• 中国科技期刊卓越行动计划项目资助期刊
  • 中国精品科技期刊
  • EI
  • Scopus
  • CAB Abstracts
  • Global Health
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国科技核心期刊CSTPCD
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国开放获取期刊数据库COAJ
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
田辉,石春兰,张雯,等. 基于文冠果油和纳米纤维素的Pickering双乳液制备及其稳定性分析J. 食品工业科技,2025,46(18):184−193. doi: 10.13386/j.issn1002-0306.2024110342.
引用本文: 田辉,石春兰,张雯,等. 基于文冠果油和纳米纤维素的Pickering双乳液制备及其稳定性分析J. 食品工业科技,2025,46(18):184−193. doi: 10.13386/j.issn1002-0306.2024110342.
TIAN Hui, SHI Chunlan, ZHANG Wen, et al. Preparation and Stability of Pickering Double Emulsion Based on Xanthoceras sorbifolia Bunge Oil and NanocelluloseJ. Science and Technology of Food Industry, 2025, 46(18): 184−193. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024110342.
Citation: TIAN Hui, SHI Chunlan, ZHANG Wen, et al. Preparation and Stability of Pickering Double Emulsion Based on Xanthoceras sorbifolia Bunge Oil and NanocelluloseJ. Science and Technology of Food Industry, 2025, 46(18): 184−193. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024110342.

基于文冠果油和纳米纤维素的Pickering双乳液制备及其稳定性分析

Preparation and Stability of Pickering Double Emulsion Based on Xanthoceras sorbifolia Bunge Oil and Nanocellulose

  • 摘要: 基于文冠果油和纳米纤维素开发W1/O/W2型Pickering双乳液体系,并评价其稳定性。以1%(W/V)海藻酸钠为内水相(W1),聚甘油蓖麻醇酸酯为内层界面乳化剂,文冠果油为中间油相,纳米纤维素为外层乳化剂,整个乳液体系分散于外水相(W2)中。以双乳液微观结构、表观粘度、热稳定性、离心稳定性、冻融稳定性、外观分层为评价指标,分别比对了不同聚甘油蓖麻醇酸酯浓度、内水相(W1)与油相(O)体积比、初乳液(W1/O)与外水相(W2)体积比、纳米纤维素的种类及添加量等5种因素对双乳液体系的影响。通过扫描电子显微镜和接触角测量仪发现不同种类纳米纤维素的微观结构和疏水性差异明显,其中长径比大且成网状结构的纤维素纳米纤维疏水性最强。当聚甘油蓖麻醇酸酯浓度为2.5%(W/V),W1:O为3:7(V/V),(W1/O):W2为2:8(V/V),纤维素纳米纤维作为外层乳化剂的浓度为0.3%(W/W)时,双乳液的包埋率高且稳定性强。相对于纤维素纳米晶,纤维素纳米纤维所制备的双乳液稳定性更强。激光扫描共聚焦显微镜观察表明双乳液构建成功且结构稳定。油脂的酸价及过氧化值进一步反映了双乳液的化学稳定性。以纳米纤维素的固体微颗粒为乳化剂,文冠果油为包埋油相的Pickering双乳液,可作为一种新型功能性成分的良好递送载体。

     

    Abstract: A type of Pickering double (W1/O/W2) emulsion system based on Xanthoceras sorbifolia Bunge oil and nanocellulose was developed, and its stability was evaluated. A 1% (w/v) sodium alginate solution, polyglycerol polyricinoleate, Xanthoceras sorbifolia Bunge oil, and nanocellulose were used as the inner aqueous phase (W1), inner interfacial emulsifier, intermediate oil phase, and outer emulsifier, respectively. The whole emulsion system was dispersed in the outer aqueous phase (W2). Evaluation indicators included the microstructure, apparent viscosity, thermal stability, centrifugal stability, freeze-thaw stability, and layered appearance of the double emulsion. The five variable factors were polyglycerol polyricinoleate concentration, the volume ratio of the inner aqueous phase (W1) to the oil phase (O), the volume ratio of the first emulsion (W1/O) to the outer aqueous phase (W2), and the types and concentrations of nanocellulose. Obvious differences in the microstructure and hydrophobicity of nanocelluloses were observed using a scanning electron microscope and contact angle measuring instrument. The cellulose nanofiber, possessing a large aspect ratio and network-like structure, displayed the strongest hydrophobicity. The double emulsion system displayed a high encapsulation rate and stable structure under the following conditions: concentration of polyglycerol polyricinoleate of 2.5% (w/v), W1:O ratio of 3:7 (v/v), (W1/O):W2 ratio of 2:8 (v/v), and concentration of cellulose nanofiber as the outer emulsifier of 0.3% (w/w). When compared to two other types of cellulose nanocrystals, the cellulose nanofiber showed a stronger emulsification stability of the double emulsion. The successful construction and structural stability of the double emulsion were then proven by laser scanning confocal microscope observation, and the chemical stability was verified by the acid value and peroxide value of oil in the double emulsion. The Pickering double emulsion with solid microparticles of nanocellulose as the emulsifier and Xanthoceras sorbifolia Bunge oil as the encapsulated oil phase could serve as an effective delivery vehicle for novel functional ingredients.

     

/

返回文章
返回