• 中国科技期刊卓越行动计划项目资助期刊
  • 中国精品科技期刊
  • EI
  • Scopus
  • CAB Abstracts
  • Global Health
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国科技核心期刊CSTPCD
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国开放获取期刊数据库COAJ
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
野晶菀,周一鸣,王明龙,等. 多源感知技术融合机器学习在食品品质评价中的研究进展[J]. 食品工业科技,2025,46(23):466−475. doi: 10.13386/j.issn1002-0306.2024110238.
引用本文: 野晶菀,周一鸣,王明龙,等. 多源感知技术融合机器学习在食品品质评价中的研究进展[J]. 食品工业科技,2025,46(23):466−475. doi: 10.13386/j.issn1002-0306.2024110238.
YE Jingwan, ZHOU Yiming, WANG Minglong, et al. Advances in Multi-source Perception Technology Integrated with Machine Learning in Food Quality Evaluation[J]. Science and Technology of Food Industry, 2025, 46(23): 466−475. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024110238.
Citation: YE Jingwan, ZHOU Yiming, WANG Minglong, et al. Advances in Multi-source Perception Technology Integrated with Machine Learning in Food Quality Evaluation[J]. Science and Technology of Food Industry, 2025, 46(23): 466−475. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024110238.

多源感知技术融合机器学习在食品品质评价中的研究进展

Advances in Multi-source Perception Technology Integrated with Machine Learning in Food Quality Evaluation

  • 摘要: 食品品质是保障食品安全与消费者满意度的基石,对于促进食品工业的可持续发展具有重要意义。机器学习凭借高效数据处理能力和精准预测分析模型,为食品品质的科学评估与管理提供了全新视角。其中,机器视觉通过图像感知与分析,在食品颜色、形状及纹理等外观检测方面展现出独特优势,有效提升了食品品质评价的客观性与准确性;近红外光谱技术则利用物质对红外光的吸收特性,实现了成分及结构的非破坏性感知与光谱特征深度解析。多源数据融合技术通过整合多维感知数据,突破单一模态表征局限,在提升检测精度的同时优化生产流程,为食品品质安全提供有力保障。本文系统梳理了在机器学习技术驱动下的机器视觉、近红外光谱等单一检测技术以及二者在多源数据融合中联用的应用现状,深入探讨了在表征检测、成分检测等方面的研究进展,并展望未来技术挑战与发展方向,以期为食品品质检测和评价提供参考和借鉴。

     

    Abstract: Food quality serves as the cornerstone for ensuring food safety and enhancing consumer satisfaction, playing a crucial role in advancing the sustainable development of the food industry. Machine learning revolutionizes food quality assessment through efficient data processing and precise predictive modeling, enabling scientific quality management. Specifically, machine vision, employing image perception and analysis, presents distinct advantages in detecting food attributes such as color, shape, and texture, enhancing the objectivity and precision of food quality evaluations. Near-infrared spectroscopy technology utilizes the absorption characteristics of substances to infrared light, achieving non-destructive perception of composition and structure as well as in-depth analysis of spectral features. Furthermore, multi-source data fusion integrates multi-dimensional sensory data, overcoming the limitations of single-modal characterization, optimizing production processes, and improving detection accuracy. This approach provides a strong guarantee of food quality and safety. This paper systematically reviews the current applications of machine vision, near-infrared spectroscopy, and their combined use in multi-source data fusion, driven by machine learning. It further explores advancements in characterization detection and ingredient analysis, identifies current challenges, and provides insights into future research directions to advance food quality detection and evaluation.

     

/

返回文章
返回