel in gel strength and stability. Furthermore, as the number of freeze-thaw cycles increased, the rate of water precipitation diminished, and after undergoing five freeze-thaw cycles, the water bleeding ratio dropped by 45.08% to 95.91% compared to the initial state with no cycles. Correlation analysis revealed that the characteristics of mango powder across various tissue sections were associated with the levels of SDF and IDF. An increase in SDF levels enhances the water holding capacity and solubility of mango peel powder, resulted in a gel structure that is more loosely formed and exhibits reduced gel strength. A higher IDF level results in the generation of finer particles from mango kernel powder during the milling process, enabling their integration into the gel to enhance its strength. Results provides a theoretical basis for the application of mango powder in food and expand the development of new products rich in dietary fiber to realize the high-value utilization of mango and its by-products.

     

/

返回文章
返回